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Abstract

Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent
works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the
same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However,
there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to
generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we
investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass
deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment
of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its
current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric
inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that,
as a result of precession of disk particles due to the Martian dynamical flattening J2 term of its gravity field and
particle–particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light
equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos
that can finally be tested by a future sample return mission such as JAXA’s Martian Moons eXploration mission.
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1. Introduction

The origin of the two small Martian moons, Phobos and
Deimos, is still debated. It has been believed that they were
captured asteroids, due to their spectral properties resembling
those of D-type asteroids (e.g., Burns 1978; Murchie et al.
1991). However, the captured scenario has been confronted
with the challenge of explaining their almost circular equatorial
orbits around Mars (inclinations of 1°.08 and 1°.79 from Mars’
equator for Phobos and Deimos, respectively). In contrast,
accretion within debris disks formed by a giant impact may
naturally explain their orbital configurations (Craddock
1994, 2011; Ida et al. 1997; Hyodo et al. 2015; Hyodo &
Ohtsuki 2015), but Crida & Charnoz (2012) showed that
Phobos and Deimos cannot be formed directly from the
spreading of a ring interior to the Roche radius. Then,
Rosenblatt et al. (2016) have shown that these small moons
can be formed by accretion within a thin debris disk that
extends outside the Roche limit (~ R3 Mars where RMars is the
Mars’ radius) and is sculpted by an outward migration of a
large inner moon that is formed by the spreading of a thick disk
lying inside the Roche limit. Furthermore, Hesselbrock &
Minton (2017) have shown that the tidal disruption of such a
large inner moon during the tidal decay creates a new
generation of rings/disks around Mars followed by the
spreading and accretion of smaller moons. They showed that
such a process could have occurred repeatedly over the past 4.3
billion years, suggesting that Phobos is the last generation of
moon we observe today. Note that currently the only successful
scenario to form Deimos is the accretion within an extended
outer disk proposed by Rosenblatt et al. (2016).

Such a Martian-moon-forming disk can be created by a giant
impact that can also form the asymmetric northern lowland that

is the Borealis basin: impactor mass of~ M0.03 Mars (about 1/3
Martian radius) and an impact velocity of ∼6 km s−1

(Marinova et al. 2008; Citron et al. 2015; Rosenblatt et al.
2016; Hyodo et al. 2017b). However, two natural questions
arise. First, without or a slow pre-impact spin of Mars
(compared with the impact spin angular momentum), a giant
impact spins up Mars, thus a debris disk is generated
symmetrically around the equatorial plane. In this case, the
impact point (that is the Borealis basin) is expected to be
located near the equator, so why is the Borealis basin currently
located on the northern hemisphere and not on the equatorial
plane? Second, during protoplanet formation through succes-
sive accretion of planetesimals, a protoplanet may naturally
have a rotation (Ohtsuki & Ida 1998). Thus, if Martian pre-
impact spin is comparable and not aligned to the angular
momentum delivered by the giant impact, the resultant debris
disk is expected to be inclined with respect to the equatorial
plane of Mars. Also, the location of the Borealis basin may not
be in the polar region. So, why do Phobos and Deimos orbit
almost on the Martian equatorial plane, and why is the Borealis
basin currently located on the northern hemisphere? In
addition, just after the giant impact, the orbits of the debris
are eccentric (Section 3.1). Thus, we need a dynamical path to
form a circular equatorial disk from which Phobos and Deimos
can accrete (Rosenblatt et al. 2016).
In Section 2, using analytical arguments, we show that the

Borealis basin-induced reorientation of the planet (true polar
wander (TPW)) can explain the dynamical path of the Borealis
basin settling in its current location in the northern hemisphere.
In Section 3, we detail the dynamical evolution of the initial
disk that is formed by a Borealis basin-forming impact and
show that an initial “inclined” (with respect to Mars’ equatorial
plane) and eccentric disk will settle into a thin equatorial
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circular disk, forming equatorial orbiting Phobos and Deimos.
In Section 4, we summarize our results.

2. True Polar Wander

The Borealis impact basin is expected to be located near the
equator of the planet, if one assumes that the giant collision that
caused it gave Mars most of its present spin. Even if Mars had a
significant pre-impact spin, it is unlikely that the Borealis basin
could form directly beneath the polar region. Under this
assumption, one needs to explain the current polar position of
the Borealis basin. Here, we check for TPW as a mechanism
for providing the required motion from the equator to polar
areas.

We use the equilibrium theory proposed by Gold (1955) and
adapted by Willemann (1984) and Matsuyama et al. (2006) for
assessing the Mars TPW induced by the Tharsis bulge. This
theory consists of computing the effect of surface mass excess
load and the effect of the rotational bulge excess mass on the
inertia tensor of the planet. The basic calculations of this theory
are the diagonalization of the perturbed inertia tensor to provide
the position of the new pole at the surface of the planet after
TPW motion (see also Matsuyama et al. 2006). In this theory,
the latitudinal shift δ of the pole at the surface of the planet is
given by the following relationship:
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where qL is the co-latitude of the center of the axisymmetric
excess mass before TPW, ¢Q is the ratio of the mass excess over
the rotational bulge load, and α is a combination of load and
tidal Love numbers of the planet (see the Appendix). Although
this theory has been applied for Mars with surface mass excess
(Tharsis), it can also be applied to mass deficit such as that
created by impact basins (Willemann 1984). In that case, the
center of the impact basin is expected to move from its initial
location toward the pole of the hemisphere. Thus, it is likely
that the center of the Borealis was initially located in the
northern hemisphere in order to move toward its current
location. Then, ¢Q has a negative value and is about −1.102 for

the Borealis basin, depending on the tidal Love numbers of
Mars, i.e., on the lithospheric thickness (see the Appendix).
Figure 1 displays the expected position of the center of the
Borealis basin after TPW (final position) versus its initial
position.
However, we need to know the Borealis position after

Borealis-TPW to find which pre-Borealis-TPW positions are
suitable from Figure 1. As Tharsis TPW is the most recent large
TPW event in Mars history, we need to compute the position of
Borealis before Tharsis TPW. The Tharsis-TPW displacement
is toward the equator with amplitude of 18°.9 (see Matsuyama
& Manga 2010; Bouley et al. 2016, for most recent
estimations), meaning that Tharsis formed at higher latitudes
by about 20° than it is today. This Tharsis-TPW has also
moved the Borealis position. However, the present longitude is
208°E (Andrews-Hanna et al. 2008), which is off the Tharsis
central meridian (259.5°E, Matsuyama & Manga 2010) by
about 50°. Simple spherical trigonometry considerations show
that the TPW amplitude decreases when the distance to its
central meridian increases. As the difference between Borealis
and Tharsis central meridians is about 50°, the Borealis center
will not move by 18°.9 in latitude but only by 5°. It corresponds
to a pre-Tharsis TPW co-latitude of 18° (latitude of 72°) for
Borealis center (see the Appendix).
If one assumes that no significant TPW events occur

between Borealis and Tharsis-TPW ones, this 18° co-latitude
of Borealis center before the Tharsis TPW in turn suggests two
possible initial (pre-Borealis) latitude ranges between 45°–50°
and 5°–10° (co-latitudes of 45°–50° and of 85°–80°,
respectively) for Mars’ lithospheric thickness at time of TPW
between 50 and 200 km (see Figure 1). Intermediate latitudes,
between 10°N and 45°N are possible for lithosphere thinner
than 50 km. The 5°–10° range of initial latitudes indicates large
TPW displacement between −62° and −67° (three times larger
than Tharsis-TPW), so a Borealis initial position near the
equator in agreement with a collision having given Mars most
if its spin. The 45°–50° range implies a more modest TPW
between −22° and −27° (see Equation (1)) comparable to the
absolute value of the Tharsis-TPW. The 45°–50° range also
implies that the giant collision would not have given to Mars
most of its spin, meaning in turn that Mars would have
significant pre-impact spin. This spin is, however, difficult to
compute because it also depends on the angle and the kinetic
energy of the collision.
The linear theory of Matsuyama & Manga (2010) assumes

elastic rheology for the lithosphere and the planet and so for
instantaneous TPW displacement. Chan et al. (2014) have
introduced a more realistic rheology allowing for assessing the
timescale of the TPW displacement. They found a typical
timescale of 20Myr for the Tharsis TPW to reach the
displacement predicted by the equilibrium theory (see Figure
4 in their paper), depending on the viscosity of the Martian
mantle. At the time of Borealis formation, the viscosity of the
mantle is expected to be lower than at time of Tharsis
formation, hence implying an even shorter timescale for the
Borealis-TPW displacement to take place. Thus, the Borealis
center can easily reach its final position before the Tharsis-
TPW takes place.
Although the two solutions for Borealis-TPW are mathema-

tically possible, the solution with lower TPW displacement
seems more plausible than the larger one. Large TPW is indeed
expected to produce planetary scale stresses in the lithosphere,

Figure 1. Predictions of true polar wander (TPW) due to Borealis impact basin
as a function of lithospheric thickness as labeled on the plot. The horizontal
dotted line represents the pre-Tharsis TPW (or post-Borealis TPW) co-latitude
of the Borealis basin (see the text).
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which should be seen as a global tectonic pattern. But such a
global pattern is not observed at Mars surface today (see
Bouley et al. 2016). Although these authors argue that the
lithospheric stresses should be relaxed with time, the tectonic
pattern should be still recorded in the lithosphere as the secular
cooling of the planet stiffens the lithosphere with time.
Actually, even modest TPW generates stresses in the litho-
sphere. However, as these stresses are more modest, they may
less likely produce tectonic pattern than in the case of huge
TPW. Therefore, a more modest TPW is more in agreement
with the absence of TPW-induced global tectonic pattern. Such
an issue deserves, however, more thorough investigations that
will be performed in future works. In turn, the dichotomy might
not be initially lying at the pre-Tharsis equator, in contrary to
the hypothesis in Bouley et al. (2016). Nevertheless, large
impacts occurring between Borealis and Tharsis events might
have produced TPW of a couple of degrees. Considering a few
large impacts (Bottke & Andrews-Hanna 2017), we indeed
found that Utopia and Hellas could have produced such TPW,
which, in turn, could have modified the position of Borealis
center after its own TPW with regard to the position derived
from the Tharsis-TPW alone (the estimation of the initial
position of Borealis). Hence, thorough investigations are
needed to fully draw Mars TPW history to check whether
our Borealis TPW calculations are still in agreement with
Tharsis TPW predictions within the error bar of the Tharsis
center determination (Matsuyama & Manga 2010) and the error
bar of the estimation of Tharsis TPW displacement from
surface observations (e.g., Perron et al. 2007; Kite et al. 2009).
This will be performed in future works.

The application of TPW linear theory suggests two possible
solutions for Borealis-TPW: on one hand, large TPW and so
near-equatorial position for Borealis impact center, and on the
other hand, smaller TPW with~ 45 latitude impact center. The
latter solution is, however, favored for physical considerations,
and in turn implies a non-equatorial debris disk. The evolution
of this non-equatorial disk is studied in the next section.

3. Dynamical Evolution of the Disk

The results of TPW in Section 2 imply that the giant impact
is more likely to occur not on the equatorial plane, but at higher
latitude. This indicates that the mean inclination of the debris
just after the impact is expected to be inclined with respect to
the equator, depending on the pre-impact spin state. In addition,
the orbits of the initial debris are expected to be eccentric (see
Section 3.1). However, to form Phobos and Deimos in the
equatorial plane in a framework of the giant impact hypothesis,
a dense inner equatorial and a light outer equatorial disk are
required to form (Rosenblatt et al. 2016). Inelastic collision can
decrease eccentricity through energy damping, but it conserves
the angular momentum. The inner dense and outer light surface
density profile of the Martian-moon-forming disk (Rosenblatt
et al. 2016, see their Figure 1) was generated as a consequence
of the angular momentum conservation from the same a− e
distribution of the debris as that shown in Figure 2 by
calculating an equivalent circular orbit of radius aeq for every
disk particles ( = -( )a a e1eq

2 ) as done also in the case of the
Moon-forming impact and its disk (e.g., Canup 2004).
However, the detailed collisional evolution and its timescale
are unclear. In this section, we address a dynamical path that
can potentially bring the impact-generated inclined and

eccentric debris to the circular equatorial disk that can form
Phobos and Deimos.

3.1. Orbital Elements of Disk Particles Just After the Impact

Figure 2 shows the distribution of eccentricity of disk
particles just after the impact, which is taken from the Martian-
moon-forming impact simulation in Hyodo et al. (2017b). We
find that the disk particles initially have a wide distribution of
large eccentricity (up to almost one) around Mars. The
distribution of semimajor axes and eccentricities of disk
particles just after the impact can be analytically derived as
follows. For particles that end up orbiting around Mars (called
“disk particles”), the near impact point is expected to be their
pericenters (because Keplerian orbits are closed trajectories,
and if their pericenter is inside Mars, they would be accreted
very rapidly). Therefore, pericenter distances of the disk
particles can be written as ~ + D = -( )r R r a e1peri Mars

where Dr is the small distance from the surface of Mars, a is
the semimajor axis and e is the eccentricity. Thus, we can
derive the relationship between a and e as

= -
+ D ( )e

R r

a
1 . 2Mars

Thus, the distribution of a and e of disk particles just after the
impact is expected to be along the line obtained by Equation (2)
(Figure 2), and this means that all particles share almost the
same pericenter distances.

Figure 2. Distribution of disk particles on semimajor axis to eccentricity plane
in the case of the Borealis basin-forming canonical impact (impact angle of
45°with respect to the Martian surface and = ´N 3 10SPH

6 at T = 5 hr, where
NSPH is the number of SPH particles and T is the time after the start of
simulation). Data are taken from Hyodo et al. (2017b). Here, we plot only
particles whose pericenter distances are larger than the radius of Mars (disk
particles). The solid black lines from top to bottom represent Equation (2) with

=R 3260Mars km and D =r 0, 0.5 and R1.0 imp, respectively, taken from the
simulation (Hyodo et al. 2017b), where ~R 1000imp km is the radius of the
impactor.
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3.2. Orbital Evolution of Disk Particles

Just after the impact, the disk particles are almost aligned
(phase alignment) at their longitude of the pericenters
(Figure 3) with wide distributions of eccentricity and
semimajor axis (Figure 2). In addition, the disk may be
initially inclined from the Martian equatorial plane depending
on the giant impact condition. Thus, under these circumstances,
collision velocities between nearby particles are significantly
small about their shear motion, thus collisional damping is not
effective unless collision happens at pericenter between
particles whose orbital elements are significantly different. In
this subsection, we will discuss two extreme cases of the
expected dynamical evolutions of the system where the system
forms a torus-like structure and where the system damps very
quickly to form a thin inclined nearly circular disk. Note that
direct N-body simulations including fragmentation is necessary
to understand more details about the disk evolution. However,
this is beyond the scope of this work and we will leave this
matter in the future work.

3.2.1. The Case for Forming a Torus-like Structure

Here, we will discuss the case when particles experience
orbital precession and the system is randomized before particle–
particle collisions are effective. As was also discussed in Hyodo
et al. (2017b), just after the impact, the particles have large
eccentricities when they start to be influenced by Martian
oblateness (mainly J2 term), i.e., as their orbits (the argument
of pericenter ω and the longitude of ascending node Ω) start
to precess around Mars. Using = ´ -J 1.96 102

3 value for
Mars (http://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-
v1/mrors_1xxx/document/shadr.pdf), we can calculate the
timescales of precession as p w=w ˙T 2 and =WT

p Ẇ2 , where w =
-

˙
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Mars , respectively (Figure 4). Note that the actual
value of J2 may differ from the current value, and it is important

to calculate the precession rate, but this is the beyond the scope
of our paper. The timescales depend on the eccentricity,
semimajor axis, and inclination from the equatorial plane of
Mars but for parameters of interest here ( ~ –e 0.5 0.9 and
~ –a R2 10 Mars), timescales range from 1 to 100 years

depending on the inclination of the disk with respect to the
Martian equatorial plane (Figure 4). The ratio between these two

precession timescales is =w W
-

∣ ∣ ( )
( ( ) )

T T i

i

cos

2 1 sin5

4
2

that only

depends on i, and these timescales are comparable for the
nominal case of i= 45°.
After the formation of a torus-like structure (see also Hyodo

et al. 2017a, 2017b), particle–particle collision may collapse
the system into equatorial plane. Here, we analytically estimate
the collisional timescale between particles after they form a
torus-like structure. In the particle-in-a-box approximation, the
collision timescale can be written as

s
= ( )T

n v

1
, 3col

p col rel

where np is the number density of particles, scol is the collision
cross section and vrel is the relative velocity. As also discussed
in Hyodo et al. (2017a), after the system forms a torus-like
structure, orbits of particles are randomly oriented so that they
cross each other and their relative velocity becomes about their
local Keplerian velocity. Without gravitational focusing, the
cross section can be written as s p= r4col p

2, where rp is the
particle size. Here, we can neglect the gravitational focusing
term because when particles are close to or within the Roche
limit, gravitational attraction between particles becomes
negligible (Ohtsuki 1993; Hyodo & Ohtsuki 2014, 2015).
Following the argument of Hyodo et al. (2017a), the volume
number density of particles can be written as

ò ò òy
y

p
=( ) ( ) ( ∣ ) ( ∣ ) ( )n r da de di
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,
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where ( )N a e i, , is the number of particles as a function of a, e,
and i. ( ∣ )P r a e, and y( ∣ )P i are the probability of finding a
particle at radial distance r and an angle ψ from the equatorial
plane of the planet and are written as

p
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respectively.
Here, to estimate the collision timescale, we first integrate np

over a and e assuming the disk mean inclination of either
i= 10°, 45°and 80°. We use the data obtained from
SPH simulations from Hyodo et al. (2017b) (Figure 2) to
know the distribution of a. Then, the distribution of e is
obtained using Equation (2). Hyodo et al. (2017b) has
considered that the particle size that formed during the impact
ejection is regulated by their local shear velocity and material
surface tension, and they estimated that the typical particle size
is ~r 1.5p m. We assume particle density of r = 2500 kgp m−3

to calculate the number of particles as =( )N a e i m m, , SPH p,
where mSPH is the mass of one SPH particle whose orbital

Figure 3. Distribution of the longitude of the pericenter in the case of the
Borealis basin-forming canonical impact ( = ´N 3 10SPH

6 at T = 5 hr
obtained from Hyodo et al. (2017b), see also their Figure 1).
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elements are a and e, and pr=m r4 3p p p
3 is the mass of

particle. The collision timescale decreases when r is close to the
particles’ pericenter and/or ψ is closer to i. This is because near
pericenter, apocenter, and at maximum elevation, the radial and
vertical orbital velocity is zero so that the particle residence

time is at its maximum there. Thus, in this study, we assume
that collision takes place at =r r1.1 per and y = i0.9 . Then,
assuming the relative velocity of ~ (v v sin 45rel peri ) for orbital
elements of e= 0.8, we estimate the collision timescale of less
than ´ -1 10 5 year for i= 10°, 45°, and 80°. Note that in the

Figure 4. Precession timescale Tpre as a function of semimajor axis and eccentricity at different disk inclination from the equatorial plane of Mars (from top to bottom
panels, i = 10°, 45°,and 80°are shown, respectively). Left panel shows that for argument of pericenter ( wT ) and right panel shows that of longitude of the ascending
node ( WT ). White line shows the analytical a − e distribution of the initial disk particles (Equation (2)). When <T 1pre years, it is plotted with black, and when

>T 10pre
9 years, it is plotted with white.
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above argument, we assume arbitrary choices of the location of
collision and relative velocity, but we confirm that the collision
timescale is always much less than a year, even with any other
choices. The estimated collision timescales close to the
pericenter are much smaller than the orbital period of particles.
In contrast, the collision timescales at around apocenter
distance are larger than the orbital period of particles.

Thus, as soon as the disk particles come back to their
pericenter distances, they experience collisions. Therefore, after
the formation of a torus-like structure, the system is expected to
collapse through inelastic collisions to form a thin equatorial
disk on a timescale comparable to their orbital period. In
addition, the eccentric orbits of the debris are circularized at the
same time when the inclination is damped, forming the inner
dense and outer light radial profile of the disk in Rosenblatt
et al. (2016) under the assumption that every particle converges
to the circular orbit corresponding to its angular momentum.
However, we may need more detailed investigations that
consider collisional fragmentation. We leave this matter for
future works.

3.2.2. The Case for Forming a Flat Inclined Low-eccentricity Disk

Even under the phase alignment, particles may experience
high velocity collision at their pericenters because they share
almost the same pericenter distances and have a wide
distribution of large eccentricity (see Figures 2 and 3). In this
subsection, we discuss the case when collisional damping at
their pericenter is very efficient, thus a flat inclined low-
eccentricity disk is formed. If collision occurs between particles
that share the same pericenter distance rperi but have different
orbital elements (e1,2 where >e e1 2) under the phase alignment
as seen in our case (see Figures 2 and 3), collision velocity can
be estimated as
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Thus, if collision occurs between particles whose eccentricities
are e= 0.9 and e= 0, respectively, we get ~v 1.2col,alig

km s−1. Then, their initial collision timescale is expected to
be their synodic period when there is no dense circular inner
rings as
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where Da is the difference in semimajor axis of two colliding
particles. In contrast, after dense circular rings are formed due
to collision damping, the collision timescale between the dense
circular rings and eccentric particles becomes about their
Keplerian period (∼few days for particles whose =a R10 Mars).
Such high collision velocity may quickly damp the system and
be energetic enough to form m~100 m sized particles (Hyodo

et al. 2017b). As also discussed in Section 3.2.1, the initial
a− e distribution is expected to be circularized through
inelastic collisions while conserving the angular momentum
of the disk, eventually forming the inner dense and outer light
radial distribution of Rosenblatt et al. (2016).
The timescale of the circularization (∼tens of days; see

Equation (8)) is much shorter than the precession timescale
(~ –1 100 years, see Section 3.2.1). Therefore, the system forms
an inclined low-eccentricity inner dense and outer light disk,
while the disk keeps its average inclination from the equatorial
plane of Mars resulted directly from the giant impact rather
than the nodal precession forms a torus-like structure with large
eccentricity.
After the formation of a flat inclined circular disk, neglecting

the effect of self gravity (we will discuss this effect in the next
paragraph), the evolution is expected to be either of the following
two extreme cases. Case (a): if collision timescale is shorter than
the differential precession timescale to form a torus-like structure,
inelastic collision occurs between nearby particles whose long-
itudes of node are slightly different as a result of the differential
nodal precession and their mean inclination decreases. This is
because the nodal differential precession induced by J2 term
always tries to make the system symmetric to the equatorial plane
of Mars. Thus, the disk takes gradual inside-out evolution by
lowering its mean inclination to settle into the Martian equatorial
plane with differential precession timescale (see also Figure 4 at
small e). The other extreme case is case (b): if collision timescale
is larger than the precession timescale, the system first forms a
torus-like structure with the differential precession timescale.
Then, collision will collapse the system into the equatorial plane.
In our case, the collision timescale in the outer disk (in the case of
a torus structure with its inclination i= 45°and =a R5.5 Mars
with the radial width ofD =a R3 Mars where Phobos and Deimos
are expected to form with a disk mass of MPhobos, and particle
size of 1 m and its density 2500 kgm−3) is estimated by
using the same argument above (Equation (3)), where

=n N Vp , = = = ´N M m 10 kg 10 kg 1 10Phobos p
16 4 12,

and p= D ~ ´( ) ( ( ))V a a a i2 2 tan 4.4 1022 m3. Thus, ~np

´ -2.2 10 11, s p= ~( )1.0 m 3col
2 m2 and ~ =( )v V isinrel Kep

=( )GM a isin 1000 m s−1. Thus, ~T 0.5col years. This time-
scale is actually the maximum timescale of collision because we
assume the scale height of ( )a i2 tan and that the actual particle
size is expected to be smaller due to collisional cascade. So,
collision timescale is much smaller than the precession timescale.
In the inner disk, the collision timescale is shorter than that of the
outer disk due to its larger number density and larger relative
velocity. Thus, in reality, case (a) occurs.
Lastly, using N-body simulations that include self gravity

between all particles, we investigate the evolution of the system
by nodal precession. Under some condition, the self gravity of
the disk can prevent differential precession, and the disk
precesses rigidly without changing its inclination (Batygin
2012; Morbidelli et al. 2012). Our N-body code is the same
as that used in Hyodo et al. (2015, 2017a) and Hyodo &
Charnoz (2017), and we include the effect of J2 (see more
details Hyodo et al. 2017a). In the case of the canonical
Martian-moon-forming disk, the inner disk ( <a R4 Mars) is
massive (~1020 kg) and the outer disk ( – R4 7 Mars) has a mass of
Phobos (~1016 kg) (Rosenblatt et al. 2016; Hyodo et al.
2017b). Orbits of the inner disk are expected to precess much
quicker than those of the outer disk (we have confirmed by
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N-body simulations that the self gravity within the inner disk
does not prevent the differential precession and the case (a)
discussed above is expected to occur on a timescale of ∼few
10 years (see Figure 4 at e= 0)). Thus, the inner part may
quickly form a thin equatorial massive inner disk, while the
outer disk remains inclined. The orbital period of particles
within the inner massive disk is much shorter than the
precession timescale of the outer disk (Figure 4). Thus, we
can approximate the effect of the massive inner disk on the
nodal precession of the outer disk as a secular perturbation of
the inner massive satellite (see also Morbidelli et al. 2012). In
addition, the inner massive disk quickly spreads and massive
inner moons are formed (Crida & Charnoz 2012; Rosenblatt
et al. 2016). Such inner massive disk or moon(s) increase the
net effect of J2 and the nodal precession can be accelerated.
Thus, following the procedure in Morbidelli et al. (2012), we
perform N-body simulation including a single massive satellite
(mass of 1020 kg) on circular orbit ( =a R2.5 Mars) on the
equatorial plane of Mars. In contrast, the outer disk is
represented by a swarm of 1000 equal-mass particles initially
on circular orbits with their mean inclinations of 45°from the
equatorial plane of Mars. In addition, we investigate the outer
disk evolution without the inner massive satellite (which means
without the effect of the inner disk).

Figure 5 shows time evolutions of the longitude of nodes of
disk particles. The inner satellite enhances the net effect of J2
and the differential precession is slightly accelerated compared
with the case of no inner massive disk (see also Morbidelli
et al. 2012). Our N-body simulations show that in the case of
Phobos and Deimos forming disk (~1016 kg), the self gravity is
not effective to induce the rigid precession of the disk. In the
framework of the giant impact hypothesis, the inner large moon
is formed from the Roche-interior massive disk on a timescale
of ∼100 years and migrates outward up to R4 Mars on a
timescale of ∼1000 years (Rosenblatt et al. 2016). As
discussed above, in the outer disk, the collision timescale is
shorter than the nodal precession timescale, thus the disk
inclination decreases with the precession timescale (case of
(a)). Together with the results of N-body simulations
(Figure 5), the nodal precession timescale in the outer disk is
a few tens to a few hundreds years (see Figure 4, = –a R4 7 Mars,
and ~e 0), depending on the initial inclination. Therefore, it is

likely that the outer disk eventually settles into a thin equatorial
near the circular disk before the large inner moon migrates
outward so that the equatorial Phobos and Deimos can accrete
(Rosenblatt et al. 2016).

4. Summary and Discussion

The origin of Martian moons Phobos and Deimos is
intensely debated. Recent works have shown that they might
have accreted within a debris disk produced by the giant impact
that formed the Borealis basin (Rosenblatt et al. 2016;
Hesselbrock & Minton 2017). If so, two dynamical questions
naturally arise. First, why is the Borealis basin not on the
Martian equatorial plane, but close to the north pole? The
Borealis basin-forming impact can produce almost all of the
current spin period of Mars. Thus, if there is no pre-impact
Martian spin or a slow spin, the Borealis basin is expected to
form around the equatorial plane and not on the northern
hemisphere. Second, why do Phobos and Deimos orbit almost
on the equatorial plane of Mars? If there is a pre-impact spin on
Mars comparable to that given by the Borealis basin-forming
impact, and if the pre-impact spin axis is not aligned to the
angular momentum vector of the impactor, the resultant disk
orbital plane is expected to be different from the equatorial
plane of Mars, thus non-equatorial Phobos and Deimos
may form.
To answer the first question—why the Borealis basin is

located close to the northern pole and not near the equatorial
plane—we investigated the planetary reorientation, due to the
mass deficit at the Borealis basin (Section 2). We found that
Borealis-induced TPW, using the equilibrium theory, can
provide the required reorientation of the planet to move the
center of the Borealis to its current latitudinal position from its
initial location, which is between 5°N and 50°N (more likely
between 45°N and 50°N), for a lithospheric thickness between
50 and 200 km (intermediate latitudes, between 5°N and 45°N
are possible, but for lithospheric thicknesses thinner than
50 km). However, this estimation could be refined by taking
into account the post-Borealis TPW expected with large impact
basins like Hellas or Utopia and with Tharsis, but this is out of
the scope of this paper.

Figure 5. Longitude of the nodes of disk particles under the effect of J2 at different epoch obtained from our N-body simulations. Initially, particles on circular orbits
are distributed between – R4 7 Mars, where Phobos and Deimos are expected to form (Rosenblatt et al. 2016). The left panel shows the case of no inner massive satellite
and the right panel shows the case with a massive inner satellite. A large dot in the right panel shows a massive satellite. Black dots show outer disk particles at T = 0
year, green dots show those of 250 years, and blue dots show those after 500 years.
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Based on the canonical Martian-moon-forming impact (an
impact energy of ´3 1029 J and an impact angle of
45°(Rosenblatt et al. 2016; Hyodo et al. 2017b)) that also
formed the Borealis basin (Marinova et al. 2008), and using
analytical arguments, we investigated the detailed post-impact
disk. Just after the impact, disk particles have large
eccentricities (Section 3.1) and almost the same pericenter
distances. In addition, their orbits are almost aligned (“phase
alignment”) at their longitude of the pericenters (Section 3.2)
and the initial disk is expected to be inclined with respect to the
equatorial plane of Mars. Thus, collisional damping is not
efficient because collision velocity is only the order of their
shear velocities except their pericenter distances, where the
maximum collision velocity is ∼1 km s−1. In this paper, we
considered that the debris disk may experience either of the
following two dynamical paths before forming a thin circular
equatorial disk: formation of a torus-like structure
(Section 3.2.1) or formation of a thin inclined (with respect
to Mars’ equatorial plane) circular disk (Section 3.2.2).
Comparing the timescales of these two dynamical evolutions,
we found that the formation of a thin inclined circular disk is
expected to occur preferentially, due to fast collisional damping
at particle’s orbit pericenter. Then, due to the differential nodal
precession and particle–particle inelastic collisions, the inclined
disk is expected to experience an inside-out evolution to
gradually lower the mean inclination of the disk to eventually
settle into the equatorial plane within 1000 years
(Section 3.2.2). Then, the thin equatorial circular disk is
expected to form Phobos and Deimos near the equatorial plane
(Rosenblatt et al. 2016). Thus, the above arguments are likely
to be a dynamical pathway that can answer our second
question: why do Phobos and Deimos orbit almost on the
equatorial plane of Mars?

As discussed above, the results and analytical arguments
presented in this work have strengthened the giant impact
origin of Phobos and Deimos. Together with the expected
material properties of the building blocks of Phobos and
Deimos (such as particle sizes; material provenance: Mars
material or impactor material; and thermodynamic properties)
that have also been investigated in the framework of the giant
impact hypothesis (Ronnet et al. 2016; Hyodo et al. 2017b),
our results would finally be tested by a future sample return
mission such as JAXA’s Martian Moons eXploration (MMX)
mission.
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Appendix
The Equilibrium Theory

The equilibrium theory considers axisymmetric loads, thus
allowing the computation of the polar wander in latitude alone.
Although the Borealis basin is slightly elliptical, we will
assume an axisymmetric load for direct application of the
computation developed in the equilibrium theory. In this
theory, planet tends to reorient in response to the modification
of the planet inertia tensor induced by mass excess or deficit
(Matsuyama et al. 2006). However, the rotational bulge mass
excess counteracts this effect, and the efficiency of the TPW
depends on the ratio between mass excess/deficit and rotational
bulge load that corresponds to the following ¢Q coefficient:

*
¢ =

¢

W

p

- ( )Q
L

a k
, 9

a g

M

f
T

4

5 20

1

3 5
2 2

3

where a, g, and M, are the equatorial radius (3400 km), the
gravity (3.711 m s−2), the mass ( ´6.4 1023 kg), and the
rotation rate of Mars ( ´ -7.08 10 5 rad s−1), respectively, and
*kf

T is the tidal fluid Love number for a planet without a
lithosphere (i.e., 1.1867, see Table1 in Matsuyama et al.
2006). ¢L20 is the second degree zonal term of the spherical
expansion of the surface density of the axisymmetric mass
deficit (therefore it has a negative value; see Gold 1955). It is
given as

òp
q

r q q¢ =
-q

( ) ( )L d2
3 cos 1

2
, 1020

0

2

s

0

where θ is the co-latitude, q0 is the co-latitudinal extent of the
axisymmetric deficit load, and rs its surface density. If we
assume this surface density is constant and that the shape of the
cavity can be approximated by a spherical cap, it becomes

p q q r¢ = - ( ) ( ) ( )L hcos sin 2, 1120 0 0
2

where ρ is the volume density of the excavated material
(3000 kg m−3), and h is the height of the spherical cap,
corresponding to the crustal dichotomy thickness (26 km,
Neumann et al. 2004).
The α coefficient in Equation (1) is computed as in Equation

(26) of Matsuyama et al. (2006):

*

a =
+

-
( )

k1

1
, 12

f
L

k

k

f
T

f
T

where kf
T and kf

L are the fluid Tidal and load Love numbers for a
planet with a lithosphere of a given thickness. The values of the
Love numbers are extracted from Figure 3 of Matsuyama &
Manga (2010) and given in Table 1 as a function of lithospheric

Table 1
Love Numbers of Mars and Parameter Values for Varying

Lithospheric Thickness Values

Lithospheric Thick-
ness (km)

Load Fluid Love
Number kf

L
Tidal Fluid Love

Number kf
T

α Parameter

50 −0.9150 1.1100 1.2708
100 −0.8529 1.0370 1.1686
200 −0.6906 0.8475 1.0822
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thickness. We considered a thin lithosphere as expected in early
Mars history.

Considering the spherical triangle formed by the post-
Tharsis TPW geographical pole, the pre-Tharsis TPW geo-
graphical pole (or paleopole) and the center of Borealis, basic
spherical trigonometric relationship yields

q q d q d= + D( ) ( ) ( ) ( ) ( ) ( ) ( )Lcos cos cos sin sin cos , 13f fL

with qL and qf are the initial and final co-latitudes of Borealis
center, respectively. δ is the Tharsis-TPW displacement and
DL is the longitude shift between Tharsis and Borealis central
meridians. Given the Borealis final co-latitude, q = 23f

(latitude of 67°, Andrews-Hanna et al. 2008), the Tharsis
TPW displacement δ=18°.9 (Matsuyama & Manga 2010) and
the longitude shift of 50° (see Section 2), it yields q = 18L .
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