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Abstract

Stellar distances constitute a foundational pillar of astrophysics. The publication of 1.47 billion stellar parallaxes
from Gaia is a major contribution to this. Despite Gaia’s precision, the majority of these stars are so distant or faint
that their fractional parallax uncertainties are large, thereby precluding a simple inversion of parallax to provide a
distance. Here we take a probabilistic approach to estimating stellar distances that uses a prior constructed from a
three-dimensional model of our Galaxy. This model includes interstellar extinction and Gaia’s variable magnitude
limit. We infer two types of distance. The first, geometric, uses the parallax with a direction-dependent prior on
distance. The second, photogeometric, additionally uses the color and apparent magnitude of a star, by exploiting
the fact that stars of a given color have a restricted range of probable absolute magnitudes (plus extinction). Tests
on simulated data and external validations show that the photogeometric estimates generally have higher accuracy
and precision for stars with poor parallaxes. We provide a catalog of 1.47 billion geometric and 1.35 billion
photogeometric distances together with asymmetric uncertainty measures. Our estimates are quantiles of a
posterior probability distribution, so they transform invariably and can therefore also be used directly in the
distance modulus ( -r5 log 510 ). The catalog may be downloaded or queried using ADQL at various sites
(see http://www.mpia.de/~calj/gedr3_distances.html), where it can also be cross-matched with the Gaia catalog.

Unified Astronomy Thesaurus concepts: Catalogs (205); Galaxy structure (622); Bayesian statistics (1900);
Parallax (1197); Stellar parallax (1618); Photometric parallax (1231); Distance indicators (394); Astrometry (80);
Markov chain Monte Carlo (1889); Absolute magnitude (10)

1. Introduction

There are various ways to determine astrophysical distances.
Near the base of the distance ladder on which almost all other
distance measures are built are geometric parallaxes of stars. In
recognition of this, the European Space Agency (ESA)
implemented the Gaia mission to obtain parallaxes for over one
billion stars in our Galaxy down to G; 20 mag, with accuracies
to tens of microarcseconds (Gaia Collaboration 2016a). The first
two data releases (Gaia Collaboration 2016b, 2018) presented a
significant leap forward in both the number and accuracy of stellar
parallaxes. The recently published early third release (Gaia
Collaboration 2020a, hereafter EDR3) reduces the random and
systematic errors in the parallaxes by another 30%.

While parallaxes (ϖ) are the basis for a distance determina-
tion, they are not themselves distances (r). This is due to the
nonlinear transformation between them (ϖ∼ 1/r) and the
presence of significant noise for more distant stars. Small
absolute uncertainties in parallax can translate into large
uncertainties in distance, and while parallaxes can be negative,
distances cannot be. Thus, for anything but the most precise
parallaxes, the inverse parallax is a poor distance estimate. An
explicit probabilistic approach to inferring distances may
instead be taken. This has been discussed and applied to
parallax data in various publications in recent years; a recent
overview is given by Luri et al. (2018). The simplest approach
uses just the parallax and parallax uncertainty together with a
one-dimensional prior over distance. This yields a posterior
probability distribution over distance to an individual star
(Bailer-Jones 2015). A suitable prior ensures that the posterior
converges to something sensible as the precision of the parallax
degrades. This is important when working with Gaia data

because, its truly revolutionary nature notwithstanding, in
EDR3 only 33% of the sources have a parallax signal-to-noise
ratio greater than 2 (13% greater than 5), and a further 24%
have negative parallaxes. The shape and scale of the prior
distribution should reflect the expected distribution of stars in
the sample, including observational selection effects such as
magnitude limits. The prior’s characteristic length scale will
typically need to vary with direction in the Galaxy (Bailer-
Jones et al. 2018). More sophisticated approaches use other
types of data, such as the star’s magnitude and color
(Astraatmadja & Bailer-Jones 2016a; McMillan 2018; Anders
et al. 2019; Leung & Bovy 2019), velocity (Schönrich &
Aumer 2017; Zucker et al. 2018), or spectroscopic (Sanders &
Das 2018; Queiroz et al. 2020) or asteroseismic (Hall et al.
2019) parameters. In order to exploit such additional data, these
methods must make deeper astrophysical assumptions than
parallax-only approaches, and they may also have more
complex priors. The benefit is that the inferred distances will
usually be more precise (lower random errors), and hopefully
also more accurate (lower systematic errors) if the extra
assumptions are correct.
In the present paper, the fifth in a series, we determine

distances for sources in EDR3 using data exclusively from
EDR3. The resulting catalog should be more accurate and more
useful than our earlier work, on account of both the more
accurate parallaxes in EDR3 and improvements in our method.
We determine two types of distance. The first, which we call
“geometric,” uses only the parallaxes and their uncertainties.
We explored this approach in detail in the first two papers in
this series (Bailer-Jones 2015; Astraatmadja & Bailer-
Jones 2016a, hereafter Papers I and II) and applied it to
estimate distances for 2 million stars in the first Gaia data
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release (Astraatmadja & Bailer-Jones 2016b, Paper III) and
1.33 billion stars in the second Gaia data release (Bailer-Jones
et al. 2018, Paper IV). Both papers used a (different) direction-
dependent distance prior that reflected the Galaxy’s stellar
populations and Gaia’s selection thereof.

Our second type of distance estimate uses, in addition to the
parallax, the color and magnitude of the star. We call such
distances “photogeometric.” Along with the distance prior, this
uses a model of the direction-dependent distribution of
(extincted) stellar absolute magnitudes.

We construct our priors from the GeDR3 mock catalog of
Rybizki et al. (2020). This lists, among other things, the (noise-
free) positions, distances, magnitudes, colors, and extinctions
of 1.5 billion individual stars in the Galaxy as a mock-up of
what was expected to appear in EDR3. GeDR3mock is based
on the Besançon Galactic model and PARSEC stellar
evolutionary tracks. We exclude stars from GeDR3mock that
simulate the Magellanic Clouds (popid = 10) and stellar open
clusters (popid = 11). We divide the sky into the 12,288
equal-area (3.36 sq. deg.) regions defined by the HEALpixel
scheme3 at level 5, and we fit our prior models separately to
each. In doing this, we only retain from GeDR3mock those
stars that are brighter than the 90th percentile of the EDR3
magnitude distribution in that HEALpixel (Rybizki & Drimmel
2018; Gaia Collaboration 2020b). This is done to mimic the
variable magnitude limit of Gaia over the sky, and it varies
from 19.2 mag around the Galactic center to 20.7 mag over
much of the rest of the sky (the median over HEALpixels is
20.5 mag).

We apply our inference to all sources in EDR3 that have
parallaxes. As our prior only reflects single stars in the Galaxy,
our distances will be incorrect for the small fraction of
extragalactic sources in the Gaia catalog and may also be
wrong for some unresolved binaries, depending on their
luminosity ratios.

As some readers may be familiar with our previous catalog
using GDR2 data (Paper IV), here is a summary of the main
changes in the new method (which we describe fully in
Section 2):

1. We update the source of our prior from a mock catalog of
GDR2 (Rybizki et al. 2018) to one of EDR3 (Rybizki
et al. 2020).

2. We replace the one-parameter exponential decreasing
space density (EDSD) distance prior with a more flexible
three-parameter distance prior (Section 2.3).

3. We again fit the distance prior to a mock catalog, but we
no longer use spherical harmonics to smooth the length
scale of the prior over the sky. We instead adopt a
common distance prior for all stars within a small area
(level 5 HEALpixels).

4. We introduce photogeometric distances (Section 2.4)
using a model for the (extincted) color–absolute magni-
tude diagram, also defined per HEALpixel (Section 2.5).

5. In Paper IV we summarized each posterior with the mode
and the highest density interval. The mode has the
disadvantage that it is not invariant under nonlinear
transformations. This means that if we inferred rmode as
the mode of the posterior in distance, then

-r5 log 510 mode would not, in general, be the mode of
the posterior in distance modulus. This is also the case for

the mean. The quantiles of a distribution, in contrast, are
invariant under (monotonic) nonlinear transformations.
We therefore provide the median (the 50th percentile) of
the posterior as our distance estimate. To characterize the
uncertainty in this, we quote the 14th and 86th percentiles
(an equal-tailed interval, ETI). These are therefore also
the quantiles on the absolute magnitude inferred from the
distance.

In the next section, we describe our method and the
construction of the priors. In Section 3, we apply our method
to the GeDR3mock catalog, giving some insights into how it
performs. We present the results on EDR3 in Section 4, and we
describe the resulting distance catalog in Section 5 along with
its use and limitations. We summarize in Section 6. Auxiliary
information, including additional plots for all HEALpixels—
for both the prior and the results—can be found online.4

2. Method

For each source, we compute the following two posterior
probability density functions (PDFs) over the distance r:
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where ϖ is the parallax, σϖ is the uncertainty in the parallax, p
is the HEALpixel number (which depends on Galactic latitude
and longitude), G is the apparent magnitude, and c is the
BP−RP color. The parallax and apparent magnitude will be
adjusted to accommodate known issues with the EDR3 data, as
detailed below. The star symbol indicates that we infer
unnormalized posteriors. The geometric posterior uses just a
distance prior. The photogeometric posterior uses this distance
prior as well as a color–magnitude prior that we explain below.
The posteriors are summarized using quantiles computed by
Markov Chain Monte Carlo (MCMC) sampling.

2.1. Geometric Distance

The unnormalized posterior PDF is the product of the
likelihood and prior:
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The likelihood is conditionally independent of p. We chose to
make the second term, which we define in Section 2.3,
independent of σϖ.

2.2. Likelihood

Under the assumption of Gaussian parallax uncertainties, the
likelihood is
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where ϖzp is the parallax zero-point. In Paper IV we adopted a
constant value of −0.029 mas for this zero-point, as recom-
mended in the GDR2 release. For EDR3 the Gaia team has
published a more sophisticated parallax zero-point based on
analyses of quasars, binary stars, and the Large Magellanic

3 https://healpix.sourceforge.io 4 http://www.mpia.de/~calj/gedr3_distances.html

2

The Astronomical Journal, 161:147 (24pp), 2021 March Bailer-Jones et al.

https://healpix.sourceforge.io
https://www2.mpia-hd.mpg.de/~calj/gedr3_distances/main.html


Cloud (LMC; Lindegren et al. 2020b). This is a function of G,
the ecliptic latitude, and the effective wavenumber used in the
astrometric solution. Ideally, this last term was derived from the
BP−RP color, and this is the case for the standard five-
parameter (5p) astrometric solutions used for 585 million
sources (Gaia Collaboration 2020a). But where BP− RP was
unavailable or deemed of insufficient quality, the effective
wavenumber was derived as a sixth parameter in the
astrometric solution (6p solutions; Lindegren et al. 2020a),
which is the case for 882 million sources. Overall, the zero-
point ranges between about −0.150 and +0.130 mas (it is
narrower for the 5p solutions), although the rms range is only
0.020 mas. We use this zero-point correction in Equation (2).
Our geometric distances are therefore weakly conditioned also
on G and c, but we omit this in the mathematical notation for
brevity. For the 2.5 million sources that have parallaxes but no
G (strictly, no phot_g_mean_mag), we use the EDR3 global
zero-point of −0.017 mas (Lindegren et al. 2020a).

2.3. Distance Prior

In Paper IV we used the one-parameter EDSD distance prior,
which models the space density of stars as dropping
exponentially away from the Sun according to a (direction-
dependent) length scale. Here we adopt the more flexible,
three-parameter generalized gamma distribution (GGD), which
can be written as

a
= G b
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b
+ +

- a 
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r e r
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for α> 0, β>− 1, and L> 0. Here, Γ() is the gamma function.
This PDF is unimodal with an exponentially decreasing tail to
larger distances. The mode is L(β/α)1/α for β> 0, and zero
otherwise. The EDSD is a special case of the GGD with α= 1
and β= 2. We fit the GGD prior for each HEALpixel
separately via maximum likelihood using stars from the mock
catalog. The HEALpixel (p) dependency on the left side of
Equation (3) is equivalent to a dependency on α, β, and L.

Example fits for two HEALpixels, one at low Galactic
latitude and one at high Galactic latitude, are shown in

Figure 1. Although the GGD prior provides a better fit than the
EDSD prior—which is why we use it—the parameter L may no
longer be interpreted as a meaningful length scale, because it
varies from 3e−7 to 1e4 pc over all HEALpixels. The
appropriate characteristic scale of the GGD prior in this work
is its median, for which there is no closed-form expression. The
median varies between 745 and 7185 pc depending on
HEALpixel (Figure 2). Fits for each HEALpixel can be found
in the auxiliary information online.
In the limit of uninformative parallaxes, the geometric posterior

converges on the GGD prior, so the median distance converges on
the median of this prior. In Paper IV this convergence was on the
mode of the EDSD prior. For the prior fits used in the present
paper, the ratio of the GGD median to the EDSD mode ranges
from 1.17 to 1.57. There are potential improvements one could
make to the prior to give a better convergence in the limit of poor
data. Some considerations are in Appendix A.

2.4. Photogeometric Distance

We define the quantity QG as

º + = - +Q M A G r5 log 5. 4G G G 10 ( )

The equality (=), which is a statement of flux conservation,
holds only when all of the quantities are noise-free. If we knew
QG for a star, then a measurement of G gives us an estimate of
r. Given that the uncertainties on G in EDR3 are generally less
than a few millimagnitudes (0.3–6 mmag for G< 20 mag; Gaia
Collaboration 2020a), this would be a reasonably precise

Figure 1. Distance priors for two HEALpixels, number 6200 at high latitude (left) and number 7593 at low latitude (right). The histograms show the distributions of
the data in the mock catalog. The smooth curves are the fit of the GGD (Equation (3)) to these data, which defines the distance prior P(r | p) with the parameters L, α,
and β. Similar plots for all HEALpixels are available with the auxiliary information online.

Figure 2. Variation of the median of the distance prior over the sky shown in
Galactic coordinates on a Mollweide equal-area projection. The LMC and
SMC are excluded from our prior.
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estimate. We do not know QG, but we can take advantage of
the fact that the two-dimensional color–QG space for stars is
not uniformly populated. This space (e.g., Figure 3), which we
call the CQD, in analogy to the CMD (color–magnitude
diagram), would be identical to the color–absolute magnitude
diagram if there were no interstellar extinction. Thus, if we
know the BP−RP color of the star, this diagram places limits
on possible values of QG, and therefore on the distance to the
star. We will use the mock catalog to model the CQD (per
HEALpixel) and from this compute a prior over QG given the
magnitude and color of the star.

The formal procedure is as follows, initially making no
assumptions about G. We assume the color to be effectively
noise-free. This is reasonable given the relatively low noise for
most sources (13–120 mmag for G< 20 mag; Gaia
Collaboration 2020a) and the fact that the prior is anyway
imperfect (see Section 2.5). Using Bayes’ theorem, the
unnormalized posterior we want to estimate can be decom-
posed into a product of two terms:

v s v s=v vP r G c p P r P r G c p, , , , , , , . 5pg* ( ∣ ) ( ∣ ) ( ∣ ) ( )

The first term on the right side is the parallax likelihood
(Section 2.2). It is independent of G, c, and p once it is
conditioned on σϖ, which is estimated in the Gaia astrometric
solution using quantities that depend on the magnitude, color,
scanning law, and so on (Lindegren et al. 2020a). The second
term is independent of the parallax measurement process and
thus of ϖ and σϖ. We may write this second term as a
marginalization over QG and then apply Bayes’ theorem as
follows:
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In the last line, the first term under the integral is formally the
likelihood for G (and is conditionally independent of c and p

due to Equation (4)). However, as G is measured much more
precisely than the intrinsic spread in QG—that is, the second
term under the integral is a much broader function—we can
consider G to be noise-free to a good approximation. This
makes the first term a delta function, so the integral is nonzero
only when Equation (4) is satisfied.
We make two further assumptions about the terms in the last

line of Equation (6). The first is to make the distance prior
independent of color, that is, P(r | c, p)→ P(r | p). This is now
the same distance prior as used in the geometric posterior
(Equation (1)). The second is to assume that the CQD is
independent of distance, that is, P(QG | r, c, p)→ P(QG | c, p).
This is not true in general, but we chose not to add this extra
layer of dependence on GeDR3mock (see Section 2.5).
With these assumptions, the (unnormalized) posterior in

Equation (5) can now be written as

v s v s
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The missing normalization constant, 1/P(ϖ, G | c, p), is not
required. This posterior is simply the geometric posterior
(Equation (1)) multiplied by an additional prior5 over QG.

2.5. QG Prior

We construct the prior P(QG | c, p) from the mock catalog.
Given the complexity of the CQD and its variation over the
sky, we do not attempt to fit the prior as a continuous 3D
(position and color) parametric function. We instead compute a
CQD for each HEALpixel, two examples of which are shown
in Figure 3. Within each, we compute a series of one-
dimensional functions at a series of colors in the following
way. We divide the full color range of a given HEALpixel into
strips of 0.1 mag width in color, and then for each strip we fit a
model to the stellar number density as a function of QG (now
ignoring the color variation in each strip). If there are more than
40 stars in a strip, we bin the data into bins of 0.1 mag and fit a
smoothing spline with Nmin 4 , 50(⌊ ⌋ ) degrees of freedom

Figure 3. CQDs for HEALpixels 6200 (left) and 7593 (right) in the mock catalog. The density of stars is shown on a logarithmic color scale relative to the maximum
density in each HEALpixel (so the zero-points of the density scales are not the same in the two panels). The text at the top of each panel gives the Galactic longitude
and latitude (l, b) of the center of the HEALpixel in degrees, the number of stars, and the faintest magnitude. The vertical lines identify particular QG models that are
shown in Figures 4 and 5. Similar plots for all HEALpixels are available with the auxiliary information online.

5 We could have arrived at this without using the marginalization in
Equation (6) if we assumed G to be noise-free from the outset, but the
marginalization justifies how small the noise in G has to be for this to be valid.
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(df), where N is the number of stars in the strip (which can be
many thousands). If there are fewer than 40 stars, we cannot fit
a good spline. This generally occurs at the bluest and reddest
ends of the CQD. Here the QG distribution is often
characterized by two widely separated components, either the
main sequence (MS) and white dwarf (WD) branches, or the
MS and giant star branches (see Figure 3). Thus when N< 40,
we instead fit a two-component Gaussian mixture model, with
the constraint that the minimum and maximum standard
deviation of each component be s = 0.08min mag and
s = 1.0max mag, respectively. A full fit requires at least five
stars, so if there are as few as two stars, we constrain the
solution to first have equal standard deviations and then to have
standard deviations of smin. If N= 1, our model is a one-
component Gaussian with mean equal to the QG of the star and
standard deviation equal to smin. If there are no stars, the model
is null. Examples of the fits are shown in Figures 4 and 5.

As a smoothing spline can give a negative fit, and both these
and the Gaussian models can yield very small values for the
density, we impose that the minimum density is never less than
10−3 of the integrated density (computed prior to fitting the
model). Thus our prior is nowhere near zero, meaning that even
if the data indicate a QG in the regions where the mock catalog
is empty, the posterior will not be zero. This allows sources to
achieve distances that place them outside the occupied regions
of the mock CQD.

For a given HEALpixel, each prior model refers to a specific
color, namely the center of a 0.1 mag wide strip. This is larger
than the uncertainty in the color for all but the faintest EDR3
sources. When evaluating the prior during the inference
process, we compute QG from Equation (4), evaluate the
densities of the two priors that bracket its color, then linearly
interpolate. This ensures that our prior is continuous in color. If

one of the models is null, we use the other model as is. If both
models are null, or if the source is outside the color range of the
mock CQD, we do not infer a photogeometric distance. The
flag field in our catalog indicates what kinds of QG models
were used (see Section 5).
The computation of QG in Equation (4) requires the G-band

magnitude of the source. For this, we use the phot_g_-
mean_mag field in EDR3 corrected for the processing error
described in Section 8.3 of Riello et al. (2020). This correction,
which is a function of magnitude and color, can be as large as
25 mmag.

2.6. Posterior Sampling and Summary

The posteriors are formally the answer to our inference
process. The geometric posterior has a simple parametric form
that may be computed by the reader using the data in the EDR3
catalog and the parameters of our prior (available with the
auxiliary information online). The photogeometric posterior is
generally nonparametric. Both posteriors are asymmetric and
not necessarily unimodal (Section 2.6.2).
There are a variety of statistics one could use to summarize

these PDFs, such as the mean, median, or mode. There is no
theoretically correct measure, and all have their drawbacks. We
use quantiles, primarily because they are invariant under
nonlinear transformations, and thus are simultaneously the
quantiles of the posterior in distance modulus, -r5 log 510 .
We use the three quantiles at 0.159, 0.5, and 0.841, which we
label rlo, rmed, and rhi, respectively. The central quantile is the
median. The outer two quantiles give a 68% confidence interval
around the median. The difference between each quantile and
the median is a Gaussian 1σ-like estimate of the uncertainty.

Figure 4. The QG prior models constructed from the CQD of HEALpixel 6200. Each of the six panels shows a fit to the mock data at a different BP − RP color,
corresponding to the six vertical stripes shown in Figure 3 (left panel). Model fits using smoothing splines are plotted as black lines with the degrees of freedom as
indicated and the (binned) data in the fit shown as red circles. Model fits using one or two Gaussian components are plotted as orange and blue lines, respectively, with
the data in the fit shown as black circles and the mean and standard deviation of the fit components indicated in parentheses at the top of each panel. These density
functions show the prior PDF P(QG | c, p) at discrete colors before imposing the minimum threshold that ensures the prior density is always greater than zero. Similar
plots for all color strips in HEALpixels are available with the auxiliary information online.
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Due to the intrinsic asymmetry of the posteriors, we report the
lower and upper values separately.

2.6.1. Markov Chain Monte Carlo

Neither the geometric nor photogeometric posteriors have
closed-form expressions for their quantiles, so we must
compute these numerically. We do this using MCMC,
specifically the Metropolis algorithm.

We adopt the following scheme for the MCMC initialization
and step size. We first compute the geometric distance posterior
using the EDSD prior from Paper IV. The length scale of this
prior is set to 0.374 rmed, where rmed is the median distance of
the stars in the mock catalog for that HEALpixel.6 We use the
mode of this posterior, rmode

EDSD, which has a closed-form solution
(Paper I), as the initialization for the geometric posterior. The
initialization scheme for the photogeometric posterior is more
complicated, in accordance with its more complicated shape,
and depends on rmode

EDSD, the fractional parallax uncertainty (fpu,
σϖ/ϖ), and the characteristic length scale of the QG prior
model(s).

For both types of posterior, the step size needs to be adapted
to the characteristic width of the posterior, which is generally
wider the larger the fpu. We found a suitable step size to be

s v´ vr3 4 min , 1 3init( ) (∣ ∣ ), where rinit is the initialization
value.

This scheme allows relatively short burn-ins: we use just 50.
We experimented with chains of various chain lengths,
employing various tests of convergence. Longer chains are
always better, but as we need to sample around three billion
posteriors, some parsimony is called for. We settled on 500
samples (after burn-in). Although the chains are not always

settled, they are generally good enough to compute the required
quantiles with reasonable precision. To quantify this, we
obtained 20 different MCMC chains and computed the
standard deviation of the median distance estimates and one-
half the mean of the confidence intervals. The ratio of these is a
measure of the convergence noise. Doing this for thousands of
stars, we find this to be between 0.1 and 0.2 in general. For the
geometric posteriors in particular, it can be larger for fractional
parallax uncertainties larger than 0.3.

2.6.2. Multimodality

The posteriors can be multimodal. This is more likely to be
the case for the photogeometric posterior at large fpu, as its
prior can be multimodal. Multimodality is very rare for the
geometric posterior.
Although multimodality is a challenge for MCMC sampling

methods, we find that even widely separated modes can be
sampled in our scheme. Our 68% confidence interval often
encompasses the span of such multimodality. This is a blessing
and a curse: the distance precision in a single mode may be
quite good, yet a large confidence interval is obtained because
of the presence of a second mode. To assist in identifying
possible multimodality, we perform the Hartigan dip test
(Hartigan & Hartigan 1985). This is a classical statistical test in
which the null hypothesis is a unimodal posterior; that is, a
small p-value suggests the distribution may not be unimodal.
We select a threshold of 10−3 and set a flag to 1 if the p-value is
lower than this, thereby suggesting possible multimodality. If
the p-value is above this threshold or the test does not work for
any reason, the flag is 0. The test is not particularly accurate
and should not be overinterpreted. Furthermore, it is done on
the MCMC samples, not on the true posterior, so it tends to be
raised more often than expected because of the intrinsic noise
of MCMC sampling.

Figure 5. Same as Figure 4 but now for HEALpixel 7593, the CQD of which is in the right panel of Figure 3.

6 In Paper IV we used (1/3)rmed because the maximum-likelihood fit of the
length scale is one-third of the mean. However, the median is a slightly biased
estimator of the mean for the EDSD. For the typical length scales involved, we
found empirically that the mean is about 12% (0.374/0.333) larger than the
median.
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3. Performance on the Mock Catalog

Before looking at the results on EDR3, we evaluate the
performance of our method using the mock catalog, as here we
know the true distances. In doing this, we add Gaussian random
noise to the parallaxes using the parallax_error field in
GeDR3mock, which is a model of the expected uncertainties in
the EDR3 parallaxes. As the data are drawn from the same
distance distribution and CQD from which the prior was
constructed, this is a somewhat optimistic test, despite the
noise. Unless noted otherwise, throughout this section the term
“fpu” refers to the true fractional parallax uncertainty,
computed using the true parallax.

3.1. Example Posteriors

Figure 6 shows examples of both types of posterior
compared to their priors. At small fpu, for example, panels
(a) to (c), the two posteriors are very similar, with a median
(and mode) near the true distance, shown as the vertical line.
As long as the fpu is not too large, the prior plays little role and
the posterior can be quite different, for example, panel (d),
although this can also occur at larger fpu, for example, panels
(i) and (l). Panel (f) shows a multimodal photogeometric prior
and posterior. The two types of prior sometimes disagree, as
can the posteriors. In panel (h), which is for a 30% parallax
uncertainty, the geometric posterior is more consistent with the
true distance. Note that the parallax that the algorithm sees does
not correspond to the vertical line, so for large fpu we cannot
expect either posterior to peak near this. Panel (k) shows a
multimodal posterior in which the true distance is close to a
smaller mode. This happens here because the parallax has 50%
noise, so the measured parallax corresponds to a smaller
distance (where both geometric and photogeometric posteriors
peak). At larger fpu—the bottom row is all for more than 1.0—
the photogeometric prior is often more consistent with the true
distance than the geometric one.

3.2. Comparison to Truth

3.2.1. Qualitative Analysis

Distance inference results for two HEALpixels are shown in
Figures 7 and 8. We see a good correlation between the inferred
and true distances out to several kiloparsecs (left columns). The
degradation at larger distances is mostly due to stars with larger
fpu, as can be seen in the middle columns of these figures. The
fractional residual is defined as the estimated minus true
distance, divided by the true distance. Note that these middle
columns show the true fpu, as computed from the noise-free
parallax, which is not the same as the measured (noisy) fpu that
the inference algorithm encounters. (See Appendix B for a
consequence of this difference.) At large fpu, the photogeo-
metric distances perform better than the geometric ones,
because even when the parallax is of limited use, there is still
distance information from the color and magnitude via the QG

model. For geometric distances, in contrast, as the measured
fpu increases, the distance prior dominates the likelihood, so
the median of the posterior is pushed toward the median of the
prior. Hence at large fpu, the geometric distances to stars that
are truly more distant than the median of the prior will
generally be underestimated. Faraway stars tend to have larger
fpu than nearby stars, because they have both smaller

parallaxes and larger parallax uncertainties (as they are fainter).
Thus as a whole, any underestimation of geometric distances to
stars that are beyond the median of the prior will tend to be
larger than the overestimation of the geometric distances to
stars that are closer than the median of the prior. This explains
why the distributions in the top left panels of Figures 7 and 8
flatten at larger distances. This feature is suppressed in the
photogeometric distances (bottom left panels) because for large
fpu, the QG prior can overrule the geometric prior. We also see
more flattening for the low-latitude HEALpixel in Figure 8 than
the high-latitude HEALpixel in Figure 7 because the low-
latitude HEALpixel has larger fpu values on average.
The right columns of Figures 7 and 8 assess how well the

estimated distance uncertainties explain the residuals, by
plotting the distribution of residual/uncertainty. This is shown
using three different representations of the uncertainty. The
upper uncertainty, rhi− rmed, and symmetrized uncertainty,
(rhi− rlo)/2, shown in blue and black, respectively, yield
almost identical distributions. For the high-latitude HEALpixel
6200 (Figure 7), they are quite close to a unit Gaussian, in
particular for the photogeometric estimates. The lower
uncertainty, rmed− rlo, shown in orange, is negatively skewed
(larger tail to negative values), suggesting that the lower
uncertainty measure, rlo, is slightly underestimated. This is
more noticeable in the low-latitude HEALpixel 7593
(Figure 8), where we also see that the photogeometric estimates
are slightly more skewed than the geometric ones.

3.2.2. Quantitative Analysis

To quantify the accuracy of our results, we use the median of
the fractional distance residual, which we call the bias, and the
median absolute of the fractional distance residual, which we
call the scatter. These are robust versions of the mean and
standard deviation, respectively. For normally distributed
residuals, the mean equals the median, and the standard
deviation is 1.48 times the median absolute deviation.
For HEALpixel 6200, the bias and scatter for the geometric

distances over all stars are +0.29e−3 and 0.10, respectively. If
we limit the computation of these metrics to the 50% of stars in
this HEALpixel with 0< σϖ/ϖ< 0.20, the bias is +5.3e−3
and the scatter is 0.037. The scatter in this subsample is
smaller, as expected. The bias is larger because stars with small
fpu tend to be nearer stars, whereas the distance prior is
characteristic of all of the stars, which are more distant on
average. Hence, the prior pulls up the distances for the small
fpu subsample, leading to a more positive bias.
For the photogeometric distances, the bias and scatter over

all stars are +5.7e−3 and 0.059, respectively, and for the
0< σϖ/ϖ< 0.20 subsample are +2.5e−3 and 0.032, respec-
tively. The scatter over the full sample is smaller for the
photogeometric estimates than for the geometric ones, because
the former benefit from the additional information in the stars’
colors and magnitudes. The situation is particularly fortuitous
here because of the near-perfect match between the QG models
and the actual distribution of QG in the data. For the full
sample, the bias is larger for the photogeometric distances than
for the geometric ones, although still small on an absolute
scale. For the small fpu subsample, the photogeometric
distances are not much more accurate than the geometric ones,
because the parallax dominates the distance estimate.
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Turning now to the low-latitude HEALpixel 7593 (Figure 8),
we find that the bias and scatter in the geometric distances over
all stars are −0.16e−3 and 0.27, respectively. There are two
reasons for the larger scatter in this HEALpixel. The first is that
the parallax uncertainties are larger: the median parallax
uncertainty is 0.32 mas, as opposed to 0.15 mas in HEALpixel
6200. This in turn is because the stars are on average 0.9 mag
fainter in HEALpixel 7593 (one reason for which is the larger
extinction, as is apparent from Figure 3). The second reason is
that the median true distance to stars is larger in this low-
latitude HEALpixel than in the high-latitude one (4.0 kpc
versus 1.2 kpc; see Figure 1). This may seem counterintuitive
but is a consequence of distant disk (and bulge) stars at low
latitudes that remain visible to larger distances despite the

higher average extinction. At higher latitudes, in contrast, there
are no distant disk stars and hardly any halo stars (which are
scarce in Gaia anyway). Both of these facts contribute to the
larger fpu in the low-latitude pixel (median of 1.18, central
90% range of 0.21–3.57) than in the high-latitude HEALpixel
(median of 0.20, central 90% range of 0.03–1.08). Even if we
look at just the 9% of stars in the low-latitude HEALpixel with
0< σϖ/ϖ< 0.20, we get a bias and scatter of +25e−3 and
0.069, respectively, which are still significantly worse than the
higher latitude HEALpixel for the same fpu range.
Concerning the photogeometric distances in HEALpixel

7593, the bias and scatter for all stars are −3.8e−3 and 0.17,
respectively, and for the 0< σϖ/ϖ< 0.20 subsample are +20e
−3 and 0.062, respectively. For the full sample, we again see a

Figure 6. Example normalized posteriors (solid lines) and corresponding normalized priors (dashed lines) for geometric distances (blue) and photogeometric distances
(orange) for various stars in the mock catalog (one per panel). These have been selected to show the variety; they are not a random subset. The vertical solid line is the
true distance. The inverse of this is not the parallax seen by the inference because noise was added. All stars are from HEALpixel 6200, so the distance prior (blue
dashed line) is the same in all panels. The four numbers in the top right corner of each panel are, from top to bottom,ϖ, true fpu, G, and BP − RP. Stars are ordered by
increasing fpu. The two posteriors coincide in the top left panel.
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significant decrease in the scatter compared to the geometric
distances. In a real application, we may get less benefit from the
QG prior at low latitudes because our model CQD may differ

from the true (unknown) CQD more than at high latitudes, on
account of the increased complexity of the stellar populations
and interstellar extinction near the Galactic plane.

Figure 7. Results of the distance inference on mock catalog HEALpixel 6200. The top row shows geometric distances, the bottom row photogeometric ones. The left
column compares the inferred distances (vertical axis) to the true distances for all sources. This covers the full range of fractional parallax uncertainties, which has a
median of 0.20 and a central 90% range of 0.03–1.08. The middle column shows the fractional distance residuals as a function of the true fractional parallax
uncertainty (fpu). In these first four panels, the color scale is a logarithmic density (base 10) scale relative to the highest density cell in each panel. The right column
shows the normalized residuals: the difference between the inferred and the true value, divided by an uncertainty measure. The three colors refer to three uncertainty
measures: orange is rmed − rlo, blue is rhi − rmed, and black is (1/2)(rhi − rlo). The blue and black lines virtually coincide. The smooth red curve is a unit Gaussian for
comparison.

Figure 8. Same as Figure 7 but now for HEALpixel 7593. The median fpu is 1.18 and the 90% range is 0.21–3.57.
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3.3. Inferred CQDs

We can also assess the quality of our distance estimates by
computing = - +Q G r5 log 5G 10 med and plotting the result-
ing CQD. We do this for both the geometric and photogeo-
metric distances, for three ranges of fpu, for HEALpixel 6200
in Figure 9 and HEALpixel 7593 in Figure 10. These can be
compared to the CQD for the same HEALpixels constructed
using the true distances shown in Figure 3. Imperfect distance

estimates can only move sources vertically in this diagram as
the BP− RP colors are not changed. We see how the inferred
main sequence is wider for the larger fpu samples for the
geometric distances (left two columns in both plots), but much
less so for the photogeometric distances. This is again due to
the stabilizing influence of the QG prior. Both distance
estimates are able to recover the primary structures: the main
sequence, white dwarf sequence, giant branch, and horizontal

Figure 9. The CQD inferred for mock catalog HEALpixel 6200 using the median geometric distance (top row) and median photogeometric distance (bottom row) for
three ranges of the true fractional parallax uncertainty (fpu): all (left), 0–1.0 (middle), and 0–0.2 (right). The color scale is a logarithmic (base 10) density scale relative
to the highest density cell in each panel.

Figure 10. Same as Figure 9 but now for HEALpixel 7593.
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branch. These plots will be useful when it comes to analyzing
the results on the real EDR3 data, because they do not involve
the truth as a reference.

4. Analysis of Distance Results in EDR3

We applied our inference code (written in R) to the 1.47
billion sources in Gaia EDR3 that have parallaxes. This
required 1.6× 1012 evaluations of the posteriors and took
57,000 CPU core hours. Throughout this section, the term
“fpu” of course refers to the measured fractional parallax
uncertainty, as we do not know the true parallax.

4.1. Analysis of Two HEALpixels

4.1.1. Distance Distributions and Uncertainties

Results for our two example HEALpixels are shown in
Figures 11 and 12. The two panels in the left column compare
the two types of distance estimates. As expected, the
photogeometric estimates extend to larger distances (see
Section 3.2.1 for an explanation). The middle columns plot
the ratio of the inferred distance to the inverse parallax distance
(corrected for the zero-point). The latter is of course generally a
poor measure of distance because it is not the true parallax, and
this is the whole point of using an appropriate prior (see
Section 1 and references therein). We see that both of our
distance estimates converge to 1/ϖ in the limit of small fpu.
Although the apparent lack of sources at large fpu in the lower
middle panels is primarily a plotting artifact (due to the finite
density scale), the two samples in the upper and lower panels
are not identical because not all sources have photogeometric
distances. For HEALpixel 6200, there are 24,007 sources with

geometric distances and 23,829 with photogeometric distances.
For HEALpixel 7592, these numbers are 385902 and 369608,
respectively.
The panels in the right columns of Figures 11 and 12 show

how the fractional symmetrized distance uncertainty varies
with fpu. At small (positive) fpu, they are nearly equal for both
geometric and photogeometric distances, because here the
likelihood dominates the posterior. At larger fpu, the geometric
distances become more uncertain, which is commensurate with
their lower expected accuracy. For very large fpu (?1), the
geometric distances and their uncertainties will be dominated
by the prior, which for HEALpixel 7593 has a median of
3.98 kpc and lower (16th) and upper (84th) quantiles of
2.06 kpc and 6.74 kpc, respectively (corresponding to a
fractional distance uncertainty of 0.59). The photogeometric
fractional distance uncertainties tend to be smaller than the
geometric ones. This is because the QG prior (Section 2.5) is
usually more informative than the distance prior.
We extend the axes in the right panels of Figures 11 and 12

to negative fpu values, which occur when sources have
negative parallaxes. One of the advantages of probabilistic
inference is to provide meaningful distances for negative
parallaxes (a quarter of all parallaxes in EDR3). Negative
observed parallaxes usually correspond to sources with small
true parallaxes, and although such measurements generally
have reduced impact on the posterior, they do carry informa-
tion. They do not yield precise distances, but insofar as the
prior can be trusted, the posterior and resulting confidence
intervals are meaningful. We see from the figures that the
precisions are low for both types of distance, but sometimes
more constrained for the photogeometric ones due to the

Figure 11. EDR3 distance results for HEALpixel number 6200 at (l, b) = (285°. 7, 34°. 8). The color scale in the density plots is logarithmic (base 10) relative to the
highest-density cell in each panel. The top left panel compares the median geometric and photogeometric distances. The bottom left panel shows normalized
histograms on a linear scale of the median geometric (blue) and photogeometric (orange) distances, compared to the distance prior (black). The middle column shows
the ratio of the inferred distance to the inverse parallax distance as a function of the measured fractional parallax uncertainty (fpu). Note that the apparent lack of
sources in the lower panel at fpu values above about 1.0 is mostly a plotting artifact: regions too low in the density of sources are white. The two panels in the right
column show the fractional symmetrized distance uncertainty also as a function of fpu (note the different scales). This plot is available for all HEALpixels with the
auxiliary information online.
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additional use of color and magnitude. In some senses, the
negative fpu regime is a continuation of the σϖ/ϖ? 1 regime
(see Figures 3 and 6 of Paper II).

4.1.2. Color–QG Diagrams

From the inferred median distances we can compute the
median QG via Equation (4) and then plot the CQD. This is

shown in Figure 13 for HEALpixel 6200 for the geometric
distance (top row) and photogeometric distance (bottom row)
for three different ranges of the fpu. Interstellar extinction
should be low toward this high-latitude field (around 0.15 mag
in GeDR3mock), QG;MG, so this CQD is similar to the
color–absolute magnitude diagram. In all of the panels, we see
a well-defined main sequence and giant branch, as well as a
white dwarf sequence in some of the panels. Comparing the

Figure 12. Same as Figure 11 but for HEALpixel number 7593 at (l, b) = (29°. 0, 7°. 7).

Figure 13. CQD inferred for EDR3 HEALpixel 6200 using the median geometric distance (top row) and median photogeometric distance (bottom row) for three
ranges of the measured fpu: all (left), 0–1.0 (middle), and 0–0.2 (right). In total, there are 24,007 sources with geometric distances and 23,829 with photogeometric
distances. No other filtering has been applied. The color scale is a logarithmic (base 10) density scale relative to the highest density cell in each panel, so it is not
comparable across panels. This plot (including also a comparison with the prior CQD) is available for all HEALpixels with the auxiliary information online.
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upper and lower panels, we see how the photogeometric
distances constrain the QG distribution more than the geometric
distances do. The puffing-up of the geometric CQD is due to
sources with large fpu: their distances tend to be under-
estimated (see Section 3.2.1) so QG becomes larger—
intrinsically fainter—for a given G (see Equation (4)). This
puffing-up diminishes as we successively reduce the range of
fpu, as shown in the middle and right columns of Figure 13.

The photogeometric CQD for the full fpu range (bottom left
panel of Figure 13) shows a conspicuous blob of sources at
BP−RP; 0.5 mag between the MS and WD sequences.
These are sources with spuriously large parallaxes, well known
from GDR2 (Arenou et al. 2018) and still present, if less so, in
EDR3 (Fabricius et al. 2020; Gaia Collaboration 2020b). They
are usually close pairs of sources that receive incorrect
astrometric solutions, as the EDR3 astrometric model is only
suitable for single stars (Lindegren et al. 2020a). Figure 13
shows that spurious parallaxes are less common among the
smaller fpu subsample. The QG prior will often help to
constrain the distance of these spurious solutions and thus place
them on the correct part of the CQD. This is only partially
successful at around BP− RP; 0.5 mag in this HEALpixel,
however, because the distance prior may still be pulling truly
very distant sources with larger fpu toward us.

Sources with spurious parallaxes are preferentially faint. To
quote from Gaia Collaboration (2020a): “For faint sources
(G> 17 for 6p astrometric solutions and G> 19 for 5p
solutions) and in crowded regions the fractions of spurious
solutions can reach 10% or more.” This can be seen in
Figure 14, where we replot the CQD only for sources with
G< 19.0 mag. This also reduces the puffing-up of the
geometric CQD, although some of this reduction occurs simply
because magnitude is correlated with fpu, so a magnitude cut
also lowers the fpu.

These effects can be seen more prominently in the low-
latitude HEALpixel 7593, shown in Figures 15 and 16. Due to

the larger mean distance of stars at low latitudes (see
Section 3.2.2), as well as the more complex stellar populations
and larger mean extinction (up to 3.5 mag), the CQD is more
complex. For the full fpu range, the geometric CQD in
Figure 15 is quite washed out, due in part to large fpu values
and spurious parallaxes, although an extincted red clump is
visible. The photogeometric CQDs are cleaner, with a better-
defined main sequence. The CQD for the G< 19.0 mag
subsample (Figure 16) again shows the removal of spurious
sources. Section 3.2 of Fabricius et al. (2020) analyzes spurious
astrometric solutions and offers more sophisticated ways of
identifying them than a simple magnitude cut.

4.2. All Sources

We now look at a representative sample of the entire catalog.
All plots and analyses in this section use a random selection of
0.5% of all sources from each HEALpixel. This has 7,344,896
geometric and 6,739,764 photogeometric distances.
Figure 17 shows the distribution of distances. As expected,

the photogeometric distances extend to larger distances than the
geometric one. The fractional symmetrized distance uncertain-
ties as a function of distance are shown in Figure 18 for three
different magnitude ranges. As noted earlier, the photogeo-
metric distance uncertainties are generally smaller than the
geometric ones, at least for fainter sources. This plot also shows
again that photogeometric estimates extend to larger distances.

4.2.1. Color–QG Diagrams

Figure 19 shows the CQD over the whole sky. Because the
sample is a constant random fraction per HEALpixel, it is
numerically dominated by sources at low-latitude Galactic
latitudes where there can be significant interstellar extinction.
This is apparent from the upper diagonal feature—especially
clear in the photogeometric panel—which is the red clump
stretched by extinction/reddening. The white dwarf sequence

Figure 14. Same as Figure 13 but now excluding the 54% of sources in this HEALpixel with G > 19.0 mag.
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appears clearly in the photogeometric CQD. Although some
white dwarfs are correctly placed in the CQD by the geometric
distances, they are not visible here, due to the finite dynamic
range of the plotted density scale. Furthermore, for reasons
explained in Section 3.2.1, faint nearby sources with large fpu
tend to have their geometric distances overestimated and
therefore their QG underestimated, thereby pushing them up
from the true white dwarf sequence. These plots have not
filtered out spurious sources, some of which are clearly visible

in the photogeometric CQD as the blob between the upper MS
and the white dwarf sequence. Other broad differences between
the geometric and photogeometric CQDs were explained in
Section 3.3.

4.2.2. Distribution on the Sky

Figure 20 shows the mean distance of sources (i.e., mean of
rmed) in each HEALpixel in our catalog, as well as the ratio of
these in log base 2. Over all HEALpixels, the 5th, 50th, and

Figure 15. Same as Figure 13 but now for HEALpixel 7593. All sources are shown (no magnitude cut). In total, there are 385,902 sources with geometric distances
and 369,608 with photogeometric distances.

Figure 16. Same as Figure 15 but now excluding the 70% of sources in this HEALpixel with G > 19.0 mag to remove spurious sources.
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95th percentiles of the mean of the geometric distances are 1.3,
2.1, and 4.4 kpc, respectively. The percentiles for the mean of
the photogeometric distances are 2.2, 3.3, and 5.0 kpc. These
translate into low ratios of geometric to photogeometric
distances in general. Only in the Galactic plane and the bulge
are the two mean distances comparable. At high Galactic
latitudes, the photogeometric average is easily twice as large as
the geometric average.

4.2.3. Galactic Spatial Distribution

Figure 21 shows the projected distribution of stars in EDR3 in
the Galaxy using our distance estimates. The Sun is at the origin,
and we see the expected larger density of sources in the first and
fourth Galactic quadrants. Finer asymmetries in the distribution
projected onto the Galactic plane (upper panels) are presumably
due to both a genuine asymmetry in the Galactic population and
Gaia’s scanning law. These, as well as nearby dust clouds, also
explain the various radial lines pointing out from the origin. The
lack of sources in the fan around the positive x-axis in the lower
panels is due to extinction in the Galactic plane. The overdensity
in the same direction in the upper panels is the projection of the
bulge. The lower panels demonstrate the point made earlier
(Section 3.2.2) about being able to see sources to larger mean
distances at lower Galactic latitudes.

The high-density rays extending below the Galactic plane
(lower panels of Figure 21) are in the directions of the
Magellanic Clouds. Many stars in these satellite galaxies are in
EDR3—they are some of the densest HEALpixels—yet they
are so far away (50–60 kpc) that most have poor (and often
negative) parallaxes, such that the inferred geometric distances
are dominated by the prior (see Appendix B for further
discussion). Our photogeometric distances are similarly poor,
because we excluded the Magellanic Clouds from the mock
CQD out of which our QG priors are built. This was intentional:
anyone interested in estimating distances to sources in the
Magellanic clouds can do better than just use Gaia parallaxes
and photometry.

Figure 22 shows the fractional distance uncertainties also in
Galactic projection. As expected, the uncertainties generally
increase with distance from the Sun, but there are exceptions
due to bright, distant stars having more precise distances than
faint, nearby ones. The rays toward the Magellanic clouds also
stand out as having larger uncertainties on the whole.

4.3. Validation Using Clusters

Figures 23 and 24 show our geometric and photogeometric
distances and their uncertainties for members of various star
clusters. The membership lists have been drawn from Paper IV.
NCG6254 (=M10) and NGC 6626 (=M28) are globular
clusters; the rest are open clusters. Recall that our prior does
not include star clusters. The horizontal dashed line in each panel
shows the inverse of the variance-weighted mean parallax of the
members, that is, a pure parallax distance for the cluster. Both of
our distance estimates congregate around this for small, positive
fpu, but deviate for large or negative fpu, as one would expect.
We generally see a larger deviation or scatter for the geometric
distance: compare in particular the panels for NGC 2437
(=M46) and NGC 6254. Despite this, the weighted mean of our
distances is often quite close to the pure parallax distance, even
for clusters up to several kiloparsecs away.
We nevertheless emphasize that the inverse of the variance-

weighted mean parallax will usually be a better estimate for the
distance to a cluster than the mean of our distances. This is
because any combination of our individual distances will reuse
the same prior many times. If stars have large fpu values, this
product of priors will dominate and introduce a strong bias into
the combined distance. This would particularly affect clusters
beyond a few kiloparsecs.

4.4. Comparison to Other Distance Estimates

Figure 25 compares our distance estimates for 36,858 red
clump (RC) stars with those estimated by Bovy et al. (2014)
using high-resolution Apache Point Observatory Galactic
Evolution Experiment (APOGEE; Majewski et al. 2017)
DR16 spectra. This method selects sources using color,
effective temperature, metallicity, and surface gravity and is
calibrated via stellar evolution models and high-quality
asteroseismology data. Given the narrowness of the red clump
locus in the parameter space, their distances are expected to be
precise to 5% with a bias of no more than 2%.
The 5th, 50th, and 95th percentiles of fpu for this sample are

0.01, 0.05, and 0.27, respectively, and of G are 10.4, 13.4, and
16.2mag, respectively. The fractional bias and rms of the
deviations of our estimates relative to those of Bovy et al. are
+0.05 and 0.31, respectively, for the geometric distances and
+0.03 and 0.29, respectively, for the photogeometric distances.
For reference, the fractional bias and rms of the deviations of the
APOGEE red clump estimates relative to the StarHorse (Queiroz
et al. 2020) estimates (see next paragraph) for the same sample
are +0.05 and 0.21, respectively. The parallaxes for this sample
are mostly of such high quality that the prior does not strongly
affect our posteriors, although we still see a slight improvement
in the photogeometric distances over the geometric ones. When
counting the percentage of sources where the Bovy et al.
estimate is within our upper and lower bounds (+7% error
margin from Bovy et al.), we find that 65% are compatible with
the geometric distances and 69% with photogeometric (we
expect 68% to be within 1σ). If we do the same for the StarHorse
estimates (which also have upper and lower percentiles) for the
red clump sample, we see that 84% of the StarHorse estimates
are within 1σ of the Bovy et al. estimates.
Figure 26 compares our distance estimates for 307,105 stars

with those estimated by Queiroz et al. (2020) using their
StarHorse method, which uses APOGEE DR16 spectra,
multiband photometry, and GDR2 parallaxes. This sample

Figure 17. Distribution of inferred geometric and photogeometric median
distances, rmed, in EDR3. This plot uses a random sample of 0.5% of all
sources in each HEALpixel.
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comprises around one-third main-sequence stars; the rest are
turnoff stars and giants, excluding the red clump stars used in
the previous comparison. StarHorse estimates a posterior
probability distribution that the authors likewise summarize
with a median, so our distance estimates are directly
comparable. They report achieving typical distance uncertain-
ties of 11% for giants and 5% for dwarfs.

The 5th, 50th, and 95th percentiles of fpu for this sample are
0.002, 0.02, and 0.46, respectively, and of G are 10.2, 13.3, and
16.6 mag, respectively. The fractional bias and rms of the
deviations of our distance estimates relative to the StarHorse
estimates are 0.00 and 0.30, respectively, for the geometric
distances and −0.01 and 0.23, respectively, for the photogeo-
metric distances. As this sample extends to larger distances
(and larger fpu) than the sample in Figure 25, we begin to see
that our geometric distances (and to a lesser extent our
photogeometric distances) are smaller than the StarHorse
distances beyond about 6 kpc, which is where some of the
large fpu sources will have true distances beyond the median of
the distance prior.

5. Distance Catalog

5.1. Content

The distance catalog includes an entry for all 1,467,744,818
sources in EDR3 that have a parallax. All of these have
geometric distances, and 1,346,621,631 have photogeometric
distances. In comparison, there are 1,347,293,721 sources in
EDR3 that have defined G-band magnitudes,7 BP−RP colors,
and parallaxes and so could in principle have received a
photogeometric distance estimate, but did not due to missing
QG prior models.

The fields in our catalog are defined in Table 1. Note that 3%
of the sources have changed their source_id identifier from
GDR2 to EDR3 (Fabricius et al. 2020), so the source_id
cross-match table dr2_neighbourhood provided with
EDR3 should be used to find the best match before doing
source-by-source comparisons between the two releases.
r_med_geo in Table 1 is the median (rmed) of the geometric
distance posterior and should be taken as the geometric
distance estimate. r_lo_geo (rlo) and r_hi_geo (rhi) are the
16th and 84th percentiles of the posterior and so together form
a 68% confidence interval around the median. rhi− rmed and
rmed− rlo are therefore both 1σ-like uncertainties on the
distance estimate and are generally unequal due to asymmetry
of the posterior. The fields r_med_photogeo, r_lo_pho-
togeo, and r_hi_photogeo are defined in the same way
for the photogeometric distance posterior.
We cannot overstate the importance of the uncertainties

provided. They reflect the genuine uncertainty in the distance
estimate provided by the median. As rhi− rlo is a 68%
confidence interval, we expect the true distance to lie outside of
this range for one-third of the sources. This is the nature of
statistical uncertainty and should never be ignored.
The field flag is a string of five decimal digits defined in

Table 2. Flag A is set to 2 if the source is fainter than the
faintest mock source used to make the prior for that
HEALpixel. The estimated distances can still be used. Faint
stars tend to have poor parallaxes, so the distance uncertainties
will generally be larger in these cases. The two digits of flag B
refer to the Hartigan dip test, as explained in Section 2.6.2. We
find that 2% of geometric posteriors and 3% of photogeometric
posteriors may not be unimodal according to this test, although
this test is not particularly accurate, so this is only a rough
guide. Even when the sampled posterior shows a true,
significant bimodality (or even multimodality), the 68%
confidence interval sometimes spans all modes.

Figure 18. Fractional symmetrized distance uncertainty, (rhi − rlo)/2rmed, vs. distance for the geometric distance estimates (top) and photogeometric distance
estimates (bottom) for the three different G ranges. The color scale is a logarithmic density (base 10) scale relative to the highest-density cell in each panel. This plot
uses a random sample of 0.5% of all sources in each HEALpixel.

7 By this we mean the phot_g_mean_mag field is defined. We do not make
use of the other estimates of G from the Gaia catalog if this field is null.
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The two digits of flag C indicate the nature of the two QG

models that were used to construct the QG prior. If both
numbers are between 1 and 3, then two models bracket the
source’s color and were combined by linear interpolation, as
explained in Section 2.5. If only one of them is zero, then only
a single model was used. If both flags are zero, then there is no
nonnull model within 0.1 mag color of the source, so the
photogeometric posterior is not computed. There is one special
value of this flag: 99 means the star lacked the necessary data to
compute the photogeometric distance.

We provide additional information on the prior for each
HEALpixel in the auxiliary information online, including plots
like Figures 1, 3, and 4 and a table with the three parameters of
the geometric prior (Equation (3)).

5.2. Filtering

We have not filtered out any results from our catalog.
Parallaxes with spurious parallaxes remain, as do sources with
negative parallaxes (the latter is no barrier to inferring a
sensible distance; Bailer-Jones 2015). Any filtering should be
done with care, as it often introduces sample biases. The flag
field we provide is for information purposes; we do not

recommend using it for filtering. Lower quality distances will
arise from lower quality input data. These can be identified
using the various quality fields in the main Gaia catalog of
EDR3, which is easily cross-matched to our catalog using the
source_id field, as shown in the example in Section 5.4.
Useful quality metrics may be ruwe, parallax_over_-
error, and astrometric_excess_noise, as defined in
the EDR3 documentation, where users will also find advice on
their use. See in particular Section 3.2 of Fabricius et al. (2020)
for suggestions for filtering spurious parallaxes.
Parallaxes from the 6p astrometric solutions (identified by

astrometric_params_solved = 95) are not as accurate
as those from the 5p solutions (Lindegren et al. 2020a) because
they were normally used in more problematic situations, such
as crowded fields, and are also fainter on average than the 5p
solutions. Sources with 6p solutions should not be automati-
cally removed, however. Their larger parallax uncertainties
reflect their lower quality. In some applications, users may
want to filter out sources with large absolute or relative distance
uncertainties. One must exercise caution here, however,
because uncertainty generally correlates with distance or
magnitude (among other things), so filtering on these quantities
will introduce sample biases.

5.3. Use Cases

For stars with positive parallaxes and σϖ/ϖ< 0.1, the
inverse parallax is often a reasonably good distance estimate

Figure 19. The EDR3 CQD over the whole sky using the geometric distances
(top) and photogeometric distances (bottom). This plot uses a random sample
of 0.5% of all sources in each HEALpixel. These plots include sources of all
magnitude and fpu and so include sources with spurious parallaxes.

Figure 20. Mean distance of sources per HEALpixel (level 5) for our median
geometric distances (top) and median photogeometric distances (middle), and
the log2 ratio of these (bottom), that is, log2(geo/photogeo). This plot uses a
random sample of 0.5% of all sources in each HEALpixel.
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for many purposes (when using a suitable parallax zero-point).
This applies to 98 million sources in EDR3. For sources with
negative parallaxes or σϖ/ϖ> 1 (704 million sources), our

distances will generally be prior dominated, and while the
photogeometric distances could still be useful, the geometric
ones are probably less so. The sweet spot where our catalog

Figure 21. Projected distribution of EDR3 stars in the Galaxy using our geometric distances (left) and photogeometric distances (right). The projections are in Galactic
Cartesian coordinates with the Sun at the origin. The Galactic North Pole is in the positive z direction, and the Galactic center is at around (+8, 0, 0) kpc. Galactic
longitude increases counterclockwise from the positive x-axis. The top plots are the view from the Galactic North Pole. The bottom plots are a side view. This plot uses
a random sample of 0.5% of all sources in each HEALpixel.

Figure 22. Same as Figure 21 but now showing the fractional symmetrized distance uncertainties, that is, (rhi − rlo)/2rmed.
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adds the most value is for the remaining 665 million sources
with 0.1< σϖ/ϖ< 1.

The choice of whether to use our geometric or photogeo-
metric distance depends on the specific situation and what
assumptions you are willing to accept. In the limit of negligible

parallax uncertainties, they will agree. At large fractional
parallax uncertainties, our photogeometric distances will
generally be more precise than geometric ones, because they
use more information and have a stronger prior (see Figures 11
and 12). Whether they are also more accurate depends on how

Figure 23. Validation of the geometric distance estimates using star clusters (one per panel). Each panel shows the estimated distance, rmed, of the cluster members as
open circles, as a function of the fractional parallax uncertainty σϖ/ϖ. The error bars show the lower (rlo) and upper (rhi) bounds of the confidence intervals. The
distance range spans everything in the plotted fpu range, but a few stars lie outside of the plotted fpu range for some clusters. The dashed horizontal line is the inverse
of the variance-weighted mean parallax for all cluster members (including any beyond the fpu limits plotted). The solid horizontal (blue) line is the weighted-mean
geometric distance for the same stars, where the weight is the inverse square of the symmetrized distance uncertainty. The clusters are ordered by increasing parallax
distance.

Figure 24. Same as Figure 23 but now for photogeometric distances. The solid horizontal (orange) line is the weighted-mean photogeometric distance.
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well the QG prior matches the true (but unknown) QG

distribution. The QG model reflects the stellar population and
interstellar extinction in a small patch of sky (HEALpixel of
area 3.36 sq. deg.). The GeDR3mock catalog and our prior
should model these reasonably well at higher Galactic latitudes,
but may be less accurate at lower latitudes where extinction is
higher and the stellar populations along the line of sight are
more complicated. If you do not want to rely on color and
magnitude information in the distance inference, use the

geometric distance, as the distance prior is less sensitive to
the exact stellar population in GeDR3mock.
Some example use cases are as follows:

1. Look-up of distance (or distance modulus) for particular
sources of interest using their source_id or other
identifier matched to this. EDR3 includes a cross-match
to many existing catalogs. Positional cross-matches can
also be done on the EDR3 data site or using TAP
uploads, and at other sites that host our catalog.

Figure 25. Comparison of APOGEE DR16 red clump star distance estimates
from Bovy et al. (2014) to our geometric estimates (top panel) and to our
photogeometric estimates (bottom panel) for a common sample of 36,858
sources.

Figure 26. Comparison of StarHorse distance estimates from Queiroz et al.
(2020) to our geometric estimates (top panel) and to our photogeometric
estimates (bottom panel) for a common sample of 307,105 sources.

Table 1
Format of the Distance Catalog Showing Results on Five Fictitious Sources

source_id r_med_geo r_lo_geo r_hi_geo r_med_photogeo r_lo_photogeo r_hi_photogeo flag
(pc) (pc) (pc) (pc) (pc) (pc)

4295806720 3547.973 2478.490 4741.725 2705.790 2307.170 3357.151 10033
34361129088 291.709 275.786 306.577 290.840 277.130 304.291 10033
38655544960 318.105 312.888 323.334 318.807 313.264 323.045 10033
5835726683934945280 7547.806 4509.953 11817.191 5299.187 4060.932 7178.086 10033
5835726688222520960 6316.000 3860.044 10591.593 NA NA NA 10099

Note. The source_id is the same as in EDR3. r_med_geo, r_lo_geo, and r_hi_geo are the median, 16th percentile, and 84th percentile of the geometric
distance posterior in parsecs. r_med_photogeo, r_lo_photogeo, and r_hi_photogeo are the median, 16th percentile, and 84th percentile of the
photogeometric distance posterior in parsecs. The flag is defined in Table 2. The distances are shown here rounded to three decimal places, but are provided in the
catalog with 32-bit floating-point precision, which guarantees a precision of at least one part in 224 (17 million). The photogeometric fields can be missing, indicated
here with NA.
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2. Identification of sources within a given distance (or
distance modulus) range. The confidence intervals should
be used to find all sources with a distance r satisfying
k(rmed− rlo)< r< k(rhi− rmed), where the size of k will
depend on the desired balance between completeness and
purity of the resulting sample. A better approach would
be to use the actual posterior to get a probability-
weighted sample. For the geometric distances, our
posterior can be reconstructed using the geometric
distance prior provided for each HEALpixel in the
auxiliary information online. Readers interested in using
our photogeometric priors should contact the authors.

3. Construction of absolute-color–magnitude diagrams. One
of the reasons that we provide quantiles for our distance
estimates is that -r5 log 510 med( ) is the median of the
distance modulus posterior. (This would not be the case if
we provided the mean or mode, for example.) Using G
from EDR3, one can then compute QG, and from this the
absolute magnitude MG, if the extinction is zero or
otherwise known. The same can be done for any
photometric band from any other catalog. When comput-
ing QG in this way with Equation (4), the user should

remember to apply the correction to the EDR3 G-band
magnitude as described in Section 8.3 of Riello et al.
(2020).

4. Construction of the three-dimensional spatial distribution
of stars in some region of space. This may also assist in
selection of candidates in targeted follow-up surveys.

5. As a baseline for comparison of distance or absolute
magnitude estimates obtained by other means.

6. Our distances could be used for another layer of
inference, such as computing transverse velocities using
also the EDR3 proper motions, although users will need
to consider the appropriate error propagation. In part-
icular, if the error budget is not dominated by a single
source (e.g., not just the distance), users are advised to
infer their desired quantities directly from the original
parallaxes, perhaps using the priors provided here.

Users should realize that uncertainties in the parallaxes in
EDR3 are correlated between different sources to a greater or
lesser degree depending on their angular separations (Fabricius
et al. 2020; Lindegren et al. 2020a). Caution must therefore be
exercised when combining either the parallaxes or our
distances, such as averaging them to determine the distance
to a star cluster. In such a case, the simple “standard error in the
mean” may underestimate the true uncertainty, and the same
prior would be used multiple times. One should instead set up a
joint likelihood for the sources that accommodates the
between-source correlations and solve for the cluster distance
directly.

5.4. Access

Our distance catalog is available from the German Astro-
physical Virtual Observatory at http://dc.g-vo.org/tableinfo/
gedr3dist.main, where it can be queried via TAP and ADQL.
This server also hosts a reduced version of the main Gaia
EDR3 catalog (and GeDR3mock). Typical queries are likely to
involve a combination of the two catalogs. By way of example,
the following query returns coordinates, our distances,
BP−RP, and the two QG values using the median distances,
for all stars with a low ruwe in a one-degree cone in the center
of the Pleiades. This should run in about one second and return
22,959 sources:

Table 2
Flag Field in the Catalog as a String of Five Decimal Digits ABBCC

A Source magnitude compared to the limit used to make the prior
0 Source has no G-band magnitude
1 G G lim

2 >G G lim

B Hartigan dip test for unimodality. Left digit, geometric; right digit,
photogeometric

0 Unimodal hypothesis okay
1 Possible evidence for multimodality

C QG models used in prior. Left digit, bluer model; right digit, redder
model

0 Null (no model)
1 One-component Gaussian
2 Two-component Gaussian
3 Smoothing spline
Special setting:
99 Source lacks G and/or BP − RP

-
- * +
- * +

<
<

_ , , ,
_ _ , _ _ , _ _ ,
_ _ , _ _ , _ _ ,

_ _ _ _ _ _ _ ,
_ _ _ _ _ _ ,
_ _ _ _ _

_
.

. _
.

, , . , .

SELECT
source id ra dec
r med geo r lo geo r hi geo
r med photogeo r lo photogeo r hi photogeo
phot bp mean mag phot rp mean mag AS bp rp
phot g mean mag 5 LOG10 r med geo 5AS qg geo
phot g mean mag 5 LOG10 r med photogeo 5
AS gq photogeo

FROM gedr3dist main
JOIN gaia edr3lite USING source id

WHERE ruwe 1 4
AND DISTANCE ra dec 56 75 24 12 1

( )
( )

( )

( )
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A bulk download for the catalog is also available at the URL
given above. Our catalog will also become available soon,
together with the full EDR3 catalog hosted at https://gea.esac.
esa.int/archive/ and its partner data centers. At these sites, the
table names gedr3dist.main and gaia.edr3lite may
well be different.

5.5. Limitations

When using our catalog, users should be aware of its
assumptions and limitations:

1. We summarize the posteriors using only three numbers
(quantiles), which cannot capture the full complexity of
these distributions. This is more of a limitation for the
photogeometric posteriors. The confidence intervals
should not be ignored.

2. Most sources in EDR3 have large fractional parallax
uncertainties, and our distances correspondingly have
large fractional uncertainties, especially for the geometric
distances.

3. The poorer the data, the more our prior dominates the
distance estimates. Our prior is built using a sophisticated
model of the Galaxy that includes 3D extinction, but it
will not be perfect. If the true stellar population,
extinction, or reddening law is very different in reality,
our distances will be affected. In Section 3.2.1, we
explained, using results on simulated data, what biases
can occur and why.

4. Sources with very large parallax uncertainties will have a
posterior dominated by the prior. The median of this
varies between 745 and 7185 pc depending on HEAL-
pixel (Figure 2). Stars with large fpu values that truly lie
well beyond the prior’s median will have their geometric
distances underestimated; stars with large fpu values that
lie closer than the prior’s median will have their
geometric distances overestimated. As distant stars
generally have larger fpu values than nearby stars, and
distant stars are more numerous, the former characteristic
will dominate among poor-quality data. This leads to a
bias in distance estimates, one that is probably unavoid-
able (see Appendix A). Poor data remain poor data.

5. Our prior is spatially discretized at HEALpixel level 5,
that is, in patches of 3.36 sq. deg. on the sky. The distance
prior and CQD change discontinuously between HEAL-
pixels, and this may be visible in sky maps of posterior
distances. The QG priors (constructed from the CQD) are
formed by a linear interpolation over color whenever
possible, so in these cases there should be no disconti-
nuity of distance with color within a HEALpixel.

6. Our inferred distances retain all of the issues affecting the
parallaxes, some of which have been explored in the
EDR3 release papers (Fabricius et al. 2020; Lindegren
et al. 2020a). We applied the parallax zero-point
correction derived by Lindegren et al. (2020b), which is
better than no correction or a single global correction but
is not perfect. Any error in this will propagate into our
distance estimates. The published parallax uncertainties
are also probably underestimated to some degree
(Fabricius et al. 2020). Gaia Collaboration (2020a) and
Riello et al. (2020) report some issues with the EDR3
photometry, such as biased BP photometry and therefore
BP− RP colors for very faint sources, which could affect

our photogeometric distances. These distance estimates
additionally suffer from any mismatch between the
published EDR3 photometry and the modeling of this—
in particular the passbands—used in the GeDR3mock
catalog, which forms the basis for our QG priors.8 Note
that we applied the G-band magnitude correction to the
EDR3 photometry as described by Riello et al. (2020).

7. We implicitly assume that all sources are single stars in
the Galaxy. Our distances will be incorrect for extra-
galactic sources. The geometric distances will be wrong
for unresolved binaries if the parallax for the composite
source is affected by the orbital motion. Even when this is
not the case, the photogeometric distance may still be
wrong, because the G-band magnitude will be brighter
than the QG prior expects (binaries were not included in
the prior).

8. By design, we infer distances for each source indepen-
dently. If a set of stars is known to be in a cluster, and
thus have a similar distance, this could be exploited to
infer the distances to the individual stars more accurately
than we have done here. In its most general form, this
involves a joint inference over multiple sources. Various
methods exist in the literature for doing this, such as
Palmer et al. (2014), Cantat-Gaudin et al. (2018), and
Olivares et al. (2020). Likewise, in order to estimate the
distance to the cluster as a whole, one should be aware
that averaging our individual distances will compound
the prior. If the fpu of the individual sources is large, this
product of priors would dominate the distance estimate
more than desired. A joint inference can easily be set up
to overcome this.

6. Summary

We have produced a catalog of geometric distances for
1.47 billion stars and photogeometric distances for 92% of
these. These estimates, and their uncertainties, can also be used
as estimates of the distance modulus. Geometric distances use
only the EDR3 parallaxes. Photogeometric distances addition-
ally use the G magnitude and BP−RP color from EDR3. Both
types of estimate involve direction-dependent priors con-
structed from a sophisticated model of the 3D distribution,
colors, and magnitudes of stars in the Galaxy as seen by Gaia,
accommodating both interstellar extinction and a Gaia selection
function. Tests on mock data, but moreover validation against
independent estimates and open clusters, suggest our estimates
are reliable out to several kiloparsecs. For faint or more distant
stars, the prior will often dominate the estimates. We have
identified various use cases and limitations of our catalog.
Our goal has been one of inclusion: to provide distances to

as many stars in the EDR3 catalog as possible. This has
required us to make broad, general assumptions. If one focuses
on a restricted set of stars with some approximately known

8 We compared simulations of the G-band magnitude and the BP–RP color
between the GeDR3mock passbands and those published for EDR3, using
isochrones at 4 Myr and 1 Gyr. The differences in the G magnitudes are below
6 mmag, except for sources bluer than −0.15, where it can be as high as
700 mmag. For BP − RP using the BP bright band (in GeDR3mock), the
difference is around 10 mmag, but up to 25 mmag for sources with
BP − RP > 1.2 mag and up to 100 mmag for sources with BP − RP < −0.2
mag. For BP faint, the BP − RP difference is around 20 mmag, but up to
60 mmag for sources with BP − RP > 0.5 mag and up to 100 mmag for
sources with BP − RP < −0.15 mag.
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properties, it will be possible to construct more specific priors
and to use these to infer more precise and more accurate
distances. Better distances may also be achievable by using
additional data, such as spectroscopy or additional photometry.
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Astronomy and the Astronomisches Rechen-Institut for
computing support. This work was funded in part by the
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2019); the NASA Astrophysics Data System; and the VizieR
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Facility: Gaia.

Appendix A
Thoughts on a Better Distance Prior

The strong dependence of the geometric posterior on the
distance prior in the limit of large parallax uncertainties is an
unavoidable consequence of inference with noisy data. We saw
something similar in Paper IV. This leads to a distance bias
mostly for distant stars with large fpu. Could this be avoided?
Conceptually one would like a distance prior that depends on
the true fpu, but this is impossible because the true parallax is
not known. One may be tempted to use the measured fpu
instead, but this is not what we want: a star with a large true fpu
could have a small measured fpu due to noise, and thereby be
treated incorrectly. Its use is also theoretically dubious because
it places the parallax—a measurable—in the prior and in the
likelihood. We experimented with using a prior conditioned on
σϖ, but we found that this did not help (see the technical note
GAIA-C8-TN-MPIA-CBJ-089 with the auxiliary information
online). One may achieve something close to what is desired by
simply shifting the distance prior to greater distances so that it
better represents stars with a larger true fpu, which is where the
prior is needed more. Yet this would detrimentally affect the
distance estimates for nearby stars. It seems a poor trade-off to
sacrifice accuracy on high-quality data for a better prior on low-
quality data. Conditioning the prior on the star’s magnitude
may help, and this is what our photogeometric distances do
(Section 2.4).

Appendix B
The Limit of Poor Parallaxes

We tend to think that a large fpu means that the likelihood is
uninformative and that the posterior converges toward the
prior. Consider a red clump star in the LMC with a true parallax
of 0.02 mas and a typical parallax uncertainty of 0.2 mas for a
star with G= 19 mag. The true fpu is 0.2/0.02= 10. Let us
assume initially that we actually measure a parallax of
0.02 mas; that is, we have a measured fpu of 10. (Of course
in this lucky case the inverse parallax would be the correct

distance, but it is very rare in practice.) In the LMC HEALpixel
8275, our distance prior has a median of 1.2 kpc because we
exclude the LMC from our prior, so we might expect to see
many sources with this inferred distance. In fact, we see many
sources with larger inferred distances (see the plot with the
auxiliary online information). The reason is that the likelihood
of a measurement of 1 mas (corresponding to a distance of
1 kpc) is still at 4.9σ and therefore quite unlikely. This shows
that even when the fpu is large the parallax can be quite
informative.
One should remember, however, that our inference never

sees the true parallax but only the measured parallax, which is
normally distributed around the unknown true value (with a
standard deviation that is also only estimated). So it is quite
likely that our measurement of the above red clump star gives
us a parallax measurement of, say, 0.4 mas. In that case, the
measured fpu is 0.5, and the likelihood of 1 mas, that is, a 1 kpc
distance, is only 3σ away from this measurement. Taking the
parallax measurement into account essentially redistributes
probability mass into the wings of the likelihood and therefore
to higher and lower (also negative) parallax values. Given the
truncation of negative parallaxes when calculating the poster-
ior, this implies that the median distance estimate is lower for
the true measurements, compared to the idealized inference
using the true parallax. Similarly, one should be careful not to
interpret plots involving the measured fpu as though it were the
true fpu.

ORCID iDs

M. Fouesneau https://orcid.org/0000-0001-9256-5516

References

Anders, F., Khalatyan, A., Chiappini, C., et al. 2019, A&A, 628, A94
Arenou, F., Luri, X., Babusiaux, C., et al. 2018, A&A, 616, A17
Astraatmadja, T. L., & Bailer-Jones, C. A. L. 2016a, ApJ, 832, 137
Astraatmadja, T. L., & Bailer-Jones, C. A. L. 2016b, ApJ, 833, 119
Bailer-Jones, C. A. L. 2015, PASP, 127, 994, (Paper I)
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., & Andrae, R.

2018, AJ, 156, 58, (Paper IV)
Bovy, J., Nidever, D. L., Rix, H.-W., et al. 2014, ApJ, 790, 127
Breddels, M. A., & Veljanoski, J. 2018, A&A, 618, A13
Cantat-Gaudin, T., Jordi, C., Vallenari, A., et al. 2018, A&A, 618, A93
Fabricius, C., Luri, X., Arenou, F., et al. 2020, A&A, in press
Gaia Collaboration, Brown, A. G. A., & Vallenari, A. 2016b, A&A, 595, A2
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616,

A1
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2020a, A&A, in press
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016a, A&A, 595,

A1
Gaia Collaboration, Smart, R. L., Sarro, L. M., et al. 2020b, A&A, in press
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Hall, O. J., Davies, G. R., Elsworth, Y. P., et al. 2019, MNRAS, 486, 3569
Hartigan, J. A., & Hartigan, P. M. 1985, AnSta, 13, 70
Hunter, J. D. 2007, CSE, 9, 90
Leung, H. W., & Bovy, J. 2019, MNRAS, 489, 2079
Lindegren, L., Klioner, S. A., Hernández, J., et al. 2020a, A&A, in press
Lindegren, L., Bastian, U., Biermann, M., et al. 2020b, A&A, in press
Luri, X., Brown, A. G. A., Sarro, L. M., et al. 2018, A&A, 616, A9
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154,

94
McMillan, P. J. 2018, RNAAS, 2, 51
Olivares, J., Sarro, L. M., Bouy, H., et al. 2020, A&A, 644, A7
Palmer, M., Arenou, F., Luri, X., & Masana, E. 2014, A&A, 564, A49
Queiroz, A. B. A., Anders, F., Chiappini, C., et al. 2020, A&A, 638, A76
Riello, M., De Angeli, D., Evans, D. W., et al. 2020, A&A, in press
Rybizki, J., Demleitner, M., Bailer-Jones, C. A. L., et al. 2020, PASP, 132,

074501

23

The Astronomical Journal, 161:147 (24pp), 2021 March Bailer-Jones et al.

http://www.cosmos.esa.int/gaia
http://www.cosmos.esa.int/gaia
http://www.cosmos.esa.int/web/gaia/dpac/consortium
http://www.cosmos.esa.int/web/gaia/dpac/consortium
https://orcid.org/0000-0001-9256-5516
https://orcid.org/0000-0001-9256-5516
https://orcid.org/0000-0001-9256-5516
https://orcid.org/0000-0001-9256-5516
https://orcid.org/0000-0001-9256-5516
https://orcid.org/0000-0001-9256-5516
https://orcid.org/0000-0001-9256-5516
https://orcid.org/0000-0001-9256-5516
https://doi.org/10.1051/0004-6361/201935765
https://ui.adsabs.harvard.edu/abs/2019A&A...628A..94A/abstract
https://doi.org/10.1051/0004-6361/201833234
https://ui.adsabs.harvard.edu/abs/2018A&A...616A..17A/abstract
https://doi.org/10.3847/0004-637X/832/2/137
https://ui.adsabs.harvard.edu/abs/2016ApJ...832..137A/abstract
https://doi.org/10.3847/1538-4357/833/1/119
https://ui.adsabs.harvard.edu/abs/2016ApJ...833..119A/abstract
https://doi.org/10.1086/683116
https://ui.adsabs.harvard.edu/abs/2015PASP..127..994B/abstract
https://doi.org/10.3847/1538-3881/aacb21
https://ui.adsabs.harvard.edu/abs/2018AJ....156...58B/abstract
https://doi.org/10.1088/0004-637X/790/2/127
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..127B/abstract
https://doi.org/10.1051/0004-6361/201732493
https://ui.adsabs.harvard.edu/abs/2018A&A...618A..13B/abstract
https://doi.org/10.1051/0004-6361/201833476
https://ui.adsabs.harvard.edu/abs/2018A&A...618A..93C/abstract
https://doi.org/10.1051/0004-6361/202039834
https://doi.org/10.1051/0004-6361/201629512
https://ui.adsabs.harvard.edu/abs/2016A&A...595A...2G/abstract
https://doi.org/10.1051/0004-6361/201833051
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...1G/abstract
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...1G/abstract
https://doi.org/10.1051/0004-6361/202039657
https://doi.org/10.1051/0004-6361/201629272
https://ui.adsabs.harvard.edu/abs/2016A&A...595A...1G/abstract
https://ui.adsabs.harvard.edu/abs/2016A&A...595A...1G/abstract
https://doi.org/10.1051/0004-6361/202039498
https://doi.org/10.1086/427976
https://ui.adsabs.harvard.edu/abs/2005ApJ...622..759G/abstract
https://doi.org/10.1093/mnras/stz1092
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.3569H/abstract
https://doi.org/10.1214/aos/1176346577
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.1093/mnras/stz2245
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.2079L/abstract
https://doi.org/10.1051/0004-6361/202039709
https://doi.org/10.1051/0004-6361/202039653)
https://doi.org/10.1051/0004-6361/201832964
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...9L/abstract
https://doi.org/10.3847/1538-3881/aa784d
https://ui.adsabs.harvard.edu/abs/2017AJ....154...94M/abstract
https://ui.adsabs.harvard.edu/abs/2017AJ....154...94M/abstract
https://doi.org/10.3847/2515-5172/aaca93
https://ui.adsabs.harvard.edu/abs/2018RNAAS...2...51M/abstract
https://doi.org/10.1051/0004-6361/202037846
https://ui.adsabs.harvard.edu/abs/2020A&A...644A...7O/abstract
https://doi.org/10.1051/0004-6361/201323037
https://ui.adsabs.harvard.edu/abs/2014A&A...564A..49P/abstract
https://doi.org/10.1051/0004-6361/201937364
https://ui.adsabs.harvard.edu/abs/2020A&A...638A..76Q/abstract
https://doi.org/10.1051/0004-6361/202039587
https://doi.org/10.1088/1538-3873/ab8cb0
https://ui.adsabs.harvard.edu/abs/2020PASP..132g4501R/abstract
https://ui.adsabs.harvard.edu/abs/2020PASP..132g4501R/abstract


Rybizki, J., Demleitner, M., Fouesneau, M., et al. 2018, PASP, 130, 074101
Rybizki, J., & Drimmel, R. 2018, gdr2_completeness: GaiaDR2 Data Retrieval

and Manipulation, Astrophysics Source Code Library, ascl:1811.018
Sanders, J. L., & Das, P. 2018, MNRAS, 481, 4093
Schönrich, R., & Aumer, M. 2017, MNRAS, 472, 3979

Taylor, M. B. 2005, in ASP Conf. Ser. 347, Astronomical Data Analysis
Software and Systems XIV, ed. P. Shopbell, M. Britton, & R. Ebert (San
Francisco, CA: ASP), 29

Zonca, A., Singer, L., Lenz, D., et al. 2019, JOSS, 4, 1298
Zucker, C., Schlafly, E. F., Speagle, J. S., et al. 2018, ApJ, 869, 83

24

The Astronomical Journal, 161:147 (24pp), 2021 March Bailer-Jones et al.

https://doi.org/10.1088/1538-3873/aabd70
https://ui.adsabs.harvard.edu/abs/2018PASP..130g4101R/abstract
http://www.ascl.net/1811.018
https://doi.org/10.1093/mnras/sty2490
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.4093S/abstract
https://doi.org/10.1093/mnras/stx2189
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.3979S/abstract
https://ui.adsabs.harvard.edu/abs/2005ASPC..347...29T/abstract
https://doi.org/10.21105/joss.01298
https://ui.adsabs.harvard.edu/abs/2019JOSS....4.1298Z/abstract
https://doi.org/10.3847/1538-4357/aae97c
https://ui.adsabs.harvard.edu/abs/2018ApJ...869...83Z/abstract

	1. Introduction
	2. Method
	2.1. Geometric Distance
	2.2. Likelihood
	2.3. Distance Prior
	2.4. Photogeometric Distance
	2.5. QG Prior
	2.6. Posterior Sampling and Summary
	2.6.1. Markov Chain Monte Carlo
	2.6.2. Multimodality


	3. Performance on the Mock Catalog
	3.1. Example Posteriors
	3.2. Comparison to Truth
	3.2.1. Qualitative Analysis
	3.2.2. Quantitative Analysis

	3.3. Inferred CQDs

	4. Analysis of Distance Results in EDR3
	4.1. Analysis of Two HEALpixels
	4.1.1. Distance Distributions and Uncertainties
	4.1.2. Color–QG Diagrams

	4.2. All Sources
	4.2.1. Color–QG Diagrams
	4.2.2. Distribution on the Sky
	4.2.3. Galactic Spatial Distribution

	4.3. Validation Using Clusters
	4.4. Comparison to Other Distance Estimates

	5. Distance Catalog
	5.1. Content
	5.2. Filtering
	5.3. Use Cases
	5.4. Access
	5.5. Limitations

	6. Summary
	Appendix AThoughts on a Better Distance Prior
	Appendix BThe Limit of Poor Parallaxes
	References



