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ABSTRACT

We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR
B1913+16, acquired over the last 35 years. The determination of the “Keplerian” orbital elements plus two
relativistic terms completely characterizes the binary system, aside from an unknown rotation about the line of
sight,leading to a determination of the masses of the pulsar and its companion: 1.438±0.001M☉ and
1.390±0.001M☉, respectively. In addition, the complete system characterization allows forthe creation of
relativistic gravitation test by comparing measured and predicted sizes of various relativistic phenomena. We find
that the ratio of the observed orbital period decrease caused by gravitational wave damping (corrected by a
kinematic term) to the general relativistic predictionis 0.9983±0.0016,thereby confirms the existence and
strength of gravitational radiation as predicted by general relativity. For the first time in this system, we have also
successfully measured the two parameters characterizing the Shapiro gravitational propagation delay, and found
that their values are consistent with general relativistic predictions. For the first time in any system, we have also
measured the relativistic shape correction to the elliptical orbit, δθ, although its intrinsic value is obscured by
currently unquantified pulsar emission beam aberration. We have also marginally measured the time derivative of
the projected semimajor axis, which, when improved in combination with beam aberration modeling from geodetic
precession observations, should ultimately constrain the pulsar’s moment of inertia.
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1. INTRODUCTION

Pulsar B1913+16 was the first binary pulsar discovered
(Hulse & Taylor 1975). The system consists of two neutron
stars (one is an observed pulsar) orbiting in a very tight, highly
eccentric orbit, and it remains one of the best for studying
relativistic gravitation (Weisberg & Taylor 1981; Taylor &
Weisberg 1982, 1989; Weisberg et al. 2010, hereafter WNT).
In this paperwe update WNT with the addition of post-2006
data and with further relativistic timing analyses. The addition
of significant quantities of data acquired with modern data-
acquisition devices has enabled us to measure several
additional relativistic phenomena for the first time in this
system, while also refining previously measured ones. Among
the parameters newly measured with various degrees of
accuracy are the Shapiro gravitational propagation delay, a
relativistic correction to the elliptical orbital shape, and the time
derivative of projected pulsar semimajor axis. All of the the
data used in this study are published with this paper in a .tar.gz
package and in two online repositories, while our analysis
software is published on sourceforge.

We describe the observations used in this work in Section 2,
while Section 3 delineates the scope and methods of our
relativistic analyses of these data. The results of our fits to the
data are explained in Section 4, and their applications for tests of
relativistic gravitation are discussed in Section 5. We conclude in
Section 6 by summarizing our work and placing it in the context
of results from other relativistic binary pulsar systems.

2. DATA

The data for our analyses consists of 9257 pulse times-of-
arrival (TOAs) derived from five-minute integrations of the
pulsar signal at frequencies near 1400MHz measured at
Arecibo Observatory from 1981 to 2012. The parameters of

the various observing systems and the number of TOAs from
each through epoch 2006 are tabulated in WNT; WAPP
spectrometer observations since then have added another 1652
TOAs to the total, each acquired by three WAPPs deployed
simultaneously at approximately contiguous 100MHz bands
near 1400MHz.
Geodetic precession of the pulsar spin axis has induced pulse

profile changes (Weisberg et al. 1989; Kramer 1998; Weisberg
& Taylor 2002; Clifton & Weisberg 2008) that have lately
grown increasingly larger, presumably as our line of sight
approaches the edge of the pulsar beam. Nevertheless, for
purposes of uniformitywe use only a single profile template
while finding TOAs for all WAPP data. This procedure induces
time offsets into our TOA dataset between different sessions
and frequencies, which have grown to a level where they
should be compensated for. To do so, we adopted the following
process. First, we formed a pulse profile at each frequency band
for each two-week session. Each resulting “session-band”
standard profile has a much greater signal-to-noise ratio than
does a single five-minute integration, while still being short
enough to avoid the secular changes we are trying to measure.
Next, we measured the offset of the midpoint of this session-
band standard profile with respect to the grand standard profile.
(The midpoint is assumed to correspond to a fixed longitude on
the pulsar regardless of profile shifts).
Then we fitted out a “primary” linear model of the profile

offsets as a function of time at each band. In this fashion, we
provided an empirically determined, model independent, first-
order TOA correction that accounts for the effects of profile
changes, thereby minimizing the long-term effects of profile
shifts that might be mistaken as the signature of other
phenomena. We next fitted the timing model to all such
“primarily offsetted” TOAs and chose the resulting dispersion
measure as our nominal value. Finally, secondary offsets were
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determined through single session fits, where the dispersion
measure was fixed at its nominal value and the residual offset of
each band was fitted for and then removed. This process ensures
that the infinite-frequency TOAs calculated from each band and
session are self-consistently de-dispersed1 and offsetted.

To verify that the above profile variation correction process
does not contaminate our parameter measurements, we also
employed an alternate approach, fitting for an offset for each
band in each session simultaneously with all other parameters
(Demorest et al. 2013). This procedure yields parameters that
agree with our method to within 1σ for all parameters,
suggesting that our measurements are robust with respect to the
methods used to remove profile-shift-induced timing offsets.

3. RELATIVISTIC ANALYSIS OF TOAS

Using an augmented version of the TEMPO software
program, we fitted the relativistic timing model of Damour &
Deruelle (1989, hereafter DD),or, in certain cases, the DD
model augmented by the Freire & Wex (2010, hereafter FW)
Shapiro parametrization (see Section 3.1),2 to our TOAs. In
these models, the pulsar signal encounters several distinct types
of delays on its journey from the orbiting pulsar to the solar
system barycenter, such that the infinite-frequency pulse arrival
time at the solar system barycenter, tssbc, is given by

= + D + D
+ D + D

-t D T T T
T T , 1

ssbc
1

Roemer Einstein

Shapiro Aberration

[ ( ) ( )
( ) ( )] ( )

where each delay is a function of the pulsar proper time of
pulse emission, T, and whose details depend on a number of
physical parameters (The Doppler factor, D, accounts for the
relative motion of the solar system and binary system
barycenters) The various terms in Equation (1) are detailed in
DD and Damour & Taylor (1992, hereafter DT92), and we will
comment further on the last two terms of Equation (1) in the
following two sections.

Among the fitted parameters, we determined improved
values of the pulsar spin and orbital parameters that were
published in WNT, plus a number of new ones. For the first
time, we have successfully fitted for the Shapiro (1964)
gravitational propagation delay while also placing constraints
on two additional ones: a relativistic correction to the quasi-
elliptical shape of the orbit, and the shrinkage rate of its
projected semimajor axis, as described in further detail below.

The improved, previously fitted parameters include the
pulsar spin frequency and derivative(s) f, ḟ ,... ; five
“Keplerian” orbital elements defined as projected pulsar
semimajor axis ºx a isin1 where i is the orbital inclination;
orbital period,Pb;eccentricity, e;reference epoch, T0;the
reference epoch’s longitude of periastron, ω0; relativistic
“post-Keplerian” parameters defined as themean rate of
periastron advance wá ñ˙ ; gravitational redshift-time dilation term
γ;and orbital period derivative Pb˙ .

The newly fitted post-Keplerian parameters include the
following: (i) two Shapiro delay terms called shape (s) and range
(r) in the DD parametrization, or two (different) quantities, ς and

h3, in the alternate FW parametrization; (ii) the orbital elliptical
shape correction parameter dq

obs (to our knowledge never
previously fitted for in any binary system), which appears
in DT92ʼs full expression for Equation (1)ʼs Roemer term3; and
(iii) xobs˙ and eobs˙ , the observed time derivatives of x and e. All of
the new parameters are discussed in greater detail in Sections 3.1–
3.3, while the fit results for both old and new parameters are
described in Section 4, and relativistic tests resulting from these
measurements are discussed in Section 5. A set of TEMPO input
files containing input parameters and the TOAs is available in a
.tar.gz package published with this paper, in a persistent
repository http://dx.doi.org/10.5281/zenodo.54764,and with
the article preprint http://arxiv.org/e-print/1606.02744v1.

3.1. Fitting for the Shapiro Gravitational Propagation Delay
via Two Different Parametrizations

Until this work, we were unable to explicitly measure the
two Shapiro gravitational propagation delay terms that
characterize Equation (1)ʼs ΔShapiro(T), because of their
relatively small timing signature and their covariance. The
two terms are identified as s and r in DD,while FW recently
developed an alternate parametrization of the phenomenon
wherein their two fitted parameters, ς and h3, are orthonormal.
Our software implementation of their parametrization for high-
eccentricity pulsars is available in our augmented version of
TEMPO (see footnote 2).
The measurements of either pair of Shapiro parameters, (s, r)

or V h, 3( ), can be utilized in either of two different manners, as
described below.
First, if general relativity is assumed to be the correct theory

of gravitation, then either pair of Shapiro measurables can be
utilized as independent constraints on the orbital inclination
and binary companion mass. We summarize the theory here,
and then apply it in Section 4.2.
In the DD formulation, s and r translate directly into isin and

m2 (the companion mass), respectively

=i ssin , 2( )

and

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= =m

c

G
r

r

T
M , 32

3
( )

☉
☉

with c the speed of light, G as the Newtonian gravitational
constant, T☉=G M☉/c

3=4.925,490,947 μs.
The alternate FW parametrization of the Shapiro delay gives
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while m2 is a combination of the two measurables (h3, ς)
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Alternatively, each measured parameter of the Shapiro pair
can be considered to be an independent test of relativistic
gravitation. We apply this procedure in Section 5.2.

1 This procedure also absorbs TOA variations induced by DM fluctuations at
the levels and timescales expected from studies of millisecond pulsars (You
et al. 2007).
2 See http://sourceforge.net/projects/TEMPO/for our augmented version
of TEMPO, which contains our fitting routine for the FW Shapiro parameters in
high-eccentricity binaries.

3 Before it can be utilized for tests of relativity, the dq
obs parameter must be

corrected for a comparable aberration term which is currently undeterminable
(see Section 4.4).
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3.2. Determination of the Relativistic Orbital Shape Correction
δθ in the Presence of the Aberration Delay

In order to successfully measure the intrinsic value of δθ,
which nominally quantifies a relativistic correction to the shape
of the approximately elliptical orbit in Equation (1)ʼs Roemer
delay expression, one must compensate the observed value for
the influence of a phenomenon that comparably affects TOAs,
namely the orbital-phase dependent aberration of the pulsar
beam as described by DD and DT92. Those authors provide a
prescription for calculating and eliminating the confounding
aberration signature from the observed value of δθif the
aberration geometry is known. In principle, the necessary
information can be gleaned from studies of profile changes
resulting from geodetic precession of the pulsar spin axis
(Weisberg & Taylor 2002; Clifton & Weisberg 2008). In this
section, we summarize the theoretical expressions required to
quantify δθ and aberration, and we will apply our observations
to these results in Section 4.4.

The time delay ΔAberration in Equation (1),resulting from
aberration of the rotating pulsar beam,is dependent on the
time-variable transverse component of the pulsar’s orbital
velocity. DD and DT92 parametrize the instantaneous delay via
the aberration parameters A(t) and B(t)

w w
w w

D = + +
+ + +
A t A u e

B t A u e
sin sin

cos cos , 6
e

e

Aberration ( ){ ( ( )) }
( ){ ( ( )) } ( )

where Ae(u) is a true-anomaly like quantity, and A(t) and B(t)
are dependent on the precessing spin-axis geometry
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with λ and η the geodetically precessing polar angles of the
pulsar spin axis with respect to the line of sight and line of
nodes, respectively. (DD and DT92 suggested the substitution
of a single fixed parameter, A0, for the two parameters A(t) and
B(t)because observations at the time suggested that the spin
and orbital angular momenta are aligned. However, subsequent
observations of pulse profile changes have shown that this is
not the case.)

While the above equations provide a complete description of
the calculation of ΔAberration at any proper emission time, DD
and DT92 also provide an alternate approach that focuses on
aberration parameters that change slowly (on precession
timescales) as a result of spin axis precession. This procedure,
detailed below, is more closely tailored to parameters
determinable from TOA analyses.

DT92 show that aberration will bias the observed value of
the relativistic orbital shape parameter, dq

obs, with respect to its
intrinsic value,dq

intr

d d= -q q , 9A
obs intr ( )

where the small parameter òA is defined as

 º
A t

x
. 10A

( ) ( )

Hence the observational bias can be removed, given
measurements of the aberration parameter A(t) and the Keplerian

quantity x. The corrected value dq
intr could then serve as an

additional test of gravitation theory.

3.3. Other Parameters Affected by the Aberration Delay

In addition to affecting δθ, DT92 show that aberration also
affects the observed x and e values. However, the fractional
corrections to x and e are tiny. More interesting is the effect of
geodetic spin axis precession on the time-derivatives of these
parameters, because DT92 show that they are potentially
measurable. The precessional motion will cause the aberration
geometry to change, resulting in secular changes to A(t) and
hence to òA on precession timescales
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where p W2 1
geodetic is the geodetic precession period of the

pulsar spin axis. The observed, normalized time derivative of e
results from the sum of two phenomena
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where “GW” designates effects due to gravitational waves,
while the observed, normalized time derivative of x stems from
a combination of five terms:
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where “SO” refers to spin–orbit coupling. (See Lorimer &
Kramer 2004) for an expression that includes additional terms
needed for some other binary pulsars.)
The quantity di/dt in the third term of Equation (13),

resulting from pulsar spin–orbit coupling, is developed here,
from expressions in DT92:
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where m1 is the pulsar mass, aR is the semimajor axis of the
relative orbit, p=S I f21 1( ) is the magnitude of the pulsar spin
angular momentum, and I1 is its moment of inertia. The fourth
term of Equation (13) results from the changing projection of
the line of sight onto the orbital plane due to proper motion,
with μ and Θμ,respectively, the amplitude and position angle
of proper motion, and Ω the position angle of the line of nodes
(Kopeikin 1996). The final term of Equation (13), involving
changes in the Doppler factor D of Equation (1), is caused by
the relative line of sight galactic accelerations of the solar
system and the binary system.
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The above equations demonstrate that measurements of ė or
ẋ, along with experimental or theoretical determinations of
some of the other quantities appearing therein, can usefully
constrain others.

4. RESULTS OF THE FITS

We fitted the parameters discussed above to the full set of
TOAsusing the TEMPO softwareas modified by us (see
footnote 2). See Tables 1 and 2 for our results and their
estimated uncertainties. The uncertainties quoted therein
represent the standard errors from the TEMPO fit (except as
noted). This convention differs from our previous practice,
wherein many uncertainties were instead estimated from
fitted parameter variations across multiple reasonable fits.
While the old procedure facilitated the incorporation of some
systematic uncertainties into the error budget,the more stable
recent instrumental configurations appear to minimize such
effects.

Some of the fitted parameters shifted by several σ with
respect to the values reported in Weisberg et al. (2010). The
shifts can all be attributed to the new incorporation of a
frequency and time offset for each WAPP observing session,
and center frequency in order to account for geodetic
precession-induced profile changes (see Section 2), and to
our new procedure of fitting for rather than freezing at zerothe
parameter ẋ. The latter procedure also led to a significantly
larger uncertainty in the fitted value of γ and in quantities
derived therefrom.

The astrometric and spin solutions are listed in Table 1.
These are quite similar to those given in Weisberg et al. (2010),
except that our longer post-glitch baseline made it clear that the
previously discovered glitch at MJD ≈ 52770 is better modeled
with the addition of a change in spin frequency Dderivative f, ˙.
There remains only one known glitch that has a significantly
smaller value of Δ f/f (in globular cluster millisecond PSR
B1821-24;Mandal et al. 2009), although several of magnitude

similar to the one tabulated here are now known. (See the
online Jodrell Bank Pulsar Glitch Catalog4; Espinoza
et al. 2011). Note that, as with Weisberg et al. (2010),
10higher-order spin derivatives were also fitted for in order to
eliminate the effects of timing noise. Their values are not
shown in the Table as they do not correspond to meaningful
physical parameters.
Table 2 displays the results of our fit to orbital parame-

ters,including the eight final entrieswhich are fitted here for
the first time in this system. Note that the first two of these eight
new parameters, namely dq

obs and xobs˙ , are measured at the
marginal 1.5σ level, while the third, eobs˙ , is only an upper limit.
All others in this Table, including the new Shapiro terms, are
measured with high confidence. In the next sections, we discuss
important orbital measurables, including corrections that must
be made to some of the observed quantities in order to
determine their intrinsic values.

4.1. The Observed and Intrinsic Orbital Period Derivative

The observed orbital period derivative, Pb
obs˙ , must be

corrected by a term, Pb
gal˙ , resulting from the relative galactic

accelerations of the solar system and the binary system
(Damour & Taylor 1991), in order to yield the intrinsic
derivative, Pb

intr˙

= -P P P . 15b
intr

b
obs

b
gal˙ ˙ ˙ ( )

Using galactic parameters of R0=8.34±0.16 kpc and
Θ0=240±8 km s−1 from Reid et al. (2014), a pulsar distance
estimate from Weisberg et al. (2008), and the pulsar proper

Table 1
Astrometric and Spin Parameters

Parameter Valuea

t0 (MJD)b 52984.0
α (J2000) 19 15 27. 99942 3h m s ( )
δ (J2000) 16°06′27 3868(5)
μα (mas yr−1) −1.23(4)
μδ (mas yr−1) −0.83(4)
f (s−1) 16.940537785677(3)
ḟ (s−2) −2.4733(1)×10−15

Glitch Parameters

Glitch epoch (MJD) 52777(2)
Δ f (s−1) 5.49(3)×10−10

Dḟ (s−2) −2.7(1)×10−18

Notes.
a Figures in parentheses represent formal TEMPO standard errors in the last
quoted digit, except for the glitch parameters. The stated uncertainty in glitch
epoch results from empirically varying the glitch epoch until Δχ2 corresponds
to the 68% confidence level; the quoted uncertainties in the other glitch
parameters were derived from their variations as the glitch epoch was varied
over the chosen range.
b This quantity is the epoch of the next six measurements tabulated here.

Table 2
Orbital Parameters

Parameter Valuea

T0 (MJD) 52144.90097849(3)
ºx a isin1 (s) 2.341776(2)

e 0.6171340(4)
Pb (d) 0.322997448918(3)
ω0 (deg) 292.54450(8)
wá ñ˙ (deg yr−1) 4.226585(4)
γ (ms) 0.004307(4)
Pb

obs˙ −2.423(1)×10−12

dq
obs 4.0(25)×10−6

xobs˙ −0.014(9)×10−12

eobs˙ (s−1) 0.0006(7)× 10−12

Shapiro Gravitational Propagation Delay Parameters

Damour & Deruelle (1986) Parametrization
s -

+0.68 0.06
0.10

r (μs) -
+9.6 3.5

2.7

Freire & Wex (2010) Parametrization
ς 0.38(4)
h3 0.6(1)×10−6

Note.
a Figures in parentheses represent formal TEMPO standard errors in the last
quoted digit. The DD Shapiro parameters s and r, which are highly covariant, and
their uncertainties were refined through a process illustrated in Figure 2.

4 http://www.jb.man.ac.uk/pulsar/glitches.html
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motion from Table 1, we find that = - P 0.025 0.004b
gal˙ ( )

´ -10 12. Inserting Pb
obs˙ from Table 2 into Equation (15), we

calculate that = -  ´ -P 2.398 0.004 10b
intr 12˙ ( ) . The uncer-

tainty in this result is dominated by the error in P ,b
gal˙ which in

turn is set principally by the pulsar distance uncertainty. A
VLBA parallax campaign on the pulsarcurrently in progress
will hopefully improve these uncertainties.

4.2. First Successful Measurement of the Shapiro Gravitational
Propagation Delay Parameters in PSR B1913+16

Due to relativistic precession of the elliptical orbit, the Shapiro
delay has recently grown to an amplitude of ∼35 μs around the
orbit, rendering it relatively easy tomeasure. Figure 1 illustrates
the enhancement of the Shapiro delay signal around the orbit
over the last dozen years, during which time the WAPP receivers
also came into use, thereby increasing our observing bandwidth
ten-fold. The curves in Figure 1 illustrate a general relativistic
calculation of the expected Shapiro delay variation around the
orbit, while the data points are residuals ofa TEMPO fit freezing
all parameters at their best-fit values, except for the Shapiro
parameter r (corresponding in General Relativity to the
companion mass). The latter quantity was artificially set to zero
to simulate the absence of the Shapiro delay in the fit. The
pattern of residuals systematically matches thetheoretical
expectations for the Shapiro delay.

We have now successfully determined the two Shapiro terms
in both the DD and FW parametrizations (see Table 2). While
the Shapiro delay has been observed in several other binary
pulsar systems, these results mark the first successful detection

of a pair of Shapiro measurables in the PSR B1913+16 system.
(The two DD parameters, s and r, had been jointly constrained
by Taylor & Weisberg (1989). For the ensuing decade,
unfavorable orbital geometry rendered its amplitude unmeasur-
ably small,while the last decade has seen both improving orbital
geometry and advances in observing instrumentation.) We
account for the significant nonlinear covariance of the s and r
parameters byestimating their values and uncertainties in Table 2
using a process delineated by Splaver et al. (2002). The
procedure is illustrated graphically in Figure 2, which also shows
the best-fitting FW Shapiro parameters. (Tighter constraints on
the inclination and companion mass can be derived indirectly
from other measurements. See Section 4.3.)

4.3. Best Determination of Component Masses and Orbital
Inclination

The measurement of the first seven quantities in Table 2
enables the precise general relativistic determination of the
component masses and orbital inclination. Specifically, our
measurements of wá ñ˙ and γ, along with the Keplerian elements,
leave only the two unknowns, w gám1; ,˙ and w gám2; ,˙ ,in the
following two general relativistic equations:

⎛
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☉

˙ ˙
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Figure 1. Shapiro gravitational propagation delay variation around the orbit at three epochs. The curve represents the expected delay based on a general relativistic
calculation, while the points and their error bars result from combining all residuals to a special fit (see text) near the given epoch into one of 20 orbital time bins. Time
is reckoned with respect to TConj, the epoch of the pulsar’s superior conjunction with the companion. Each curve peaks at that epochwhen the pulsar’s earthbound
signals plunge most deeply into the companion’s gravitational well. The amplitude and shape of the curves evolvedue to relativistic precession of the orbital ellipse,
as quantified by the advancing longitude of periastron ω.
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Simultaneously solving for the two component masses, we find
that = w gám M1.438 0.0011; ,˙ ☉ and = w gám 1.3902; ,˙

M0.001 ☉. These values agree with WNT within 2σ, while
our precision is poorer due to a less-precisely determined γ (see
Section 4). Furthermore, Newtonian physics then yields an
additional quantity from the derived masses, and our x and Pb

measurements, = w gáisin 0.7327 0.0004,( ) ˙ (or, equivalently,
= w gáicos 0.6806 0.0004,∣ ∣ ˙ ). These values are currently

much more precise than the m2 and isin or icos∣ ∣ values
determined directly from the Shapiro propagation delay
measurements of Section 4.2.

4.4. Toward the First Published Measurement of the
Relativistic Orbital Shape Correction, δθ, in any System

We have successfully measured the apparent post-Keplerian
orbital shape correction term, dq

obs (see Table 2). As noted in
Section 3.2, this observed value must be corrected for a
comparable aberration signal, òA (see Equation (9)). Geodetic
spin-precession modeling of this system should in principle
determine the necessary aberration parameters by specifying
the spin axis orientation (specifically, its polar angles η and λ)
over time (see Equation (7)). However, we find that the
currently available pulse shape variation fits (Kramer 1998;
Weisberg & Taylor 2002; Clifton & Weisberg 2008) yield
inconsistent solutions for these parameters. Consequently,
although we have successfully measured dq

obs, it is not yet

Figure 2. (a)Measured constraints on icos∣ ∣ and m2 resulting from TEMPO fits for two different parametrizations of the Shapiro gravitational propagation delay within

the context of general relativity. The Damour & Deruelle (1986) s and r parameters map directly onto the displayed =+ -i scos 1 2∣ ∣ [ ] and =m r T M2 [ ( ) ]☉ ☉ axes,
respectively; the black contours show joint 1, 2, and s cD =3 2.3, 6.2, 11.82( ) confidence limits on those quantitiesderived from a set of TEMPO fits to a large grid
of (fixed) ( i mcos , 2∣ ∣ ). The alternate Freire & Wex (2010) best-fit parameter constraints and their ±1σ limits are shown in green. Their fitted parameter, ς, transforms
directly into the displayed icos∣ ∣ axis (see Equation (4)), whereas their h3 parameter does not map uniquely onto either of the axes (see Equation (5)). The marginal
distributions in (b) and (c) result from collapsing the resulting two-dimensional DD probability distribution onto the icos∣ ∣ and m2 axes,respectively, in which the
mean (solid black) and the 1σ bounds (gray region) are displayed, yielding = + -icos 0.73 0.05, 0.11∣ ∣ ( ) and = + -m M1.95 0.55, 0.712 ( ) ☉ (68.3% confidence).
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possible to determine dq
intr nor to use its measured value as an

additional test of relativistic gravitation.
Despite our current inability to measure dq

intr, we can
determine its expected value, dq

GR, via a general relativistic
calculation (DD; DT92)
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yielding d =  ´q
-6.187 0.001 10GR 6( ) . Equation (9) can then

be inverted to give the aberration parameter  =  ´2.2 2.5A ( )
-10 6. This timing-derived value of òA will provide a modest

consistency check on future geodetic precession modeling.

4.5. Implications of Fits for the First Time-derivatives of e
and x

As noted above, Equations (12) and (13) demonstrate that
the successful measurement of eobs˙ and xobs˙ would lead to
constraints on other quantities of interest. It is therefore useful
to further investigate the various terms composing these
equations.

The first (aberration) term of both equations, d dtA , was
defined in Equations (10) and (11). However, as discussed in
Section 4.4 for òA, additional progress in understanding the
pulsar’s spin axis orientation is needed before d dtA can be
confidently determined. Nevertheless, our current geodetic
precession modeling suggests that its value is in the
∼10−15 s−1 range and varies with spin–precessional phase.

4.5.1. Constraints from eobs˙

The second and final term of Equation (12) involves the time
evolution of e induced by gravitational wave (GW) emission.
For the Equation (12) second term, Peters (1964) shows that
this term,
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with μasthe reduced mass. This term is negligible compared
to the expected value of d dtA , except at fortuitous
precessional phases where the latter can drop to zero.
Consequently, the d dtA term dominates Equation (12), so
that a successful measurement of e e obs( ˙ ) would provide a

unique measurement of d dtA . Unfortunately, our fitted value
of e e obs( ˙ ) is currently not significantly different from zero,
although its upper limit is in the 10−15 s−1 range (see Table 2)
expected for d dtA .

4.5.2. Constraints from xobs˙

The second term in Equation (13) delineates the gravitational
wave-induced orbital shrinkage rate, which can be evaluated
from measurables via

⎛
⎝⎜

⎞
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⎠⎟= = - ´ - -a

a

P

P

2
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5.7 10 s . 201

1
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b

b

GW
17 1˙ ˙

( )

The third (spin–orbit) term of Equation (13) varies
approximately sinusoidally on the geodetic precession time-
scale with an amplitude of ~ ´ - -3 10 s15 1. Details await a
robust determination of geodetic precession parameters (see
Equation (14)).
The fourth (Kopeikin 1996) term of Equation (13) has a

maximum amplitude5 of ∼2.3×10−16 s−1; while the fifth and
final term is

- = + = - ´ - -D

D

P

P
1 10 s 21

b,gal

b

18 1
˙ ˙

( )

(see Section 4.1 for details on the calculation of Pb,gal˙ ).
In summary, the first (aberration) and third (spin–orbit) terms

dominate Equation (13), so all others may be ignored.
However, neither of these two terms is currently accurately
determinable. We do have a marginally significant measure-
ment of xobs˙ (see Table 2). Consequently, if either of the two
terms becomes well-determined in the future, along with an
improved value of xobs˙ , then the other term will also become
accessible. For example, there are two possible paths toward
determiningthe aberrational term: first, additional geodetic
precession observations and modeling should better constrain
d dt;A and second, additional observations could better
determine eobs˙ , which, as noted in Section 4.5.1, would then
be equivalent to a measurement of d dtA . At this pointthe
spin–orbit term would be calculable, leading to an exciting
measurement of the pulsar’s moment of inertia, which has
important implications for neutron star equations of state
(Lattimer & Schutz 2005). With the measurement precision of
ẋ and ė improving with time,t, as -t 3 2, another decade or so
of observations is required. Unfortunately, geodetic spin axis
precession may cause the pulsar to disappear before that time.

5. TESTS OF RELATIVISTIC GRAVITATION

The determination of seven particular independent quantities
suffices to fully determine the dynamics of a binary system within
the context of a particular theory of gravitation. For example, the
most accurate determination of component masses and orbital
inclination in Section 4.3 and of dq

GR in Section 4.4 depend upon
subsets of the first seven measurements listed in Table 2.
Consequently, any additional measurement would constitute

an independent test of relativistic gravitation under strong-field
conditions. In the following two sections, we delineate
relativistic gravitational tests via measurements of gravitational
radiation emission and of the Shapiro gravitational propagation
delay, respectively.

5 The exact value depends on the unknown alignment on the sky of the line of
nodes.
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5.1. Gravitational Radiation Emission and Pb˙

Gravitational radiation emission should cause the orbit to
decay as orbital energy is radiated away. The quantity Pb

GR˙ is
the resulting orbital period derivative expected from a general
relativistic calculation of this phenomenon (Peters & Mathews
1963):
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Inserting our measured and derived values and their
uncertainties into Equation (22)6, we find that =Pb

GR˙
-  ´ -2.40263 0.00005 10 12( ) . To verify our estimate of
the error in Pb

GR˙ that was derived via propagation of
uncertainty,we also employed a Monte-Carlo method with
Cholesky decomposition of the covariance matrix. In this
fashion, we simulated the joint normal distribution of measured
parameters g w P e, , ,b{ ˙ }, and then constructed a histogram of
1,000,000 derived Pb

GR˙ and inferred the uncertainty therefrom.
Consequently, we find that

=
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P
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0.9983 0.0016. 23
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˙
˙
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This result demonstrates that the system is losing energy to
gravitational radiation within ∼1σ of the rate predicted by
general relativity (see also Figure 3 and the red curve in
Figure 4). The above number represents a significant improve-
ment over the value determined by WNT, 0.997±
0.002,which represented a 1.8σ discrepancy between our
measurements and general relativity. Interestingly, the new
galactic parameters of Reid et al. (2014) are the principal
reason for the improvement (via a change in Pb

gal˙ ), while our
measured values themselves changed little.

In addition to confirming general relativistic radiation
damping at this level, our result rules out large parameter
spaces in plausible scalar–tensor theories of gravity. In recent
years, however, other pulsars in neutron-star–white-dwarf
binary systems have overtaken PSR B1913+16 in constraining
these alternatives (Freire et al. 2012).

DD92 point out that this test is a “mixed” strong-field probe
in that it involves a combination of radiative effects (via Pb

obs˙ )
and quasi-static phenomena (through wá ñ˙ and γ, whose values

are needed in order to make a prediction of the expected Pb
GR˙ ).

Consequently, additional tests, such as those described in the

next section, that probe different aspects of strong-field
gravitationare also useful for constraining viable alternatives
to general relativity.

5.2. Shapiro Gravitational Propagation Delay

Each of the two newly measured Shapiro parameters
represents another independent test of relativistic gravitation.
As with the Pḃ test of Section 5.1, the Shapiro tests also require
the complementary measurement of wá ñ˙ and γ in order to make a
testable prediction for the value of the Shapiro parameters. In
this case, unlike the Pḃ test, all of the post-Keplerian quantities
probe quasi-static phenomena in strong fields. While Shapiro
parameters have already been measured in several other binary
systems, it is especially useful to constrain theories via systems
such as this one and PSRs B1534+12, and J0737-3039Awhere
at least three “excess” post-Keplerian parameters beyond wá ñ˙ and
γ (one gravitational radiation parameter and two Shapiro
quantities) are measurable. Although the precision of the binary
pulsar Shapiro parameter measurements is well below their
measurement precision in the weak solar gravitational field, it is
this simultaneous determination of several parameters in strong-
field conditions in each of these binary pulsar systems that leads
to the important constraints on relativistic theories of gravitation.
In the DD formulation of the Shapiro delay within general

relativity, the Shapiro measurables s and r map directly onto
isin and m2, respectively. Hence we can test general relativity

by comparing the Shapiro determination of ºi ssin ( ) with that
determined from wá ñ˙ and γ (called w gáisin ;,˙ see Section 4.3):

=
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Similarly, we can test general relativity by comparing the
Shapiro determination of ºm r M T2 ( ☉ ☉) with that determined
from wá ñ˙ and γ
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The consistency (albeit with a rather low level of precision) of
these Shapiro determinations of isin and m2 with those measured
via the other post-Keplerian terms, and hence their confirmation
of general relativity, is also graphically depicted in Figure 4.
The Shapiro terms have also been measured in several other
binary pulsar systems with higher precision, and have also been
shown to be in agreement with general relativity.

6. CONCLUSIONS

We report here on the measurements and relativistic analyses
of 9309 TOAs in over 30 years of high-quality Arecibo data on
binary pulsar PSR B1913+16. We fitted for a number of
previously unmeasurable parameters for the first time in this
system (and in one case, for the first time anywhere), which
enabled us to significantly advance our relativistic analyses of
the system. We provide our newest measurents or derivations
of all relevant physical quantities of the binary system, with the
exception of Ω, the position angle of the line of nodes. We
rigorously ascertained the uncertainties in the fitted and derived
parameters. Having fully characterized the system, we
proceeded to use it in several tests of general relativity in
strong-field conditions.
We have measured a gravitational radiation-induced orbital

period decrease whose rate agrees with the general relativistic

6 This value may also be calculated directly from the first seven orbital
measurables in Table 2 alone and without the use of derived quantities such as
the masses (DT91).
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expectation to within ∼1σ, which is closer than found
by WNT, largely as a result of an improved galactic correction
resulting from more accurate galactic parameters (Reid
et al. 2014).
Similar orbital decay tests have now been performed with

several other binary pulsars (see Table 3 for published
measurements of P Pb

intr
b
GR˙ ˙ ). The orbital decays of PSRs

J0348+0432, J0737-3039, J1141-4565, J1738+0333, J1906
+0746, B1913+16, and B2127+11C all exhibit agreement
between observation and general relativity to within (or very
close to) the authors’ stated uncertainties. PSR B1913+16
currently has the most precise determination, and interfero-
metric parallax measurementscurrently in progresswill hope-
fully further tighten the precision.
Among the other two, PSR B1534+12 and PSR J1756-

2251, various systematic effects such as an incorrect distance in
the galactic acceleration correction may explain the small
observed discrepancies, although it is possible that an
incompleteness of general relativity or some unknown physical
effect is responsible. See the work of Ferdman et al. (2014) for
an especially thorough description of the most significant
deviation of the orbital decay rate from the general relativistic
prediction, found in PSR J1756-2251.
Our new (for this system) measurements of Shapiro gravita-

tional propagation delay parameters represent two additional
tests of relativistic gravitation, and are fully consistent with
general relativity, although their relative precision is currently far

Figure 4. Constraints on the masses of the pulsar and the companion as a
function of five post-Keplerian measurables, within the context of General
Relativity. The width of each curve represents ±1σ error bounds. The mutual
near-intersection of all curves illustrates the agreement of our observations with
general relativity in the strong-field conditions at the binary system.

Figure 3. Orbital decay of PSR B1913+16 as a function of time. The curve represents the orbital phase shift expected from gravitational wave emission according to
General Relativity. The points, with error bars too small to show, represent our measurements.
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lower than the orbital decay test. This binary now joins several
other systems, including PSRs J0737-3039A, B1534+12, and
J1756-2251, witheach providing at least three independent tests
of relativistic, strong-field gravitation.

We have also marginally measured the orbital shape
parameter δθ for the first time anywhere, but its intrinsic value
is corrupted by a comparable, undetermined aberration delay.
Future geodetic spin–orbit precession measurements should
lead to an accurate characterization of the aberration and then
an additional relativistic gravitational test via the comparison of
the aberration-corrected dq

intr with dq
GR.

In addition, we fitted for the time derivative of orbital
eccentricity,e, and the projected semimajor axis of the pulsar
orbit, x, and we achieved an upper limit on the former and a
marginal detection of the latter. We discussed and quantified
the various physical phenomena that can contribute to these
parameters. Unless the pulsar disappears in the next few years
due to geodetic spin axis precession, future timing observations
should better define these quantities, allowing for a determina-
tion of the pulsar’s moment of inertia, I1.

We have placed online (see footnote 2) a subroutine and
modifications to the TEMPO TOA fitting software, which
codes the Freire & Wex (2010) parametrization of the Shapiro
delay for high-eccentricity binary pulsars such as the PSR
B1913+16 system. The TEMPO input files and TOAs upon
which these analyses are based are available in a .tar.gz
package published with this paper and in a persistent repository
http://dx.doi.org/10.5281/zenodo.54764 and with the article
preprint http://arxiv.org/e-print/1606.02744v1.

Much of this experiment was pioneered by J.H. Taylor, to
whom we owe our deepest thanks. D.J. Nice assisted with
observing and analyses, and A.A. Chael assisted in developing
the FW analysis package. The authors gratefully acknowledge
financial support from the US National Science Foundation.
The Arecibo Observatory is operated by SRI International
under a cooperative agreement with the National Science
Foundation (AST-1100968), and in alliance with Ana G.
Mendez-Universidad Metropolitana, and the Universities Space
Research Association.
Facility: Arecibo.
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