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ABSTRACT

Many algorithms have been proposed to deal with
subsequence similarity search problem in time se-
ries data stream. Dynamic Time Warping (DTW),
which has been accepted as the best distance mea-
sure in time series similarity search, has been used
in many research works. SPRING and its variance
were proposed to solve such problem by mitigating
the complexity of DTW. Unfortunately, these algo-
rithms produce meaningless result since no normal-
ization is taken into account before the distance cal-
culation. Recently, GPUs and FPGAs were used in
similarity search supporting subsequence normaliza-
tion to reduce the computation complexity, but it is
still far from practical use. In this work, we propose
a novel Meaningful Subsequence Matching (MSM)
algorithm which produces meaningful result in sub-
sequence matching by considering global constraint,
uniform scaling, and normalization. Our method
significantly outperforms the existing algorithms in
terms of both computational cost and accuracy.

Keywords: Subsequence Matching, Dynamic Time
Warping Distance, Data Stream, Normalization

1. INTRODUCTION

Due to the age of data explosion, analysis of data
stream in real time is crucial in many data min-
ing tasks including classification, clustering, anomaly
detection, and pattern discovery. Commonly, these
tasks require a subsequence matching algorithm as
an important subroutine. Recently, SPRING [10],
a breakthrough subsequence matching algorithm for
data stream under Dynamic Time Warping (DTW)
distance [9] has been proposed. SPRING can report
an optimal subsequence in linear time. More specif-
ically, it incrementally updates DTW distance, for
each new streaming data point, only in time com-
plexity of the query sequence’s length. After the pro-
posal of SPRING, many authors [1][7][13] have in-
troduced fast algorithms to improve performance of
subsequence matching. In this work, we claim that all
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of those past research works [1][10][7][13] are mean-
ingless because the query sequence and candidate se-
quences from the data stream were not normalized.
Normalization [3] is essential to achieve accurate and
meaningful distance calculation, as it normalizes the
data to have similar offset and distribution, regardless
of the distance measure used, especially for DTW dis-
tance measure. Unfortunately, as we have mentioned
above, current subsequence matching algorithms con-
cern mostly about speed enhancement, but neither on
accuracy nor meaningfulness. Fig.1 illustrates sub-
sequence searching in ECG data [3]. Many subse-
quences with similar shape to the query are missed
by the search without normalization.

Fig.1: Subsequence searching without normalization
in ECG data. Many subsequences with similar shape
to the query are left undetected.

However, there is an effort to resolve this prob-
lem by trying other approaches; the latest one de-
vises some hardware [11] to accelerate the compu-
tation time. The authors propose two techniques,
i.e. GPUs and FPGAs, to speed up subsequence
matching using DTW with normalization. They have
shown that GPUs and FPGAs can help speed up the
search significantly. However, it is not practical in
real world problems; implementation is hardware de-
pendent, and some systems are not flexibly adjusted
to the problem.

We introduce a novel subsequence matching algo-
rithm called MSM (Meaningful Subsequence Match-
ing) for data stream under DTW distance. MSM con-
sists of two new ideas. First, we introduce a multi-
resolution lower bound, LB GUN (Lower-Bounding
distance function under Global constraint, Uniform
scaling, and Normalization) combining with the
well-known LB Keogh [5] lower-bounding function.
LB GUN is a new lower-bounding distance function
extended from LB Keogh. Second, SSM (Scaling
Subsequence Matrix) is used for lower-bounding dis-
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tance estimation of LB GUN by incrementally esti-
mating value of normalized data point while guaran-
teeing no false dismissals. The distances for every
scaled query sequence are stored in SSM, and then
MSM algorithm monitors SSM to report the opti-
mal range query or the optimal top-k query when a
new streaming data point is received. From these two
ideas, MSM can monitor data stream nearly in linear
time, and it also achieves much higher accuracy than
existing algorithms as we expected.

The remainder of this paper is organized as follows.
We provide some essential background in Section 2,
and state the problem definitions in Section 3. MSM,
our proposed method, is described in Section 4. Ex-
perimental results are reported in Section 5, and our
work is concluded in Section 6.

2. BACKGROUND

In this section, we provide essential background
knowledge of Dynamic Time Warping distance mea-
sure, global constraint, lower-bounding function for
DTW distance, uniform scaling, and normalization.

2.1 Dynamic Time Warping Distance Mea-
sure

Dynamic Time Warping (DTW) distance measure
[9] is a well-known shape-based similarity measure
for time series data. It uses a dynamic programming
technique to find an optimal warping path between
two time series. Suppose we have two time series
sequences, a sequence X of length n and a sequence
Y of length m. The distance is calculated by the
following equations.

D(X1...n, Y1...m)=d(xn, ym)+min

D(X1...n−1, Y1...m−1)
D(X1...n, Y1...m−1)
D(X1...n−1, Y1...m)

(1)

where D(X1...n,∅) = D(∅, Y1...n) = ∞, D(∅,∅) and
∅ is an empty sequence. Any distance metric can be
used for d(xi, yj), including L1-norm, i.e., d(xi, yj) =
|xi − yj |.

2.2 Global Constraint

Global constraint efficiently limits the optimal
path to give a more suitable alignment. Recently,
an R-K band [8], a general model of global con-
straints, has been proposed. R-K band represents a
global constraint by a one-dimensional array R, i.e.,
R = ⟨r1, r2, . . . ri, rn⟩, where n is the length of time se-
ries, and ri is the height above the diagonal in y-axis
and the width to the right of the diagonal in x-axis.
Each ri value is arbitrary, making the R-K band an
arbitrary-shaped global constraint.

2.3 Lower-bounding Function for DTW Dis-
tance

Although DTW outperforms many other distance
measures, it is known to require huge computational
complexity. Therefore, LB Keogh has been proposed
to speed up similarity search. LBKeogh(Q,C) be-
tween the query sequence Q = ⟨q1, q2, . . . , qi, . . . , qn⟩
and a candidate sequence C = ⟨c1, c2, . . . , ci, . . . , cn⟩
can be computed as follows

LBKeogh(Q,C) =
n∑

i=1

 |ci − ui| ; if ci > ui

|li − ci| ; if ci < li
0 ; otherwise

(2)

where ui=max{qi−ri ,..., qi+ri} and li=min{qi−ri ,..., qi+ri}
are envelope elements calculated from a global con-
straint R = ⟨r1, r2, . . . ri, rn⟩.

2.4 Uniform Scaling

Many research works [2][12] have been shown that
when the uniform scaling technique is applied, per-
formance, especially the accuracy, significantly in-
creases. More specifically, uniform scaling tech-
nique shrinks/stretches a time series sequence X =
⟨x1, x2, . . . xi, xn⟩ to a new time series sequence Y =
⟨y1, y2, . . . yi, yn⟩, where yj = x⌈j·n/m⌉. We also de-
fine a scaling factor f as a ratio between length m
of new time series Y and length n of original time
series X or f = m/n, and define a scaling range
[fmin, fmax], where fmin and fmax are minimum and
maximum scaling factors which give lengths nmin and
nmax, respectively.

2.5 Normalization

The two time series sequences are compared us-
ing any similarity measure; all the data should first
be normalized. Z-normalization [3] has been pro-
posed and widely used in time series data mining
community, making mean and standard deviation val-
ues of the new time series sequence to be zero and
one, respectively. Suppose we normalize time series
sequence X = ⟨x1, . . . , xi, . . . xn⟩ to sequence Y =
⟨y1, . . . , yi, . . . yn⟩, we can simply formulate transfor-
mation function as yi = (xi − µX)/σX , where µX

and σX are the mean and standard deviation of time
series sequence X, respectively.

3. PROBLEM DEFINITION

In this paper, we focus on two main query prob-
lems on streaming time series data, i.e., optimal range
query and optimal top-k query. The objective of
the optimal range query is to find non-overlapping
normalized subsequences from a data stream, whose
distance between a candidate sequence and a query
sequence must be less than a threshold , where the
query sequence is scaled and normalized under uni-
form scaling between scaling range [fmin, fmax]. On
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the other hand, optimal top-k query reports top-k
non-overlapping normalized subsequences. Neverthe-
less, the scaled query sequences and all candidate sub-
sequences in the data stream must be normalized in
order to return meaningful results. A näıve method
to monitor incoming data stream first initializes a set
of normalized scaled query sequences, and then candi-
date sequences are extracted from the data stream us-
ing sliding-window model. After normalization, dis-
tance calculation is performed on the extracted sub-
sequences and non-overlapping optimal results are re-
ported (if any). However, this näıve method requires
as high as O(n3) time complexity for each new in-
coming streaming data point.

4. PROPOSED METHOD

Since the näıve method consumes too heigh time
complexity, we propose a novel approach for sub-
sequence matching which gives meaningful result.
We call our proposed method as an MSM algo-
rithm (Meaningful Subsequence Matching), which
contains two new ideas, i.e., a multi-resolution lower-
bounding function LB GUN (Lower-Bounding func-
tion under Global constraint, Uniform scaling, and
Normalization), and SSM (Scaling Subsequence Ma-
trix) which incrementally estimates value of LB GUN
under global constraint, uniform scaling, and nor-
malization in linear time while guaranteeing no false
dismissals. Three following subsections of LB GUN,
SSM, and MSM algorithm are precisely described.

4.1 Lower-Bounding Distance under Global
Constraint, Uniform Scaling, and Nor-
malization (LB GUN)

LB GUN is a lower-bounding function of DTW
distance extended from LB Keogh [5] whose dis-
tance calculation can be done in linear time. Be-
fore calculation, LB GUN first creates an envelope
E′ from scaled and normalized envelopes. More
specifically, three sequence sets are generated, i.e.,
sets of Q∼, R∼, and E∼. The scaled query set
Q∼ = {Q′

nmin
, . . . Q

′

k, . . . , Q
′

nmax
} is first generated

by scaling and normalizing a query sequence Q to ev-
ery normalized scaled query sequence , and the scaled
global constraint R∼ = {R′

nmin
, . . . R

′

k, . . . , R
′

nmax
}

set is derived from scaling a specific global con-
straint set R∼ with all possible scaling lengths from
nmin to nmax. An envelope Ek of a normalized
scaled query sequence Q′

k and a scaled global con-
straint R′

k for sequence length k is created as in
LB Keogh, and is stored in the envelope set E∼ =
{E′

nmin
, . . . E

′

k, . . . , E
′

nmax
}. Then, E′ is generated by

merging all envelopes in the set E∼ together, where
E′ = {⟨u′

1, l
′

1⟩, . . . , ⟨u
′

i, l
′

i⟩, . . . , u
′

nmax
, l

′

nmax
} . To find

lower-bounding distance between a query sequence Q
and a candidate sequence C under global constraint,
uniform scaling, and normalization, an envelope E′

of a query sequence Q is generated as mention above.
LBGUN (Q,C, n) is shown in Equation (3).

LBGUN (Q,C, n)=
1

σC1...n

(
n∑

i=1

αi+µC1...n

n∑
i=1

βi

)
+

n∑
i=1

γi

(3)

αi =

 ci ; if c
′

i ≥ u
′

i

−ci ; if c
′

i ≤ l
′

i

0 ; otherwise

(4)

βi =

 −1 ; if c
′

i ≥ u
′

i

1 ; if c
′

i ≤ l
′

i

0 ; otherwise

(5)

γi =

 −u
′

i ; if c
′

i ≥ u
′

i

l
′

i ; if c
′

i ≤ l
′

i

0 ; otherwise

(6)

where µC1...n
and σC1...n

are arithmetic mean and
standard deviation of data points 1 to n of a can-
didate sequence C, c

′

i = (ci − µC1...n)/σC1...n , nmin

and nmax are desired scaling lengths, and nnim ≤
n ≤ nmax.

4.2 Scaling Subsequence Matrix

SSM (Scaling Subsequence Matrix) is another im-
portant component in MSM algorithm. It stores
lower-bounding distances determined by LB GUN for
each new incoming streaming data point st at time
t from data stream S. Suppose we have a query se-
quence Q; each element ⟨t, j⟩ of the matrix contains
five values, i.e., vt,j , wt,j , xt,j , yt,j , and zt,j , calcu-
lated from time t − j to time t. Therefore, values in
matrix element ⟨t, j⟩ can be incrementally updated
from the matrix element ⟨t− 1, j − 1⟩ according to
the following equations.

vi,j = vt−1,j−1 +

 st ; if s
′

i ≥ u
′

i

−st ; if s
′

i ≤ l
′

i

0 ; otherwise

(7)

wi,j = wt−1,j−1 +

 −1 ; if s
′

i ≥ u
′

i

1 ; if s
′

i ≤ l
′

i

0 ; otherwise

(8)

xi,j = xt−1,j−1 +

 −u
′

i ; if s
′

i ≥ u
′

i

l
′

i ; if s
′

i ≤ l
′

i

0 ; otherwise

(9)

yt−j = yt−1,j−1 + st (10)
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Zt,j = zt−1,j−1 + (st)
2 (11)

lbt,j =
1

σt,j
(vt,j + µt,j · wt,j) + xt,j (12)

where s
′

t =
st − µt,j

σt,j
, µt,j =

yt,j
j

, σt,j =√
zt,j
j

− (µt,j)2, uj and lj are from an enveloped E′

generated from a query sequence Q, 1 ≤ j ≤ nmax,
nmin ≤ j ≤ nmax, and lbt,j is a lower-bounding dis-
tance LB GUN for an element ⟨t, j⟩.

4.3 Meaningful Subsequence Matching

Since SSM is updated at every arrival of new
streaming data point st, our MSM algorithm can
monitor both optimal range query and optimal top-
k query. More specifically, for optimal range query,
MSM first calculates and updates values including
lower-bounding distances in SSM, which is an estima-
tion of LB GUN and then checks whether best-so-far
distance dbest is smaller than threshold ε. If so, MSM
reports an optimal subsequence when there is no over-
lapping subsequence, and MSM resets dbest and val-
ues in SSM. For all lbtj which are smaller than dbest
in range from nmin to nmax, LB GUN and LB Keogh
are calculated and compared to dbest respectively to
prune off the DTW distance calculation. If they are
not pruned by any lower-bounding distances, DTW
distance is computed to update dbest and the optimal
subsequence’s position. Additionally, MSM uses only
two columns of SSM that are values in time t and
values in time t-1. All lower-bounding distances and
DTW distance are normalized by dividing by i. The
MSM algorithm for optimal range query is described
in Table 1.

Table 1: MSM Algorithm for optimal range query

Table 2: MSM Algorithm for optimal top-k query

MSM algorithm for optimal top-k query is imple-
mented based on the optimal range query. With a pri-
ority queue, MSM stores the k-best non-overlapping
subsequence with DTW distance from the result of
MSMOPTIMALRANGEQUERY. First, we initialize
a threshold ε to positive infinity. Then, for every new
streaming data point st, the queue is updated, and
the threshold ε is set to the largest DTW distance
in the queue. The MSM algorithm for optimal top-k
query is described in Table 2.

5. EXPERIMENTAL EVALUATION

Since none of the current subsequence match-
ing algorithms under DTW distance can handle the
changes of data distribution, offset, and scaling, we
compare our proposed method with näıve approach
in terms of computational time only since our pro-
posed method and the näıve method will both achieve
the same accuracy. On the other hand, we compare
our accuracy with SPRING, the best existing sub-
sequence matching under DTW distance. Note that
we do not compare our running time with that of
SPRING; while SPRING will have smaller running
time, its results are inaccurate due to lack of normal-
ization, therefore is not a reasonable comparison.

Streaming datasets are generated by combining
training data sequences from the UCR classifica-
tion/clustering datasets [6] and synthesized random
walk sequences. A stream is initialized with a random
walk sequence, and then a training data sequence is
appended to the stream. To smooth the stream, be-
fore concatenation, each sequence is offset by the last
value of the stream. The dataset we used in the exper-
iments are Aidac, Beef, CBF, Coffee, ECG200, Gun
Point, Lighting7, Olive Oil, Trace and Synthetic Con-
trol which are represented by Data 1, Data 2, Data
3, Data 4, Data 5, Data 6, Data 7, Data 8, Data 9
and Data 10, respectively

In the first experiment, we compare our MSM algo-
rithm with näıve method in terms of computational
cost by measuring the number of distance calcula-
tions. Fig.2 shows the numbers of all distance calcu-
lations by varying global constraint to 2, 4, 6, 8 and 10
respectively, and in Fig.3, scaling range [fmin, fmax]
are varied from [0.8, 1.2], [0.85, 1.15], [0.9, 1.1] and
[0.95, 1.05] respectively. The numbers of all distance
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Fig.2: DTW distance calculations filtered out by MSM with varying global constraints

Fig.3: DTW distance calculations filtered out by MSM with varying scaling ranges

Fig.4: MSM outperforms SPRING every scaling range in terms of AoR

Fig.5: MSM outperforms SPRING every global constraint value in terms of AoR

Fig.6: MSM outperforms SPRING every scaling range in terms of AoD
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Fig.7: MSM outperforms SPRING every global constraint value in terms of AoD

calculations are normalized to 100% which repre-
sent numbers of DTW calculations used in the Näıve
method. As expected, MSM is much faster than the
näıve method by a large margin. Additionally, in
MSM, our multi-resolution lower-bounding function
is efficiently used to filter out several candidate se-
quences in linear time while guaranteeing no false
dismissals; therefore, MSM algorithm requires only
a small number of DTW distance calculations com-
paring with the näıve method.

Then, we compare our MSM algorithm with
SPRING to measure performance in terms of
accuracy, both Accuracy-on-Retrieval (AoR) and
Accuracy-on-Detection (AoD). AoR reflects quality
of an algorithm that is able to find the patterns in
data stream; on the other hand, AoD reflects qual-
ity of the returned results. Suppose we have data
stream S, a set of expected pattern sequences E,
and a set of retrieved sequences R. We first de-
fine an overlapping subsequence. Let S[ts:te] be the
subsequence starting at ts and ending at te. Over-
lapping subsequence OX,Y , where X = S[a : b]
and Y = S[c : d], and overlap percentage PX,Y
are defined as OX,Y = S[min{a, c} : minb, d]

and PX,Y =
|OX,Y |

max{b, d} −min{a, c}+ 1
, respectively.

Both AoR and AoD can be defined over overlapping
subsequence OX,Y and overlapping percentage PX,Y

as AoR =
| {OX,Y |PX,Y > p,X ∈ R, Y ∈ E} |

|E|
and

AoD =

∑
{PX,Y |PX,Y > p,X ∈ R, Y ∈ E}

{OX,Y |PX,Y > p,X ∈ R, Y ∈ E}
, respec-

tively,
where p is a threshold of PX,Y that defines a sequence
in R as a discovered sequence. Fig.4 and Fig.5 com-
pare AoRs of MSM and SPRING under various scal-
ing ranges and global constraints, respectively. Fig.6
and Fig.7 illustrate AoDs on every scaling range and
global constraint, respectively. The results show that
MSM produces more meaningful result since SPRING
does not support global constraint (illustrated as one
single column of 100% global constraint in Fig.5 and
Fig.7), uniform scaling, nor normalization.

6. CONCLUSION

This paper proposes a novel and meaningful sub-
sequence matching algorithm, so called MSM (Mean-

ingful Subsequence Matching), under global con-
straint, uniform scaling, and normalization. Two
ideas have been introduced in MSM algorithm, i.e.,
a multi-resolution lower-bounding function LB GUN
(Lower-Bounding distance function under Global
constraint, Uniform scaling, and Normalization, and
a Scaling Subsequence Matrix (SSM) which estimates
value of LB GUN for each candidate subsequence.
Our algorithm can update lower-bounding distance
incrementally under normalization, while guarantee-
ing no false dismissals in linear time. With these two
ideas, MSM algorithm can efficiently monitor data
stream and can answer both optimal range query and
optimal top-k query problems. Since none of the cur-
rent algorithm produces meaningful result, we evalu-
ate our proposed method comparing with the naive
method in terms of time consumption and SPRING,
the best existing subsequence matching under DTW
distance, in terms of accuracies. As expected, our
MSM algorithm is much faster and more accurate by
a very large margin.
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