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Abstract

Difficult tasks are commonly equated with complex tasks across many behaviors. Motor task difficulty is traditionally defined via
Fitts’ law, using evaluation criteria based on spatial movement constraints. Complexity of data is typically evaluated using non-
linear computational approaches. In this project, we investigate the potential to evaluate task difficulty via behavioral (motor
performance) complexity in a Fitts-type task. Use of non-linear approaches allows for inclusion of many features of motor actions
that are not currently included in the Fitts-type paradigm. Our results indicate that tasks defined as more difficult (using Fitts
movement IDs) are not associated with complex motor behaviors; rather, an inverse relationship exists between these two
concepts. Use of non-linear techniques allowed for the detection of behavioral differences in motor performance over the entire
action trajectory in the presence of action errors and among neutrally co-constrained effectors not detected using traditional Fitts’-
type analyses utilizing movement time measures. Our findings indicate that task difficulty may potentially be inferred using non-
linear measures, particularly in ecological situations that do not obey the Fitts-type testing paradigm. While we are optimistic

regarding these initial findings, further work is needed to assess the full potential of the approach.
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Introduction

Across the field of behavioral research, task complexity is
equated with difficult tasks, such that the two terms have been
used interchangeably (Bernard-Demanze, Dumitrescu,
Jimeno, Borel, & Lacour, 2009; Gajewski & Falkenstein,
2012; Olivier, Cuisinier, Vaugoyeau, Nougier, & Assaiante,
2010; D. J Serrien & Spapé, 2009; Deborah J. Serrien, 2009;
Vander Velde & Woollacott, 2008). In terms of performance,
complex tasks have been typically viewed as tasks in which
there are two or more competing goals (Fait et al., 2011;
Gooijers et al., 2011; Krishnan & Jaric, 2010; R. Schmidt &
Lee, 2011; van den Berg, Swinnen, & Wenderoth, 2011; Van
Impe, Coxon, Goble, Wenderoth, & Swinnen, 2009). Despite
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the use of the phrase “task complexity” in over 400 publica-
tions, there is no standard definition or method to evaluate
how complex a task may be. Instead we rely on vernacular,
custom, and personal experience to say that one task is more
complex than another.

Circa 1954, a method to evaluate task difficulty in motor
behavior emerged from the application of information theory
to behavioral psychology (Fitts, 1954). By applying Shannon’s
17th theorem regarding channel capacity (Shannon & Weaver,
1949) to information transmission in the human body, it was
hypothesized that movements requiring more information from
the environment to flow into the central nervous system (CNS)
would require longer execution times (Hick, 1952). This rela-
tionship between movement time minimization and movement
characteristics for spatially constrained actions was established
empirically via Fitts” law (Fitts, 1954; Fitts & Peterson, 1964,
Guiard & Olafsdottir, 2011; Schmidt & Lee, 2011). Fitts’ law
has been validated for a wide range of tasks ranging from sim-
ple tapping actions (Fitts, 1954; Fitts & Peterson, 1964) to
movements made under water (Kerr, 1978) (for overview, see
(Plamondon & Alimi, 1997)).

According to Fitts’ law, the time needed to complete a
motor task is dependent on the size of the end target, such that
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smaller targets are associated with more environmental infor-
mation and thus longer task completion times. The classical
interpretation of this phenomenon is that the neuromuscular
system requires more time to resolve the spatial uncertainty,
choose the appropriate response from a set of possible solu-
tions, and implement the motor response using an initial-
impulse and current-control approach (Crossman &
Goodeve, 1983; Woodworth, 1899).

Despite consistent evidence in favor of Fitts’ law, some
components of the original model have been disputed.
Several studies have countered the deterministic current-
control point of view of the original model, with evidence that
human motor performance involves stochastic processes
(Meyer, Abrams, Kornblum, Wright, & Keith Smith, 1988;
Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979).
Acknowledgement of random noise inherent within the
neuromotor system, which partially explains endpoint vari-
ability, is an important feature within the stochastic models
(e.g., stochastic optimized sub-movements).

While inclusion of stochastic processes in movement
models is an important step, other essential observations of
human motor performance have not been well captured by
previous considerations of Fitts’ law. Features not accounted
for in previous models include (but are not limited to): con-
sideration of variability in overall movement/action trajecto-
ries (not just effector endpoints); consideration of action er-
rors; systemic action biases; action hysteresis; inclusion of
more than two sub-movements within an action; and differ-
ences in environmental situations (to which we adapt our mo-
tor actions).

As a consequence, traditional consideration of everyday
actions using the Fitts-type paradigm is problematic. For ex-
ample, we may pick up a cup of coffee with our non-dominant
hand while opening a door with our dominant hand, or vice
versa. In this case, one may encounter quite a few of the
features not considered within previous models. Is it possible
to determine which of those two combinations is more diffi-
cult or complex? As these tasks cannot be evaluated specifi-
cally via Fitts’ law, this remains an important empirical ques-
tion in the field of motor control.

Recently, the non-linear complexity of physical and numer-
ical data sets has become of significant interest to researchers
of human subjects. Several of these techniques have been
applied to the field of neuroscience and motor behavior, in-
cluding computational models of neural dynamics (Pernice,
Staude, Cardanobile, & Rotter, 2011; Qi, Watts, Kim, &
Robinson, 2012; Victor, Drover, Conte, & Schiff, 2011), eval-
uation of neural firing patterns (Lafreniere-Roula et al., 2010;
Nowotny, Huerta, & Rabinovich, 2008; Park & Rubchinsky,
2011), and evaluation of basic motor and cognitive impair-
ments (Bajo et al., 2010; Cignetti, Decker, & Stergiou, 2012;
Deffeyes, Harbourne, Stuberg, & Stergiou, 2011; Huisinga,
Yentes, Filipi, & Stergiou, 2012; Smith, Stergiou, & Ulrich,

2011). In this vein, complexity of data has been defined as
highly variable fluctuations in physiological processes, such
that these processes are better characterized by non-linear
equations rather than more pervasive linear models. These
non-linear models do consider the following as essential fea-
tures: stochastic processes, trajectory variability, systemic
biases, and trajectory hysteresis. Non-linear approaches are
also able to include trajectories with multiple subcomponents
as well as unusual observations (e.g., action errors) for con-
sideration into the model of behavior.

Non-linear measures have been typically employed to eval-
uate changes in physical phenomena that are not discernible
using traditional linear approaches, such as linear variability
analyses. As traditional linear measures rely upon temporal or
spatial averaging of data, subtle time-related changes in phe-
nomena may be masked by averaging. By evaluating physical
and behavioral phenomena using non-linear techniques, sub-
tle time- and environment-dependent changes can often be
detected within such data sets.

Given the overall potential strengths of non-linear tech-
niques, we employed non-linear analyses of motor perfor-
mance during a Fitts-type task to evaluate the relationship
between task difficulty and motor performance complexity.
We hypothesized that tasks with higher indices of difficulty
would be associated with increased complexity measures of
motor output. Such behavior would suggest that tasks per-
ceived and referred to as “difficult” would indeed be related
to complex behavioral patterns as measured via non-linear
approaches.

Materials and methods

Performance of quick isometric finger force production be-
tween two force targets in an oscillatory manner in right-
handed individuals using a Fitts-type task (Fig. 1) was evalu-
ated. Force trajectories for six different indices of difficulty
(ID) were evaluated, where ID represents the amount of
encoded information via Fitts” Law (Fitts, 1954; Fitts &
Peterson, 1964; Schmidt & Lee, 2011). Successful analysis
of force production in a Fitts’ law paradigm has been demon-
strated in a number of recent publications (Bertucco, Cesari, &
Latash, 2013; Kim, Wininger, & Craelius, 2010; Thumser,
Slifkin, Beckler, & Marasco, 2018; Verros et al., 2018).
Movement time (MT) was computed as the time difference
between consecutive force production maxima and minima in
the time series. MT was used to evaluate the traditional rela-
tionship between task difficulty and motor output. To evaluate
behavioral features of the motor task, two non-linear measures
were considered: (1) sample entropy, and (2) the largest
Lyapunov exponent of the attractor. Both non-linear measures
were calculated for the entire oscillatory force series produced
by subjects. Sample entropy (SampEn) measures the
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Fig. 1 Depiction of experimental setup. Participants sat upright directly
facing a computer monitor. Force sensors were placed underneath the
fingertips of the right hand, illustrated by red dot. a Profile view of
setup. b Example of computer monitor providing feedback to study
participants. Finger forces generated during the task were shown in

unpredictability of the time series; greater values of SampEn
indicates increased signal unpredictability. Lyapunov expo-
nent (LyE) measures data complexity via divergence of the
attractor trajectories during cyclic tasks (i.e., repeated obser-
vations). Greater values of LyE represent increased data com-
plexity and reduced signal predictability/stability (Fig. 2).

In addition to the six ID conditions, force production was
evaluated in three distinct finger combinations: index finger of
the right hand (Iy), little finger of the right hand (Ly), and all
digits 2 through 5 of the right hand acting together (index,
middle, ring, and little fingers acting altogether, denoted by
IMRLR). These three finger combinations were chosen to
evaluate the sensitivity of the computational method to chang-
es in task performance. Computation of MT, SampEn, and
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real-time via a red line on the computer monitor. The red cursor moved
from the left side of the screen at the beginning of the trial to the right side
of the screen with time. Participants were instructed to produce finger
forces between two targets (depicted as space between the lines on the
screen) as fast as possible

LyE were performed on 18 continuous force production cycles
within a trial. In many cases, force production errors were
present in the 18-cycle set (over- and undershoots of the tar-
get), thereby violating the fourth condition of Fitts-type tasks.

Four male and four female students served as subjects in
this study (total n = 8). Average data for the subjects were
(mean + SD): 27 + 3 years of age, 1.71 + 0.11 m in height,
and 70.9 £+ 12.8 kg in mass. All subjects were strongly right-
handed according to their preferential use of the hand during
daily activities such as writing, drawing, and eating. Subjects
had no previous history of upper extremity trauma or neurop-
athy. Experimental protocols and written informed consent
documents were approved by the Pennsylvania State
University Institutional Review Board. The experimental

Force [N]

Fig. 2 A 3D state-space plot of force generated by one participant during
the IMRLy task at ID = 1.5. A depiction of the trajectory divergence
measured as by LyE is shown using the plot3 command in Matlab. The
attractor for this data has been reconstructed using the delay technique
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(Cignetti et al., 2012); the data are plotted with respect to the original data
series versus one and two times the corresponding time lags (13 and 26,
respectively) associated with this particular data set to show the unfolded
attractor space for this particular data set
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procedures were conducted according to the Declaration of
Helsinki. All subjects gave written informed consent accord-
ing to the procedures approved by the Office of Regulatory
Compliance of the Pennsylvania State University. Data pre-
sented in the figures are shown as means and standard errors.

Indices of performance were computed for the forces gen-
erated by one or more fingers of the right hand involved in a
task. Tasks were similar to pressing and holding a key on a
computer keyboard using various levels of force. Data were
collected using unidirectional piezoelectric force sensors
(208A03; PCB Piezotronic Inc., Depew, NY, USA) and a
National Instruments A/D board (NI PCI-6023E, National
Instruments, Austin, TX, USA). Subjects were instructed to
press with a specified set of fingers of the right hand such that
the total force produced by the specific finger set oscillated
between two target windows as quickly as possible. Subjects
typically produced 18-20 oscillations per condition. Force
feedback was available only for the fingers specified in the
task via computer display (LabView 6.1, National
Instruments, Austin, TX, USA). A sampling frequency of
200 Hz was used during data collection.

The distance between the centers of the two targets was set
at 10% of the maximum voluntary force (MVF) produced by
the finger set in each condition (Fig. 1b). A background force
of 10% MVF was required in all trials in order to avoid floor
effects of the target window. The targets were centered at 10%
and 20% MVF, respectively. The width of the target windows
displayed was chosen to correspond to six indices of difficulty
(ID = Log2(2A/W)), such that ID = 1.5, 2.0, 2.5, 3.0, 3.5, and
4.0 were used. The order of tested conditions was block ran-
domized across subjects. Prior to each trial, the subject sat
relaxed with the digits of the right hand resting on the sensors.
The computer generated two beeps (to prime the subject); at
this point the cursor showing the force produced by the spec-
ified finger set was displayed on the computer monitor. The
task was to oscillate between the two targets with the cursor as
quickly as possible while making as few errors as possible.

Data were processed off-line using customized MATLAB
software (Mathworks, Inc., Natick, MA, USA). Force data
were low-pass filtered at 10 Hz using a second-order zero-
lag Butterworth filter. The 10-Hz cutoff was verified using
fast-Fourier transform of force production data in all condi-
tions and subjects. MT was determined as the time between
two consecutive extrema (minima and maxima pairs).
SampEn was calculated as a predictability measure of the
entire force-cycle time series. Wolf’s algorithm for the
Lyapunov exponent (LyE) (Huisinga et al., 2012; Smith
et al., 2011) was calculated as the rate of divergence between
force trajectories across the force-cycle series. Wolf’s algo-
rithm was selected for use here as it produces more sensitive
estimates of LyE for small data sets as compared to other
approaches (Cignetti et al., 2012). As a note, one orbit of the
attractor within the phase space constitutes one individual

cycle of force production (shaped similar to a sine function)
in the current data set. Subject- and condition-specific embed-
ding dimensions and time lags were used in LyE computation
(Cignetti et al., 2012; Smith et al., 2011). Embedding dimen-
sions were detected within Matlab as a means to identify the
dimension in which the percentage of global false nearest
neighboring data points approached zero. This dimension is
considered the optimal embedding dimension as it will allow
for the attractor to completely unfold within the phase space.
Time lag values were determined using the first minimum
average of the mutual information function. These time lag
values maximize the information content of the time series in
reconstruction. Across all subjects and conditions, the average
embedding dimension was five dimensions and average time
lag was 22 data points (see Fig. 2 for an example of a
reconstructed attractor from our data set).

Repeated measures ANOVAs were performed on MT,
SampEn, and LyE data with the factors of: ID (six levels;
1.5,2.0,2.5,3.0, 3.5, and 4.0) and Finger Combination (three
levels; I, Lg, IMRLR). Main effects were reported as no in-
teraction effects were found. Pairwise post hoc comparisons
were performed using Bonferroni corrections to analyze sig-
nificant effects of ANOVAs. Linear regression among MT,
ID, LyE, and 1/LyE were performed to determine the overall
relationship among measures showing significant effects.
Partial correlations were performed to determine the strength
of the relationship between MT and 1/LyE while controlling
for ID and Finger Combination.

Results

MT increased with larger ID values (Fs59 = 7.5, p < 0.001)
across all finger combinations (Fig. 3a). Post hoc analyses
indicated MT values for IDs 1.5 and 2.0 were lower than
MT values for IDs 3.5 and 4.0 (where *p < 0.0033, n = 15
unique post hoc comparisons (p* = p/n)). LyE did not exhibit
this trend (Fig. 3¢); LyE decreased as ID increased (LyE; Fs 5
=37.7,p <0.001). No post hoc differences were found among
ID values for LyE data.

Differences in LyE produced by different finger combina-
tions were found (F; 50 = 29.3, p < 0.05), post hoc analysis
indicated LyE produced by Ly was significantly lower than
LyE values produced by Iz (Bonferroni-corrected post hoc, p
< 0.01; Fig. 3c). MT data did not indicate differences among
finger conditions.

Further analysis indicated that MT was inversely relat-
ed to LyE, such that 1/LyE explained a significant propor-
tion of variance in movement time (R> = 0.44, Fii38 =
106.7, p < 0.001; Fig. 3b). The correlation between MT
and 1/LyE remained significant when /D and Finger
Combinations were controlled for (rp = 0.56, p < 0.001;
TFingerCombination = 0.60, p < 0.001). Separate regression
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Fig. 3 Relationship between task difficulty and motor performance
complexity. a Movement time (MT) increased with ID across all tested
conditions. b MT was correlated with the inverse of LyE across all tested
conditions. Values of r and r* shown for inverse relationship model
indicated. ¢ LyE decreased with ID across all tested conditions. On

models of MT and 1/LyE on ID show significant positive
linear trends (Fig. 3d). Each measure captured a signifi-
cant portion of variability in task performance, (R*(MT) =
0.97 and R*(1/LyE) = 0.72), respectively. Models were
found to be significantly different from each other, p <
0.001. No interaction effects were found within the data
set for MT or LyE data (p > 0.3). As a note, SampEn did
not exhibit any significant trends with respect to ID or
finger combinations.

Discussion

Overall, Fitts’ law was upheld in this experiment, such that
larger ID values (e.g., difficult tasks) were associated with
longer movement times without differences across finger
combinations (Fig. 3a). Contrary to our hypothesis, actions
with lower IDs were associated with larger Lyapunov expo-
nents, indicating that easier tasks are linked to behaviors with
higher indices of complexity (Fig. 3¢c). No significant post hoc
differences were found with respect to ID levels in LyE data.
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average, LyE in tasks performed by the index finger was higher than
those performed by the little finger (p < 0.01), as indicated by *. d
Regression of behavioral measures (MT and 1/LyE) on ID. Models
were found to be significantly different from each other, p < 0.001

We interpret the discrepancy between task difficulty and mo-
tor performance complexity as a reflection of the abundance
of motor solutions for simple tasks (Latash, 2012; Scholz &
Schoner, 1999), such that the neuromuscular system uses a
flexible, yet broad, range of solutions to perform easy tasks.
In the context of this study, the solution sets are the motor unit
activation patterns utilized by the central nervous system to
produce finger forces. This range of solutions is reflected by
increased complexity of the resultant motor behavior ob-
served, measured by divergence of solution trajectories
(LyE). In contrast, difficult tasks were associated with reduced
LyE values (Fig. 3b). Lower LyE values reflect a smaller range
of behavioral solutions used by the CNS to perform difficult
tasks, resulting in highly stereotyped motor behaviors.
Further evaluation of LyE revealed finger-specific differ-
ences in motor output such that forces generated by the little
finger were on average associated with lower behavioral com-
plexity values as compared to the index finger (Fig. 3c).
Compared to the other non-thenar digits of the hand, the index
finger possesses anatomical differences and exhibits higher
indices of motor independence (Li, Dun, Harkness, &
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Brininger, 2004; Zatsiorsky, Li, & Latash, 2000). As such,
faster movements and higher behavioral complexity in the
index finger output is not entirely unexpected. In contrast,
considering the common source of neural input and mechan-
ical linkage across the flexor muscle compartments of digits
2-5, the output of the little finger is highly enslaved at a
neuromuscular level to the other digits of the hand (Li et al.,
2004; Mclsaac & Fuglevand, 2007; Zatsiorsky et al., 2000).
We interpret the reduced behavioral complexity exhibited by
the little finger as a reflection of this inherent neuromuscular
and mechanical coupling of this particular digit.

Difficulty versus complexity

As a positive correlation between task difficulty and complex-
ity in motor performance does not appear to hold, the relation-
ship between the concepts of “difficulty” and “complexity”
was further evaluated. In the field of motor behavior, the index
of difficulty of a task (ID) represents the information required
to resolve the uncertainty of a movement response (Fitts,
1954; Fitts & Peterson, 1964). Higher ID values indicate that
more information is needed to choose a correct response from
a set of solutions. This increase in information is reflected in
longer movement times (MT) in tasks with higher ID values
(Fitts, 1954; Fitts & Peterson, 1964; Schmidt & Lee, 2011). In
contrast, to evaluate how complex a task or behavior truly is,
we are concerned about the information an external observer
gains from observing the system. As task complexity has been
previously, albeit loosely, defined using behavioral observa-
tion, this approach is not in conflict with earlier approaches. If
the action solutions arise from a small solution set, the observ-
er gains little information during performance of the task, as
the chosen actions will have low variability (e.g., highly
stererotyped movements). This is consistent with our observa-
tion of stereotyped force production profiles and low LyE
values exhibited for tasks in this study with high ID values.
This is also consistent with the definition of LyE as related to
signal complexity and predictability, as low values of LyE
reflect increased signal/motor predictability. Thus, tasks with
higher difficulty (high ID values) could be identified through
lower LyE values of the observed motor actions. Such a shift
in focus from the interval reference frame (information
encoded and transmitted by the CNS) to an external reference
frame (information gained by the external observer) suggests
an inverse relationship between the perception of “difficulty”
and “complexity” in behavioral tasks.

To evaluate this concept, the relationship between a behav-
ioral measure traditionally identified as representing neutrally
coded information (movement time, MT) and values
representing behavioral complexity (LyE) was evaluated. It
was found that MT is inversely related to LyE, such that 1/
LyE explained a significant proportion of variance in move-
ment time (Fig. 3b). Generally, lower MT and ID values were

related to increased motor complexity measures, indicating
higher indices of non-linear variability within the motor pat-
terns produced. Such an inverse relationship is not entirely
surprising, as power law relationships have been reported in
previous stochastic models of Fitts’ law (summarized in
Meyer, Abrams, Kornblum, Wright, & Keith Smith, 1988).
We do acknowledge that increased practice on a motor task
may result in some amount of reduced variability across a set
of actions, but it is likely that the shape of the attractor formed
by the set of actions and the rate of divergence of the attractor
trajectories (LyE itself) should remain fairly consistent.
However, we do acknowledge that further investigation is
needed in this area.

Surprisingly, assessment of movement predictability via
entropy did not yield significant results in this study. Our
previous work in entropy assessment of motor actions indicat-
ed that entropy values (reflecting movement predictability)
were associated with changes in object properties (e.g., object
fragility) (Madansingh & Gorniak, 2015). However, it is pos-
sible that Lyapunov exponent values are more sensitive to
environmental constraints of movement/action versus intrinsic
physical properties of an object handled during motor actions.
It is also possible that Lyapunov exponents are more sensitive
to attractor dynamics during continuous cyclical actions, as in
the current project, whereas entropy values may be more sen-
sitive to motor behavior changes during chained discrete ac-
tions (as in Madansingh & Gorniak, 2015).

With respect to Lyapunov exponents, less complexity (so-
lution convergence) of behavioral signals in more difficult
tasks was found in the present study. We found individuals
perform “difficult” tasks in a stereotyped manner (low motor
performance complexity). These findings also indicate that
task difficulty may potentially be inferred using non-linear
measures. As the majority of tasks performed in daily life do
not obey the Fitts-type testing paradigm, this approach may
allow researchers access to infer task difficulty in ecological
actions. Use of non-linear measures of task performance
(1/LyE) instead of traditional measures of task difficulty
(MT) may permit interpretation of channel capacity and neural
transmission. Our results also show that divergence or conver-
gence in behavioral output can be assessed to detect differ-
ences among tasks that do not appear overtly different to an
external observer — here, as in tasks performed by different
fingers.

This proposed method may be used to evaluate a wide
variety of behavioral data, provided that the behavior can be
measured and repeated. This method may also be used to
delineate performance among neurologically constrained ef-
fectors, such as co-agonistic muscles. Beyond the immediate
practical utility of these methods for behavioral research, this
method may also be used to evaluate behavioral development/
aging and/or disease progression by comparing motor perfor-
mance complexity in activities of daily living as compared to

@ Springer



18

Atten Percept Psychophys (2019) 81:12-19

healthy individuals. Currently, we are exploring the expanded
use of this computational approach in our laboratory. Further
work is needed to assess the potential utility of the approach.
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