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Abstract  
 

Mycobacterium tuberculosis (Mtb) has complex and intricate 

interactions with host immune cells. Mtb can survive, persist, 

and grow within macrophages and thereby circumvent detection 

by the innate immune system. Recently, the field of 

immunometabolism, which focuses on the link between 

metabolism and immune function, has provided us with an 

improved understanding of the role of metabolism in modulating 

immune function. For example, host immune cells can switch 

from oxidative phosphorylation to glycolysis in response to 

infection, a phenomenon known as the Warburg effect. In this 

state, immune cells are capable of amplifying production of both 

antimicrobial pro-inflammatory mediators that are critical for the 

elimination of bacteria. Also, cells undergoing the Warburg 

effect upregulate production of nitric oxide augment the 

synthesis of bioactive lipids. In this review, we describe our 

current understanding of the Warburg effect and discuss its role 

in promoting host immune responses to Mtb. In most settings, 

immune cells utilize the Warburg effect to promote inflammation 

and thereby eliminate invading bacteria; interestingly, Mtb 

exploits this effect to promote its own survival. A better 

understanding of the dynamics of metabolism within immune 

cells together with the specific features that contribute to the 

pathogenesis of tuberculosis (TB) may suggest potential host-

directed therapeutic targets for promoting clearance of Mtb and 

limiting its survival in vivo. 
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Introduction  
 

Tuberculosis (TB) is caused by the pathogenic species, 

Mycobacterium tuberculosis (Mtb); together with human 

immunodeficiency virus (HIV/AIDS) infection, TB is among the 

most prevalent and severe of the infectious diseases worldwide. 
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In 2019, an estimated 10 million people developed active 

tuberculosis in association with 1.6 million deaths [1]. Infection 

with Mtb triggers an immune response, however Mtb can survive 

and grow by circumventing the host immune detection. One of 

the pathological characteristics of the successful infection with 

Mtb is the formation of granulome, which are organized cellular 

structures that include a variety of innate and adaptive immune 

cells that surround the Mtb-infected phagocytes [2-5]. During the 

formation of granulome, intricate host-Mtb interactions occur at 

the infectious site and this pathogen can escape various host 

immune responses, which ultimately prevent Mtb elimination by 

these systems.  Once Mtb enters the host, its cell wall 

components and proteins are detected by Toll-like receptors 

(TLRs), primarily by TLR2 and TLR4. Mtb is engulfed by 

professional phagocytic cells such as a macrophage, dendritic 

cell (DC), or neutrophil, and becomes incorporated into the 

subcellular organelle formed by the fusion of the phagosome and 

lysosome to create the phagolysosome, however Mtb is able to 

manipulate the endocytic pathway by suppressing fusion of the 

phagosome containing the bacteria with lysosomes. Infected 

macrophages synthesize and release both inflammatory and 

antimicrobial genes and molecules, including interleukin (IL)-1β, 

IL-6, IL-12, tumor necrosis factor (TNF), inducible nitric oxide 

synthase/nitric oxide synthase 2 (iNOS/NOS2), and chemokines 

which activate both the innate and adaptive immune systems. 

Activated immune cells secrete protective molecules to the 

extracellular space to promote recruitment of other immune cells 

to form a granuloma [4,6]. Interestingly, endogenous proteins 

expressed by Mtb serve to perturb the formation of 

phagolysosome, the permitting its survival and proliferation 

within macrophages. For preventing excessive lung damage 

during Mtb infection, Mtb also elicits the production of 

protective factors that promote its survival including anti-

inflammatory mediators such as IL-4, IL-10, IL-13, and 

transforming growth factor β (TGF-β) [7-9] and several human 

TB studies show that these factors has been shown to be 

increased in the active TB patients [10,11]. These 

immunosuppressive factors play key roles in limits effective the 

immune defense to Mtb [12,13]. Mtb will persist and exacerbate 

pathophysiological manifestations within the granulome; this 
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will ultimately result in progression of disease and dissemination 

to the other hosts [5,14]. As a major focus of this disease 

process, mycobacterial granulome have been the subject of 

intense scrutiny mainly focused on mechanisms of formation, 

function, maintenance, and evolution. 

 

Recently, there has been an increasing appreciation of the 

important relationship that exists between essential metabolism 

and immune cell function. Metabolic reprogramming in immune 

cells, a phenomenon known as immunometabolism, focuses on 

unique cellular functions that are essential for the immune 

response. During TB infection, host cells undergo profound 

metabolic change, which results in differential control of various 

cytokines and chemokines associated with inflammation, 

clearance, inhibition, and progression of Mtb infection [15,16]. 

Specifically, a shift in the use of pathways promoting glucose 

and lipid metabolism can be an important feature for directing 

host cell function to promote mycobacterial survival with the 

granulome [17]. At homeostasis, cells in “resting” condition 

utilize oxidative phosphorylation (OXPHOS) to produce ATP 

from NADH and FADH2 by facilitating transfer of protons and 

electrons. Cells typically switch from OXPHOS to glycolysis in 

order to generate ATP under oxygen-depleted or hypoxic 

conditions [18]. Similarly, glycolysis is main form of 

metabolism in immune cells that promote the inflammatory 

response in the immune system. This observation–that immune 

cells utilize glycolysis even in the presence of adequate 

concentrations of oxygen (i.e. aerobic glycolysis)–is known as 

the “Warburg effect.” To date, the Warburg effect has been 

explored primarily with respect to cancer metabolism. Although 

aerobic glycolysis generates fewer ATP molecules per cycle than 

does OXPHOS, this pathway is capable of rapid generation of 

ATP required by immune cells. Additionally, aerobic glycolysis 

requires a number of specific precursors, including nucleotides, 

amino acids, and lipids [19]. Because metabolic reprogramming 

is essential for immune cell function, studies that explore this 

phenomenon in also provide new insight into the relationship 

between host immune cells and infection with Mtb. Furthermore, 

predisposing factors for TB, including diabetes, and HIV also 

related to immunometabolism against TB pathogenicity. 
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Diabetes mellitus (DM) is a mainly risky factor for occurring 

active TB [20-22]. In DM, innate immune cells undergo 

activation for releasing cytokines, recruiting neutrophils, 

upregulate T cell activation and antigen recognition [23,24]. 

Metabolism of DM is characterized by increasing glucose 

production and impairing glucose uptake. Expression of glucose 

transporter and glycolytic enzymes is elevated in DM [25]. In 

DM, High glucose level increased IL-10 production, impaired 

macrophage phagocytic ability for promoting better milieu for 

survival and proliferation of TB [26,27]. Additionally, HIV is 

also other pathogen to be associated with pathogenicity of TB 

[28-30]. In HIV-1-infected primary CD4
+
 T cells, glycolytic 

metabolism is induced with high pro-inflammatory response and 

increased production of virus [31,32]. Interestingly, glycolytic 

metabolism is regulated by HIV-1 infection in macrophage 

alleviated Warburg effects [33]. These factors promote the 

activation of TB by reprogramming the metabolism. 

 

A variety of antibiotics have been introduced for promoting 

eradication of Mtb infection, including 6–9 months courses of 

isoniazid, rifampicin, ethambutol, and pyrazinamide. However, 

the emergence of multidrug-resistant TB (MDR-TB) or 

extensively drug-resistant TB (XDR-TB) has become a major 

challenge toward designing effective treatments and for 

eradication of this disease [34,35]. Among the approaches to this 

challenge, host-directed therapy (HDT) has been introduced as a 

means to potentiate and to amplify the effectiveness of current 

treatments used for TB [36]. A clear understanding of the 

molecular interactions between host cell metabolism and 

accommodations made to Mtb may provide new strategies to 

combat infection. Here we review the current understanding of 

the metabolic relationship between the host and the Mtb 

pathogen. We also suggest several new strategies that may 

enhance host metabolic pathways and thereby promote 

protective antimicrobial functions in the setting of TB infection. 
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Metabolic Reprogramming in TB  
Warburg Effect in Immune Cells  
 

Immune cells provide critical protection and maintain 

homeostasis in the mammalian host. There are currently many 

studies that suggest that the functions of immune cells are largely 

reliant on specific aspects of host metabolism. These studies, 

which have generated a field known as immunometabolism, 

have provided us for a new focus for understanding how and 

why immune cells exist or persist in a specific metabolic state in 

order to support or direct functional changes. Several recent 

reports suggest that different metabolic signatures have a direct 

impact on specific effector functions characteristic of the innate 

and adaptive immune systems [37]. As such, among the primary 

functions of immune cells, there are those that generate an 

inflammatory response, actions typically undertaken by M1-

polarized macrophages, DCs, neutrophils, and effector T cells, 

and those that promote an anti-inflammatory response, which 

include M2-polarized macrophages, as well as regulatory and 

memory T cells. The basic metabolic profiles of these cells differ 

significantly from one another. Inflammatory immune cells 

generate energy in the form of ATP mainly via glycolytic 

metabolism; by contrast, immune cells that promote anti-

inflammatory activities generate ATP via oxidative 

phosphorylation and fatty acid oxidation [38-43]. These 

observations have been best characterized for polarized 

macrophages. The predominant phenotypes of macrophages are 

known as M1 and M2 [44,45]. M1 macrophages, activated by 

lipopolysaccharide (LPS) and IFN-γ, promote pro-inflammatory 

and antibacterial functions in immune system, and they produce 

nitric oxide (NO) and reactive oxygen species (ROS) which are 

fundamental components of the pathways used to eradicate 

bacteria. The main metabolic pathway used by these cells is 

glycolysis, which results in rapid production of ATP via 

inhibition of the trichloroacetic acid (TCA) cycle and OXPHOS 

in mitochondria; this is a critical factor due to the fact that M1 

macrophages require rapid generation of ATP to activate 

inflammation. By contrast, M2 macrophages promote anti-

inflammatory responses and tissue repair; these cells mainly 

utilize OXPHOS and fatty acid oxidation in order to generate 
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ATP; this takes place via efficient pathways localized in the 

mitochondria [46-51]. In T cells, metabolic state is 

reprogrammed according to T cell subsets. Naïve T cells mainly 

use OXPHOS for generating energy. Upon TCR stimulation, 

glycolytic metabolism is upregulated for differentiating into 

activated T cell. Th1, TH2, and Th17 effector cells mainly 

depend on aerobic glycolysis. While, regulatory and memory T 

cells use fatty acid oxidation and OXPHOS for differentiation 

and functions [52,53]. Mammalian target of rapamycin (mTOR) 

and AKT signaling is essential for regulating metabolism of T 

cells and cytokine responses [54]. Recently, cyclophililn D 

(CypD) related to necrosis is a factor for regulating metabolic 

state and functions in T cells [55].  

 

Pro-inflammatory immune cells generate ATP in high 

concentrations via glycolysis even when functioning in aerobic 

conditions; the phenomenon of aerobic glycolysis is also known 

as the “Warburg effect” [56]. Hypoxia and inflammation are 

inherently linked to one another; upon activation, immune cells 

undergo considerable metabolic reprogramming to sustain 

energy needs and thus switch to predominantly aerobic 

glycolysis. Hypoxia-induced factor 1 (HIF-1), the main mediator 

of the Warburg effect, is expressed in response to hypoxia and 

controls expression of numerous glycolytic enzymes. HIF-1 has 

two subunits, α and β; regulation of HIF-1 is dependent on the α 

subunit. Post-translational regulation of HIF-1 is modulated via 

the expression and stability of HIF-1α [56-58]. Members of the 

nuclear factor-κB (NF-κB) family of transcription factors 

comprise the signaling pathway that is most closely involved in 

Hif-1α/HIF-1A expression [59,60]. Under conditions of 

physiologic oxygenation, prolyl hydrolases (PHD) degrade HIF-

1α and target it for proteasome-mediated degradation. Inhibiting 

HIF (FIH) is an aspariginyl hydroxylase that also determines the 

level of active HIF-1α. Overall, hypoxia-inducible genes encode 

proteins involved in a myriad of cellular pathways that mediate 

cell survival, apoptosis, erythropoiesis, angiogenesis, glucose 

metabolism, and that regulate acid-base balance [61]. HIF-1α is 

expressed in primary innate immune cells, including 

macrophages, DCs, neutrophils, and Th17 cells. Additional roles 

for HIF-1α in promoting macrophage differentiation and 
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function have also been demonstrated. Most notably, HIF-1α-

mediated metabolic reprogramming plays a significant role in 

modulating macrophage polarization toward the M1 or M2 

phenotype [62]. 

 

 

 

Glycolysis Metabolism in TB  
 

When the host is infected by bacteria, immune cells are 

activated; the characteristic immune response occur concomitant 

with a switch to glycolytic metabolism. Several recent studies 

that have focused on transcriptome data from mouse and rabbit 

lung as well as granulome from the lungs of TB patients suggest 

that the metabolic state of the TB-infected host includes 

modulation of glucose metabolism [63-66]. The general 

metabolic characteristics in TB infection included enhanced 

expression of genes related to the Warburg effect including HIF-

1α, glycolytic enzymes, the pentose phosphate pathway, and H
+
-

ATPase. Additionally, 
1
H-NMR-based metabolomics profiled 

the increased accumulation of lactate due to the increased levels 

of glycolysis in the lungs of Mtb-infected mice [67]. Likewise, 

host immune cells responded to Mtb infection with increased 

expression of pro-inflammatory and antimicrobial-related genes 

associated with the Warburg effect. These results highlighted the 

importance of metabolic reprogramming due to glycolysis and its 

relationship to protection against Mtb infection. Furthermore, 

analysis of the transcriptomes of bone marrow-derived 

macrophages (BMDM) infected with one of two clinical strains 

of Mtb (the immunogenic strain CDC1551 or the hypervirulent 

strain HN878) included elevated levels of expression of genes 

associated with the Warburg effect. Given that these two clinical 

strains are known for differential activation of immune responses 

during the course of BMDM infection, different metabolic 

responses were anticipated [66]. Interestingly, BMDMs infected 

with each strain promoted upregulation of genes encoding 

enzymes associated with the Warburg effect together with HIF-

1α-associated signaling, although specific differences were 

observed. Of note, at 6 h post-infection, the induction of the gene 

encoding 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 
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(PFKFB3) a member of the of phosphofructokinase (PFK)-2 

family, was more prominent in CDC1551-infected BMDMs 

[65]. Pfkfb3 has the highest activity among the PFK-2 members, 

and fructose-2,6-diphosphate (F-2,6-BP), which is the product of 

Pfkfb3-mediated phosphorylation, is an essential component 

promoting regulation of glycolysis [68]. CDC1551-infected 

BMDMs in a state of elevated glycolysis respond with a 

vigorous early pro-inflammatory response. By contrast, 

relatively limited activation of the Warburg effect together with 

high levels of glucose uptake were observed in response to Mtb. 

Furthermore, HN878-infection of BMDMs may result in 

dysregulated host cell lipid metabolism. Specifically, one study 

compared gene expression in response to Mtb H37Ra or H37Rv 

infection of human alveolar macrophage revealed strain-specific 

differences. Gene expression associated with inflammation, 

general metabolism, and lipid metabolism was downregulated in 

H37Rv infected macrophages [69]. As suggested by the 

responses to infection with HN878, a virulent strain can have an 

impact on host metabolism gene by downregulating 

inflammatory responses that results in diminished the 

inflammation and prolonged Mtb survival. Another study 

compared the metabolic states elicited by macrophage challenge 

with Mtb, with the vaccine strain M. bovis BCG or with killed 

Mtb. Each strain promoted a unique pattern of energy 

modulation, as determined by XF (extracellular flux) analysis. 

Total metabolism in response to challenge with live Mtb 

including glucose utilization and OXPHOS is lower than that 

observed in response to BCG or dead Mtb [70]. Also, CD8
+

 T 

cell showed similar results in Mtb or BCG infection. Through 

RNA-seq, glycolytic metabolism is upregulated by challenging 

Mtb in early and late phase. Surprisingly, Mtb triggered 

mitochondrial dysfunction, which downregulates OXPHOS 

metabolism, while upregulates mtROS, but metabolism is 

recovered against BCG [71]. Thus, infection with live, virulent 

Mtb decelerated the shift to glycolytic and OXPHOS 

bioenergetics, and thereby limited the development of 

inflammatory effector functions 
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Figure 1: Metabolic reprogramming in Mtb-infected immune cells.  

Mtb infection in host is accompanied by upregulation of glycolysis and lactate 

production. Increased HIF-1α-induced Warburg effect enhance gene of 

glycolytic metabolism. In contrast, TCA cycle and oxidative phosphorylation 

(OXPHOS) is downregulated. Dysregulation of TCA cycle accumulates several 

intermediates in TCA cycle such as succinate and itaconate. Additionally, 

breakdown of OXPHOS increases NO and ROS level. Blue, increased 

expression/level; Red, decreased expression/level. 

 

The switch to glycolytic metabolism resulted in the accumulation 

of several TCA intermediates that themselves function as a 

metabolic signal to link metabolism and immunity. Succinate, a 

prominent TCA intermediate, drives IL-1β production, inhibits 

the production of anti-inflammatory cytokines, and enhances 

HIF-1α activity by inhibiting HIF-1α prolyl hydrolases [72-74]. 

The succinate-induced pro-inflammatory response is directly 

dependent on the activity of succinate dehydrogenase (SDH). 

Inhibition of SDH activity via hydrolysis of dimethyl malonate 

to produce malonate, results in an attenuation of the activity of 

LPS-induced IL-1β, and likewise a boost in IL-10 production in 

BMDMs generated from C57BL/6 mice [75]. In Mtb-infected 

murine macrophages, Sdh expression is downregulated; this 

leads to the induction of HIF-1α, the Warburg effect, and 

characteristic pro-inflammatory responses [76]. Itaconate, a 
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metabolite derived from the TCA cycle intermediate cis-

aconitate, also regulates SDH activity in C57BL/6 BMDMs 

[77,78]. Breakdown of TCA cycle results in downregulation of 

mitochondrial isocitrate dehydrogenase (Idh)2 immediately 

following formation of itaconate. Aconitate decarboxylase 1 

(ACOD1), is also known as immune-responsive gene (Irg)1; 

production of this mediator is related to generation of itaconate. 

ACOD1 is upregulated in Mtb-infected murine macrophages and 

lung tissue. Itaconate has antimicrobial functions via its capacity 

to inhibit isocitrate lyase, the essential enzyme in the glyoxylate 

shunt that is critical for bacterial growth. Itaconate inhibits SDH 

activity which results in the accumulation of succinate. 

Additionally, itaconate modulates pro-inflammatory responses in 

macrophage; Irg1
−/−

 BMDMs from C57BL/6 mice maintain 

higher HIF-1α mRNA and protein levels, and produce more pro-

inflammatory cytokines and antimicrobial factors including IL-6, 

IL-12, IL-1β, and NO in response to lipopolysaccharide (LPS)-

mediated activation [79]. Thus, itaconate may be a critical link 

between the Warburg effect induced by Mtb infection, and the 

generation of anti-inflammatory responses to prevent damage to 

host cells. 

 
 

Figure 2: Process of the Immune response and metabolic reprogramming in 

Mtb-infected immune cells. After Mtb infection, inflammatory signaling is 

activated by TLR2 or 4. Also, Metabolism is switch to aerobic glycolysis 

mediated by HIF-1α which upregulates glycolytic enzymes. Increased 
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glycolysis related to upregulate pro-inflammatory cytokines and anti-microbial 

effectors. PPARγ upregulates lipid synthetic gene for formation of lipid droplet 

which is exploited by Mtb for survival and growth. Blue, increased 

expression/level. 

 

Upregulated expression of HIF-1α, the enhanced Warburg effect, 

and the antimicrobial response to Mtb infection of host immune 

cells are all linked to the actions of the glycolytic regulatory 

protein, pyruvate kinase M2 (PKM2). Expression of PKM2, one 

of the two Pkm/PKM gene products, is upregulated in response 

to macrophage activation. In the cytoplasm, PKM2 maintains an 

enzymatically inactive state via its phosphorylation; the PKM2 

dimer is transferred into the nucleus where it interacts with HIF-

1α to activate target genes, including those encoding glycolytic 

enzymes and IL-1β. In LPS-activated macrophages, small 

molecules such as TEPP-46 modulate PKM2 activation by 

preventing PKM2 translocation into the nucleus; consequently, 

results in a diminished Warburg effect and limited production of 

IL-1β. Inhibition of PKM2 translocation also promotes 

production of IL-10 and a decreased antimicrobial response in an 

S. typhimurinum infection model [80]. In transcriptome analysis 

studies, upregulation of Pkm2/PKM2 was detected in Mtb-

infected murine macrophages and in mouse lung tissue [65]. 

These results suggest that, similar to itaconate, PKM2 promotes 

the HIF-1α-mediated Warburg effect and the associated 

antimicrobial response during Mtb infection. CypD, 

mitochondrial matrix protein, is regulator of metabolism in Mtb 

infection via upregulating mtROS in T cells. CypD-deficient T 

cells showed higher OXPHOS than wild-type T cells and more 

susceptible to Mtb [55]. 

 

In summary, metabolism in Mtb-infected host cells undergoes a 

switch from OXPHOS to glycolysis and generates a Warburg 

effect. The HIF-1α induced Warburg effect in the setting of TB 

infection plays an essential role in promoting upregulation of 

pro-inflammatory cytokine and antimicrobial effector gene 

expression, both factors underlying the acute immune response. 

However, host immune responses were different depending on 

the virulence or avirulence of the Mtb-infecting strain. How and 

why immune responses are modulated by different strains of Mtb 

are not fully understood. 
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Arginine Metabolism in TB  
 

Arginine, the key substrate for production of NO and other 

reactive nitrogen species, and also serves as a substrate for 

arginase. Arginine plays a distinct role in the host immune 

response. iNOS promotes one pathway that results in the 

generation of NO; the other pathway is via the arginase-mediated 

production of ornithine [16]. iNOS is one of three NO synthase 

enzymes and the major isoform involved in immune cell 

functions. iNOS is inducible in immune cells, and is a prominent 

antimicrobial effector molecule produced by activated 

macrophages [81]. The balance of arginine metabolism between 

the two competing pathways constitutes an important regulatory 

mechanism that modulates the polarization states of M1 and M2 

macrophages. In M1 macrophages, arginine is in demand for 

protein synthesis, for production of NO, and for its antimicrobial 

roles; by contrast, in M2 macrophages, arginine is used for 

production of polyamines and proline. The iNOS pathway is in 

direct competition with the arginase pathway [82,83]. Two 

arginase isoforms exist in the cells. Cytosolic arginase ARG1 

and mitochondrial arginase ARG2 are encoded by different 

genes and have different subcellular distributions [84,85]. ARG1 

is mainly detected in murine myeloid cells, DCs, and 

granulocytes. ARG1 inhibits NO production from iNOS/NOS2 

which is among the mechanisms used by Mtb for immune 

evasion. Mtb-infected Arg1 conditional gene-deleted mice were 

characterized with a diminished bacterial burden; Arg1-deficient 

macrophages were more capable of killing Mtb compared to 

their wild-type counterparts [86]. ARG1 and iNOS are 

distributed in distinct patterns in human TB-associated 

granulome; expression of iNOS was highest in the central region, 

and ARG1 was more prominent at the periphery [87]. The role of 

ARG1 in mediating immune cell function is directly dependent 

on the stage of Mtb infection. At initial stages of infection, the 

Mtb pathogen takes advantage of ARG1 activity by limiting 

macrophage immunity via competition with iNOS/NOS2. 

During the late stages of infection, ARG1 contributes to control 

of prolonged hyperinflammation; ARG1 also plays a role in 

regulating the progression of lung immunopathology in Mtb-

infected, Nos2-deficient mice [87]. 



Prime Archives in Immunology: 2
nd

 Edition 

15                                                                                www.videleaf.com 

Lipid Metabolism in TB  
 

Once glycolytic metabolism has been activated, the genes 

encoding pro-inflammatory mediators are synthesized, together 

with the synthesis of fatty acids and phospholipids. The TCA 

cycle and OXPHOS are inhibited, and several intermediates of 

the TCA cycle accumulate in situ [88]. Similar to what has been 

observed for glucose metabolism, including the TCA cycle and 

OXPHOS, host lipid metabolism is also regulated in Mtb 

infection. There are master regulators that mediate lipid 

metabolism including the peroxisome proliferator-activated 

receptors (PPARs), liver X receptor (LXR), sterol regulatory 

element binding proteins (SREBPs) and HIF [89-93]. These 

factors work together to regulate processes including fatty acid 

uptake, lipid synthesis, the activities of lipolytic enzymes, and 

lipid droplet (LD) biogenesis [94]. The activation of TLR 

signaling upregulates expression of several enzymes that 

promote synthesis of triglycerides and/or cholesterol ester, 

including fatty acid synthase (FASN), diacylglycerol O-

acyltransferases (DGAT-1 and DGAT-2), and acyl-

CoA:cholesterol O-acyltransferases (ACAT1 and ACAT2) [95-

97]. During lipid accumulation, increased expression of lipid 

uptake and transport-related genes is observed, and expression of 

genes involved in lipolysis is decreased. Perilipin-2 (Plin2) and 

Perilipin-3 (Plin3) are the main structural proteins of LDs that 

serve to promote lipid accumulation [97-99]. These proteins are 

essential for the biogenesis and assembly of LDs [100]. 

 

PPARs are members of the ligand-activated transcription factor 

family [101]. PPARs can have a direct impact on LD formation 

via the regulation of Plin2 expression. PPARs also regulate 

proteins associated with de novo lipogenesis, including fatty acid 

synthase and gene regulatory factors LXR and SREBPs [94]. 

PPAR-γ is important for regulating lipid and glucose metabolism 

and other cellular process including inflammation [102]. Host 

immune cells which are infected by Mtb exhibit increased 

PPAR-γ gene expression; this results in downregulation of NF-

κB signaling and increases in production of prostaglandin (PG) 

E2; overall, this results in suppression of pro-inflammatory 

cytokines and Th1 responses [103,104]. Increased PPAR-γ 
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expression in Mtb-infected macrophages is also associated with 

LD formation [105]. Formation of LDs is critical for bacterial 

survival; the accumulated lipids in these infected cells provide 

nutrients and promote bacterial growth in host. Additionally, 

infection with M. bovis BCG results in upregulated expression 

and activation of PPAR-γ and the induction of lipid-loaded 

macrophages. In BCG-infected TLR2-deficient mice, production 

of TNF-α undergoes significant downregulation [104,106]. 

Taken together, these findings suggest that PPAR-γ accelerates 

intracellular lipid accumulation by modulating the expression of 

genes that modulate lipid absorption as well as those that 

promote fatty acid synthesis in response to Mtb infection. 

 

PPAR-α is another isoform of the PPAR family. It is a 

transcription factor that modulates the expression of several 

genes involved in lipid oxidation and glucose metabolism [107]. 

PPAR-α enhances fatty acid oxidation and ketogenesis while 

inhibiting fatty acid synthesis and glycolysis [108]. As such, 

activation of PPAR-α may prevent lipid accumulation in Mtb-

infected cells. PPAR-α activation also results in the upregulation 

of transcription factor EB (TFEB) and promotes host innate 

immunity and autophagy against Mtb infection. The induction of 

TFEB also promotes lipid catabolism which inhibited 

intracellular growth of Mtb growth in bone marrow-derived 

macrophages [109]. 

 

Metabolic HDT in TB  
 

In recent years many researchers have demonstrated that changes 

in dynamic immunometabolism take place in response to 

infection with microbes; as such, studies focused on 

immunometabolism are important so as to provide a larger 

understanding of their role in promoting pathogenesis in host 

[110]. Current clinical trials have limitations with respect to the 

elimination of Mtb infection, including the need for long-term 

use, severe side effects, and the emergence of drug-resistant 

strains [111]. As noted above, Mtb infection can induce a 

Warburg effect in host immune cells, similar to that described in 

tumor tissue [65]. Mtb exploits host metabolism in order to 

escape immune surveillance and modulates various responses to 
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subvert their activities toward promoting its survival and 

longevity. We expect HDT to be a clinically-feasible approach 

toward readjusting uncontrolled immune responses in patients 

with infectious disorders. We discuss HDT drugs currently in use 

or under development that target host metabolism. We will also 

suggest novel candidate HDT pathways and agents that might be 

effective toward eradicating Mtb. 

 
Table 1: Host-directed therapies that regulate host metabolism in TB. 

 

 
 

HDT in Glucose Metabolism  
 

In TB infection, metabolism switches to glycolysis in order to 

protect the host against early-phase Mtb responses. HIF-1-

dependent glycolysis promotes various immune effector 

functions including production and release of pro-inflammatory 

cytokines and NO. As noted earlier, virulent Mtb perturbs the 

glycolytic metabolism and thereby inhibits antimicrobial 

functions. These results suggest metabolic reprogramming to 

aerobic glycolysis is essential component of the anti-TB 

response. On the other hand, persistent inflammation can result 

in hyperinflammation and ultimately damage host cells and 

tissues. Among the featured mechanisms of HDT in TB, there is 

a focus on inhibition of glycolysis as well as modulation of 



Prime Archives in Immunology: 2
nd

 Edition 

18                                                                                www.videleaf.com 

mTOR and AMP-activated protein kinase (AMPK) pathways. 

For example, 2-deoxyglucose (2-DG) and 3-bromopyruvate 

suppress activity of hexokinase which is a critical enzyme that 

catalyzes the first step of glycolysis [112]. In LPS-activated 

macrophages, 2-DG suppresses the production of IL-1β and 

results in the accumulation of succinate [73]. Additionally, LPS-

induced acute lung injury is reduced by 2-DG-dependent 

inhibition of glycolysis [113]. Among others under consideration 

is the HIV-protease inhibitor, ritonavir, which is an antagonist of 

glucose transporters [114], dichloroacetate, an inhibitor of 

pyruvate dehydrogenase kinase [115], and FX11, a specific 

inhibitor of lactate dehydrogenase. In LPS-activated RAW 264.7 

mouse macrophages, FX11-mediated inhibition of lactate 

dehydrogenase resulted in the downregulation of cytokine and 

iNOS production [166]. Likewise, TEPP46 is small molecule 

that inhibits the activity of pyruvate kinase M2; this inhibitor 

attenuates activation of PKM2 in LPS-induced macrophage in 

vivo and results in suppression of IL-1β production [80]. 

 

Induction of autophagy can be potential defense strategy used by 

cells to eradicate Mtb infection. The enzyme, mTOR kinase, 

negatively regulates autophagy; as such, mTOR kinase inhibitors 

may be potent candidates for HDT for the elimination of Mtb 

infection. Other mTOR inhibitors including rapamycin and torin 

serve to limit the increased levels of lactate detected in Mtb-

infected macrophages [54]. Rapamycin-mediated activation of 

autophagy results in acidification of mycobacterial phagosomes 

and thus decreased survival of BCG [117]. Loperamide induces 

mTOR-independent autophagy and likewise controls 

intracellular Mtb burden in lung macrophages [118]. However, 

the use of these inhibitors has several limitations. For example, 

rapamycin-induced autophagy resulted in enhanced intracellular 

bacterial replication in HIV/H37Rv co-infected cells [119]. 

Therefore, pharmacological induction of autophagy should be 

carefully evaluated among the candidate drugs to be used for 

HDT. 
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HDT in Lipid Metabolism  
 

Mtb exploits host lipid or fatty acid metabolism to promote its 

own survival and growth. Foamy macrophages are recruited to 

granulome where and are included in the barrier that forms 

around Mtb-infected phagocytic cells to which they provide 

support and nutrition. Toward this end, infection with Mtb 

induces the synthesis of LDs and fatty acids in host cell. 

Targeting the lipid synthesis may be a good strategy for initial 

HDT with the goal of eliminating Mtb. 5' AMPK is a highly 

conserved master regulator which can restore the energy balance 

by shifting cellular metabolism from one that consumes ATP to a 

catabolic mechanism that generates ATP [120]. AMPK and other 

metabolic energy sensors are critical in maintaining various 

functions of Mtb-infected host immune cells, including 

autophagy, fatty acid -oxidation, and metabolic 

reprogramming; the AMPK pathway also plays multi-faceted 

roles in promoting host defense against viral and bacterial 

infection. As such, molecules that are targeted by AMPK-

targeted are considered to be effective adjuvant agents used to 

combat Mtb infection [121,122]. Metformin, a drug that is 

clinically-approved for the treatment of type 2 diabetes functions 

by activating the AMPK-mediated signaling pathway [123]. 

Treatment with metformin can limit intracellular Mtb growth in 

macrophages via induction mitochondrial ROS and can thereby 

reduce activation of inflammatory-related gene expression. Also, 

metformin shows some synergy with conventional anti-TB 

drugs, including isoniazid or ethionamide when evaluated in 

Mtb-infected mice. Metformin treatment also decreases the 

incidence of latent TB [124]. AICAR (5-aminoimidazole-4-

carboxamide-1-β-D-ribofuranoside) is another agent that 

activates AMPK; AICAR activates autophagy pathways in 

macrophages and thus promotes antibacterial activity against 

Mtb. AICAR-mediated AMPK-activation also results in the 

activation of the PPARGC1 (peroxisome proliferator-activated 

receptor gamma, coactivator 1) pathway; this latter pathway 

regulates mitochondrial biogenesis and energy metabolism in 

macrophages and in Drosophila melanogaster infected with M. 

marinum [125]. 
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Factors that suppress lipid synthesis can limit inflammation and 

balance the inflammatory state of the host. Among several 

candidate molecules, C75 and cerulenin inhibit fatty acid 

synthase. C75 effectively lowers free fatty acid accumulation in 

mice with sepsis and limits inflammation and oxidative stress 

[126]. Additionally, C75-mediated inhibition of lipid-derived 

droplet formation results in a switch from M2 to M1 macrophage 

polarization, resulting in enhanced production of both ROS and 

NO generation [127]. Additionally, inhibition of fatty acid 

synthase by C75 and cerulenin results in downregulated 

uncoupling protein (UCP2)-mediated NLRP3 inflammasome 

activation [128]. GW9662, an antagonist of PPARγ, acts as a key 

modulator of lipid metabolism, inflammation, and pathogenesis 

in BCG-infected macrophages; this result suggests that 

regulation of lipid metabolism may be a strong potential host 

target for novel TB therapy [91]. Likewise, sirtuins (SIRTs) have 

been recognized as potential targets for anti-TB therapeutics. 

Sirtuins are enzymes with deacetylase activity that modulate 

cellular process by inhibiting NF-κB signaling; this results in a 

downregulation of the pro-inflammatory response and 

upregulation of fatty acid oxidation and anti-inflammatory 

response by targeting Peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α) [129,130]. SIRT1 

expression is diminished in Mtb-infected THP-1 macrophages 

and in whole mouse lung tissue. SIRT1 promotes inflammatory 

resolution by downregulating the expression of the RelA/p65 

unit of NF-Κb [131]. SIRT6 also suppress pro-inflammatory and 

antimicrobial responses at the early stages of Mtb infection [76]. 

 

Conclusion  
 

Immunometabolism is among the critical features that define the 

intimate relationship between host and the Mtb pathogen; a clear 

understanding of these interactions will be essential for limiting 

the progression of the TB. Metabolic reprogramming from 

OXPHOS to glycolysis in Mtb infection results in the 

upregulated expression of numerous pro-inflammatory cytokines 

and antimicrobial effector molecules. Further investigation will 

be needed in order to understand more fully the relationship 

between Mtb and host metabolism. How and when Mtb exploit 
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the host metabolism is not clearly understood at this time; 

clarification will be critical in order to identify the most 

appropriate candidates for HDT. Among those currently under 

consideration is Mtb-mediated modulation of glucose and/or 

lipid metabolism. Glucose metabolism might be targeted at the 

early stage, which would ultimately provide a boost to the 

Warburg effect. Thus, more efficient elimination of Mtb bacteria; 

by contrast, targeting glucose metabolism at a later stage may 

result in a much needed-alleviation of hyperinflammation. A 

better understanding of metabolic reprogramming in TB will 

provide further insights toward novel therapeutic strategies. 
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