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Abstract: The matrix nuclear norm minimization problem has been extensively researched in recent
years due to its widespread applications in control design, signal and image restoration, machine
learning, big data problems, and more. One popular model is nuclear norm minimization with the
l2-norm fidelity term, but it is only effective for those problems with Gaussian noise. A nuclear
norm minimization problem with the l1-norm fidelity term has been studied in this paper, which
can deal with the problems with not only non-Gaussian noise but also Gaussian noise or their
mixture. Moreover, it also keeps the efficiency for the noiseless case. Given the nonsmooth proposed
model, we transform it into a separated form by introducing an auxiliary variable and solve it by the
semi-proximal alternating direction method of multipliers (sPADMM). Furthermore, we first attempt
to solve its dual problem by sPADMM. Then, the convergence guarantees for the aforementioned
algorithms are given. Finally, some numerical studies are dedicated to show the robustness of the
proposed model and the effectiveness of the presented algorithms.

Keywords: nuclear norm minimization; semi-proximal ADMM; low-rank matrix restoration; l1-norm
fidelity

1. Introduction

The problem of high-dimensional matrix restoration from a noisy observation with low-
rank conditions arises in a variety of applications. Examples include a collaborative filtering
and online recommendation system [1], systems identification [2], face recognition [3],
statistics [4], as well as engineering and optimal control [5,6]. One well-known problem is
the Netflix recommendation system, which is a matrix completion (MC) problem in which
a small set of entries of an unknown matrix can be observed. The mathematical model of
MC can be expressed as follows:

min
X

rank(X), s.t. Xi,j = Mi,j, (i, j) ∈ Ω, (1)

where M is the unknown matrix with some available sampled entries, X ∈ Rm×n is an
unknown low-rank matrix, and Ω is a set of index pairs (i, j) for the known sampled entries.
The MC problem in a general form is represented by the following affine rank minimization
problem, which can be formulated as

min
X

rank(X), s.t. A(X) = b, (2)

where A : Rm×n → Rp is a linear map, and b ∈ Rp is an observed measurement vector. Usually,
the observed entries may be perturbed by some noise. The corresponding formula reads:

min
X

rank(X), s.t. ∥A(X)− b∥2 ≤ δ, (3)
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where δ ≥ 0 is the noise level.
It is widely acknowledged that the rank minimization problems (1)–(3) are generally

NP-hard [7]. A widely adopted strategy involves employing the nuclear norm as a convex
relaxation for the rank function [8–10], so the problem (3) can be reformulated as the
following nuclear norm minimization problem

min
X

∥X∥∗, s.t. ∥A(X)− b∥2 ≤ δ (4)

or its equivalent least square regularization form

min
X

∥X∥∗ +
γ

2
∥A(X)− b∥2

2, (5)

where γ is the trade-off parameter, which balances the two terms in the objective function.
Assuming σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are r positive singular values of the matrix X, then the
nuclear norm is defined as ∥X∥∗ = ∑r

i=1 σi(X), which is the best convex approximation of
the rank function over the unit ball of matrices with a norm less than one [7].

The nuclear norm minimization problems are convex optimization problems, for
which numerous efficient algorithms are proposed, including SeDuMi [11] and SDPT3 [12],
singular value thresholding (SVT) [13], the accelerated proximal gradient (APG) algo-
rithm [14], the fixed-point continuation with approximate SVD (FPCA) method [7], the
proximal point algorithm (PPA) [15] and ADMM-type algorithms [16–18], and so on.

It is observed that most of above proposed noisy models have considered using the
l2-norm to fit the data fidelity term, which are particularly effective for dealing with the
Gaussian noisy problem. Nevertheless, both theoretical analyses and numerical experi-
ments indicate that the l2-norm fidelity term is less effective in handling non-Gaussian
additive noise, because it tends to amplify the effect of noise [19]. Thus, it is highly needed
to find an alternative formulation to overcome the limitation of the l2-norm fidelity term.
In [20], it was also demonstrated that the l1-norm fidelity term is very suitable for handling
non-Gaussian additive noise, such as impulsive noise. The advantage of l1-norm fitting
over l2-norm fitting in handling non-Gaussian noise lies in its robustness to outliers. The l1-
norm, also known as the least absolute deviations regularization, penalizes large deviations
more significantly than the l2-norm (least squares). This property makes l1-norm fitting less
sensitive to the influence of outliers, such as impulsive noise or heavy-tailed non-Gaussian
noise. So many researchers have studied the l1/TV model and l1/l1 model for image
and signal restoration. Elsener and Geer [4] observed that numerous results have been
established for diverse nuclear norm penalized estimators in the context of the uniform
sampling matrix completion problem, but they are not robust; therefore, they studied robust
nuclear norm penalized estimators using the absolute value loss and derived the asymp-
totic behavior of the estimators. They also pointed out that the least squares estimator will
perform very well when errors are assumed to follow a light-tailed distribution, such as
i.i.d. Gaussian errors, but the ratings are susceptible to heavy fraud. Udell et al. [21] indi-
cated a factorization formulation of the low-rank matrix with l1 error loss. Zhao et al. [22]
exploited a bilinear factorization formulation and developed a novel algorithm fully uti-
lizing parallel computing resources. Both of the above methods need a given rank first.
Jiang et al. [23] formulated the matrix completion as a feasibility problem and presented an
alternating projection algorithm to find a feasible point in the intersection of the low-rank
constraint set and fidelity constraint set. Guennec et al. [24] locally modeled the structure
as gradient-sparse and the texture as a low patch rank and proposed a rule based upon the
theoretical results of the sparse and low-rank matrix recovery in order to automatically tune
the proposed model depending on the local content. Liang [25] proposed a novel robust
low-rank matrix completion model, which adds the l2,1-norm penalty directly to the rank
function in the objective function in order to alleviate the row-structured noise under the
condition of equality constraint. They also adapted the ADMM to solve the nonconvex and
discontinuous model directly and showed its convergence. Wong and Lee [26] presented a
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celebrated Huber function from the robust statistics literature to down-weight the effects of
outliers and developed a practical algorithm for solving matrix completion with noisy entries
and outliers. But it did not refer to solving the general affine low-rank minimization problem.
And, as proposed in [27], the impulsive noise, Gaussian noise, and their mixture widely exist
in the corrupted image, video, and collected dates. Especially, the literature [28] has conducted
some research on robust video denoising using low-rank matrix completion, which deals with
the problem with heavy Gaussian noise mixed with impulsive noise. However, they were
not by means of a robust model and did not deal with large-scale problems. Given the above
analysis, it is highly necessary to study designing an efficient algorithm for robust low-rank
matrix estimation. The general nuclear norm minimization problem with the l1-norm fidelity
term is a popular robust model for the low-rank matrix estimation problem. Thus, in this
paper, we aim to design an efficient algorithm for solving the following general nuclear norm
minimization problem with the l1-norm fidelity term, which can be written as

min
X

∥X∥∗ +
1
ν
∥A(X)− b∥1, (6)

where the observation b ∈ Rp might contain some noise and ν > 0 is a penalty parameter.
It is well known that when 1/ν is larger than a certain threshold, the l1-norm fidelity term
makes problem (6) into an exact penalty function problem.

It is clear to see that the problem (6) is not easy to solve due to the two nonsmooth
terms in the objective function. Wang et al. [29] proposed a penalty decomposition method
for solving (6) by minimizing the quadratic penalty function for the problem (6), which
can obtain the solution of (6) requiring the penalty parameter to go to infinity. As we all
know, it is an inexact method and the penalty parameter is difficult to chose appropriately
because it greatly affects the efficiency of the algorithm. Thus, in this paper, we consider
making the convex and nonsmooth objective function into a variable-separated form by
introducing an auxiliary variable and developing a semi-proximal ADMM to solve the
primal problem (6) and its dual problem. Each resulting subproblem has a closed-form
solution, which makes the model (6) be solved efficiently.

Our main contributions of this paper are developing a semi-proximal ADMM to
successfully solve the proposed model (6) and its dual problem, which can deal with the
problems not only with a single non-Gaussian noise but also with Gaussian noise or their
mixture. Moreover, it is the first time considering to solve its dual problem. The presented
algorithms also have a convergence guarantee. Most importantly, model (6) has a more
general form than the MC model and has good properties from a numerical–experimental
point of view. For example, the parameter ν can be controlled relatively easily, and the
estimation of the corrupted low-rank matrix can attain an approximately exact solution,
such as the accuracy attaining less than 10−10.

The remaining parts of this paper are organized as follows. In Section 2, we present
three subsections. Section 2.1 introduces some key notations. Section 2.2 provides some
basic concepts to facilitate our later discussions. Section 2.3 reviews some types of ADMM
for latter developments. In Section 3, we develop a semi-proximal ADMM for solving (6).
Additionally, we also apply the semi-proximal ADMM for solving its dual problem. The
convergence of these proposed methods is given in this section. In Section 4, we illustrate
the robustness of the model (6) and the effectiveness of both presented algorithms by
conducting some numerical experiments. Finally, we conclude this paper in Section 5.

2. Preliminaries

In this section, we introduce some key notations, provide an overview of fundamental
concepts, and conduct a brief review of some typical ADMMs that will be used in the
subsequent developments.
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2.1. Notation

Let E be finite-dimensional real Euclidean space with an inner product ⟨·, ·⟩ and
associated norm ∥ · ∥. For a vector x ∈ E , ∥x∥1 is defined as the sum of the absolute
values of its components, and ∥x∥∞ is defined as the maximum absolute value among its
components. ∥x∥Q is the (semi-)norm induced by the (semi-)inner product xTQx, where Q
is a self-adjoint positive semidefinite operator. For a matrix X ∈ Rm×n, ∥X∥ denotes the
spectral norm, ∥X∥F is the Frobenius norm of X, and ∥X∥∗ denotes the nuclear norm of X,
which equals to the sum of all singular values of X. A : Rm×n → Rp is a linear map, and A∗

denotes the adjoint of A. ρ(A) denotes the spectral radius of A. I and I denote the identity
matrix and identity map, respectively. “ri C” is the relative interior of a convex set C in
Rn. The expression “max{x, r}” signifies an operation performed on each element of the
vector x. This operation involves comparing each element of x with r ∈ R and returning
the larger of the two values. To be specific, for a vector x = [x1, x2, · · ·, xn], the operation
“max{x, r}” is defined as follows:

max{x, r} = [max{x1, r}, max{x2, r}, · · ·, max{xn, r}].

2.2. Basic Concepts

Let f : E → (−∞,+∞] be a closed proper convex function. A vector ζ is a subgradient
of f at point x ∈ E if f (z) ≥ f (x) + ⟨ζ, z − x⟩ for all z ∈ E . The set of all subgradients
of f at x is called the subdifferential of f at x and is denoted by ∂ f (x), which is a closed
convex set while it is not empty. The multivalued mapping ∂ f : x → ∂ f (x) is called the
subdifferential of f , which is also a maximal monotone mapping ([30], Corollary 31.5.2).
Let f ∗ denote the Fenchel conjugate of a convex function f at x ∈ E , which is

f ∗(y) := sup
x
{⟨y, x⟩ − f (x)|x ∈ E} = − inf

x
{ f (x)− ⟨y, x⟩ : x ∈ E}.

For any z ∈ E , the symbol ΠC(z) denotes the metric projection of z onto C, which is
the optimal solution of the minimization problem min

x
{∥x − z∥2 : x ∈ C}. Given x ∈ E , the

orthogonal projection onto the ℓ∞-norm ball B∞
r with radius r > 0 can be viewed as

ΠB∞
r (x) = min{r, max{x,−r}}. (7)

For any closed proper convex function f : E → (−∞,+∞], the proximal point of x
associated with f is denoted by

proxµ f (x) := argmin
y∈E

{ f (y) +
1

2µ
∥y − x∥2},

where µ > 0 is the trade-off parameter between the two terms in the objective function.
We now introduce a few propositions that serve as fundamental building blocks for

the subsequent developments.

Proposition 1 ([31]). If f (y) is an indicator function δC(y), where C is a closed nonempty convex
set, the proximal operator of f reduces to the Euclidean projection onto C, i.e.,

proxδC
(x) := argmin

y∈E
{δC(y) +

1
2µ

∥y − x∥2} = argmin
y∈C

{ 1
2µ

∥y − x∥2} = ΠC(x).

Proposition 2. For each µ > 0 and f (y) = ∥y∥1, the proximal operator of ∥ · ∥1 is obtained by

Sµ(x) = proxµ∥·∥1
(x) = argmin

y
{∥y∥1 +

1
2µ

∥y − x∥2
2}

= sgn(x)max{|x| − µ, 0}, (8)
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and the operator Sµ(·) is also noted as the well-known vector shrinkage [32], where sgn(·) is the
sign function.

Proposition 3 ([13], Theorem 2.1). Given X ∈ Rm×n with rank r, let

X = UΣVTand Σ = diag({σi}1≤i≤r) (9)

be the singular value decomposition of X. For each µ > 0, it is shown that the proximal operator of
∥ · ∥∗ is obtained by

Dµ(X) = argmin
Y

{∥Y∥∗ +
1

2µ
∥Y − X∥2

F}

= UΣµVT , (10)

where Σµ = diag({σi − µ}+), {t}+ := max{t, 0}.

Proposition 4 ([33], Lemma 2.1). Let Y ∈ Rm×n admit the SVD as in (9). Then, the unique
minimizer of the following problem

min
X∈Rm×n

{∥X − Y∥2 : X ∈ B2
ρ := {Z ∈ Rm×n : ∥Z∥2 ≤ ρ}} (11)

is X∗ = ΠB2
ρ
(Y) = U[min(Σ, ρ) 0]VT , where min(Σ, ρ) = Diag(min(σ1, ρ), · · ·, (min(σm, ρ)).

2.3. Review of Some Types of ADMM

Let X ,Y ,Z be finite-dimensional real Euclidean spaces each equipped with an in-
ner product denoted by ⟨·, ·⟩ and induced norm ∥ · ∥. Consider the following convex
optimization problem with a two-block separable structure

min
y,z

f (y) + g(z) s.t. A∗y + B∗z = c, (12)

where f : Y → (−∞,+∞] and g : Z → (−∞,+∞] are closed proper convex functions;
A : X → Y and B : X → Z are the given linear maps, with adjoint A∗ and B∗, respectively;
and c ∈ X is the given vector.

Let σ > 0 be a given penalty parameter, and the augmented Lagrangian function
associated with (12) is

Lσ(y, z; x) = f (y) + g(z)− ⟨x,A∗y + B∗z − c⟩+ σ

2
∥A∗y + B∗z − c∥2

2,

where x ∈ X is a Lagrangian multiplier. Starting from an initial point (y0, z0, x0) ∈ dom f ×
domg ×X , the general iterative scheme of the semi-proximal ADMM for solving (12) reads
as the following form

yk+1 = argmin
y

{Lσ(y, zk; xk) + σ
2 ∥y − yk∥2

Q1
},

zk+1 = argmin
z

{Lσ(yk+1, z; xk) + σ
2 ∥z − zk∥2

Q2
},

xk+1 = xk − ασ(A∗yk+1 + B∗zk+1 − c),

(13)

where α is the step length, which is chosen in the interval (0, 1+
√

5
2 ), and Q1 and Q2 are

two self-adjoint positive semidefinite operators.
It is well known that the iterative scheme (13) is the classical ADMM introduced by

Glowinski and Marroco [34] and Gabay and Mericire [35] when Q1 = 0 and Q2 = 0. When
Q1 and Q2 are positive definite and α = 1, it can be identified as the proximal ADMM of
Eckstein [36]. When both Q1 and Q2 are self-adjoint positive semidefinite linear operators,
it reduces to the semi-proximal ADMM of Fazel et al. [37].
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The convergence result of the semi-proximal ADMM proposed by Fazel et al. [37]
based on the scheme (13) is given in the following theorem without proof, and its proof can
be referred to ([37], Theorem B.1) for more details.

Assumption 1. There exists (ȳ, z̄) ∈ ri(dom f × domg) such that A∗ȳ + B∗ z̄ = c.

Theorem 1 ([37], Theorem B.1). Suppose that the solution set of problem (12) is nonempty
and Assumption 1 holds. Let the sequence {(yk, zk, xk)} be generated by iterative scheme (13)
from an initial point (x0, y0, z0) under Q1 and Q2, which are positive semidefinite, and α ∈
(0, (1 +

√
5)/2), and then it converges to the accumulation point {(ȳ, z̄, x̄)} such that {(ȳ, z̄)} is

an optimal solution to the problem (12) and {x̄} is an optimal solution to the dual problem of (12).

3. Algorithm and Convergence Analysis

In this section, we firstly give an equivalent form of (6), and then we develop a semi-
proximal ADMM to solve it and its dual problem. The convergence results of the proposed
methods are also given in their corresponding place.

3.1. Semi-Proximal ADMM for Primal Problem (6)

In this subsection, we develop the semi-proximal ADMM for solving the problem (6).
Given an auxiliary variable r = b−A(X), the problem (6) can be equivalently transformed into

min
r,X

∥X∥∗ +
1
ν
∥r∥1, s.t. A(X) + r = b, X ∈ Rm×n, r ∈ Rp. (14)

The corresponding augmented Lagrangian function of problem (14) is

Lµ(r, X; λ) = ∥X∥∗ +
1
ν
∥r∥1 − ⟨λ,A(X) + r − b⟩+ µ

2
∥A(X) + r − b∥2

2, (15)

where λ ∈ Rp is the Lagrangian multiplier, and µ > 0 is the penalty parameter for the
violation of the linear constraint. For fixed (rk, Xk, λk), the new iteration (rk+1, Xk+1, λk+1)
is generated via the following iterative scheme:

rk+1 = argmin
r

{Lµ(r, Xk; λk) + µ
2 ∥r − rk∥2

G},

Xk+1 = argmin
X

{Lµ(rk+1, X; λk) + µ
2 ∥X − Xk∥2

T },

λk+1 = λk − αµ(A(Xk+1) + rk+1 − b),

(16)

where G = 0, T = (τ I − A∗A) is a positive semidefinite linear operator with some
appropriate choice of τ. Observing that each step of the iterative framework (16) involves
solving a convex minimization problem, each subproblem also has a simple closed-form
solution, which leads to the iterative scheme being easy to implement. Firstly, given
(Xk, λk), we can obtain that

rk+1 = argmin
r

{
1
ν
∥r∥1 − ⟨λk,A(Xk) + r − b⟩+ µ

2
∥A(Xk) + r − b∥2

2

}
= argmin

r

{
1
ν
∥r∥1 +

µ

2
∥r − (b + λk/µ −A(Xk))∥2

2

}
= S 1

νµ
(b + λk/µ −A(Xk)) (17)

= max
{
|b + λk/µ −A(Xk)| − 1

νµ
, 0
}

b + λk/µ −A(Xk)

|b + λk/µ −A(Xk)|
,

where S 1
νµ
(·) is a soft-thresholding operator defined by Proposition 2.

Secondly, given (rk+1, λk), we can obtain Xk+1 with respect to X as follows
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Xk+1 = argmin
X

{
∥X∥∗ − ⟨λk,A(X) + rk+1 − b⟩+ µ

2
∥A(X) + rk+1 − b∥2

2 +
µ

2
∥X − Xk∥2

T

}
= argmin

X

{
∥X∥∗ +

µ

2
∥A(X) + rk+1 − b − λk/µ∥2

2 +
µ

2
∥X − Xk∥2

T

}
(18)

= argmin
X

{
∥X∥∗ +

τµ

2
∥X − (Xk − 1

τ
(A∗(A(X) + rk+1 − b − λk/µ)))∥2

F

}
= D1/τµ(X̃k),

where X̃k = Xk − 1
τ (A∗(A(Xk) + rk+1 − b − λk/µ)), and D1/τµ(·) is a soft-thresholding

operator, which can be referred to as Proposition 3.
Finally, given (rk+1, Xk+1), the Lagrangian multiplier is updated by

λk+1 = λk − αµ(A(Xk+1) + rk+1 − b). (19)

In summary, we are ready to perform the process of a semi-proximal ADMM for
solving the problem (14) as follows Algorithm 1:

Algorithm 1: sPADMM

Initialization: Input X0, r0, and λ0. Given constants µ, τ, α, ν. Set k = 0.
While “not converge” Do
1. Compute rk+1 via (17) for fixed Xk and λk;
2. Compute Xk+1 via (18) for fixed rk+1 and λk;
3. Update λk+1 via (19) for fixed rk+1 and Xk+1;
4. Let k = k + 1.
End While
Output: Solution (rk, Xk) of the problem (14).

Remark 1. For the above algorithm, the terminated condition can be the relative error between the
original matrix M and the optimal solution X∗ produced by the sPADMM, that is,

RelErr =
∥X∗ − M∥F

∥M∥F
≤ tol

for some tol > 0. Similarly, we can terminate the algorithm if the following stopping criterion
is satisfied

min{∥Xk+1 − Xk∥F, ∥λk+1 − λk∥2} ≤ tol.

□

Now, we will show the second stopping criterion of the sPADMM in Remark 1, and
meanwhile, it is prepared for the convergence analysis of the proposed sPADMM. Firstly,
we can obtain the optimal condition for the problem (14).

Let (r∗, X∗) be an arbitrary solution of (14), and there exists a Lagrangian multiplier
λ∗ ∈ Rp such that 

0 ∈ ∂ 1
ν∥r∗∥1 − λ∗,

0 ∈ ∂∥X∗∥∗ −A∗λ∗,
A(X∗) + r∗ − b = 0.

(20)

Secondly, the iteration (rk+1, Xk+1, λk+1) generated by the sPADMM satisfies the
optimal conditions as follows
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0 ∈ ∂ 1

ν∥rk+1∥1 + µ(A(Xk) + rk+1 − b − λk/µ),
0 ∈ ∂∥Xk+1∥∗ + τµ(Xk+1 − X̃k),
λk+1 = λk − αµ(A(Xk+1) + rk+1 − b).

(21)

It is not hard to see that the above condition is equivalent to the following condition, i.e.,
0 ∈ ∂ 1

ν∥rk+1∥1 − λk+1 − µA(Xk+1 − Xk),
0 ∈ ∂∥Xk+1∥∗ −A∗λk+1 + τµ(I − 1

τA∗A)(Xk+1 − Xk),
λk+1 = λk − αµ(A(Xk+1) + rk+1 − b).

(22)

Comparing the condition (22) with (20), it immediately shows that the proposed algorithm
should terminate if ∥Xk+1 − Xk∥F and ∥λk+1 − λk∥2 are sufficiently small, that is, the
second stopping criterion is satisfied in Remark 1.

The convergence of the semi-proximal ADMM for solving two-block convex optimiza-
tion was established in [37]. At the end of this subsection, we restate the convergence of the
sPADMM for solving the problem (14) without proof. One can refer to the literature ([37],
Theorem B.1) for more detail.

Theorem 2. Suppose that the sequence {(rk, Xk, λk)} is generated by the Algorithm sPADMM
from an initial point {(r0, X0, λ0)} that satisfies Assumption 1, if α ∈ (0, (1 +

√
5)/2) and

G, T are positive semidefinite linear operators, and then it converges to the accumulation point
{(r̄, X̄, λ̄)} such that {(r̄, X̄)} is an optimal solution of the problem (14) and {λ̄} is an optimal
solution to the dual problem of (14).

Remark 2. One important issue is to choose the positive semidefinite linear operators to guarantee
the convergence of the proposed sPADMM. From the theory in numerical algebra, we can choose
G = 0, T = (τ I −A∗A) with τ ≥ ρ(A∗A), where ρ(·) denotes the spectral radius of a matrix.

3.2. Semi-Proximal ADMM for Dual Problem of (14)

In this section, we mainly apply the semi-proximal ADMM for solving the dual
problem of (14), which is the first attempt from the dual view. The Lagrangian function
associated with (14) is defined by

L(X, r; λ) = ∥X∥∗ +
1
ν
∥r∥1 − ⟨λ,A(X) + r − b⟩, (23)

where λ ∈ Rp is the Lagrangian multiplier or dual variable associated with the linear
constraint in (14). The Lagrangian dual problem of (14) can be obtained by the follow-
ing procedure

max
λ

min
X,r

L(X, r; λ) = max
λ

min
X,r

{∥X∥∗ +
1
ν
∥r∥1 − ⟨λ,A(X) + r − b⟩}

= max
λ

{min
X

{∥X∥∗ − ⟨X,A∗(λ)⟩}+ min
r

{1
ν
∥r∥1 − ⟨λ, r⟩}+ ⟨λ, b⟩} (24)

= max
λ

{⟨λ, b⟩ : ∥A∗(λ)∥2 ≤ 1, ∥λ∥∞ ≤ 1
ν
}

= max
λ

{⟨λ, b⟩ − δB2
1
(A∗(λ))− δB∞

1
ν

(λ)}.

By introducing an auxiliary variable Z ∈ Rm×n and letting A∗(λ) = Z, the above model (24)
can be reformulated as follows

min
λ,Z

δB∞
1
ν

(λ) + δB2
1
(Z)− ⟨λ, b⟩

s.t. A∗(λ) = Z, (25)
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where B2
1 = {Z ∈ Rm×n : ∥Z∥2 ≤ 1} and B∞

1
ν

= {λ ∈ Rp : ∥λ∥∞ ≤ 1
ν}. The function δC(·)

is an indicator function defined on the closed convex set C. The augmented Lagrangian
function associated with problem (25) is

Lβ(λ, Z; X) = δB∞
1
ν

(λ) + δB2
1
(Z)− ⟨λ, b⟩+ ⟨X,A∗(λ)− Z⟩+ β

2
∥A∗(λ)− Z∥2

F, (26)

where β > 0 is a penalty parameter, and X ∈ Rm×n is the Lagrangian multiplier associated
with the corresponding linear constraint. Given (λk, Zk, Xk), the semi-proximal ADMM
takes the following form for dual problem (25) to derive the next iteration

λk+1 = argmin
λ

Lβ(λ, Zk; Xk) + β
2 ∥λ − λk∥2

H,

Zk+1 = argmin
Z

Lβ(λ
k+1, Z; Xk) + β

2 ∥Z − Zk∥2
Q,

Xk+1 = Xk + αβ(A∗(λk+1)− Zk+1),

(27)

where Q = 0 and H = κI −AA∗ are positive semidefinite linear operators with κ ≥ ρ(AA∗).
Firstly, the λ-subproblem can be solved by

λk+1 = argmin
λ

Lβ(λ, Zk; Xk) +
β

2
∥λ − λk∥2

H

= argmin
λ

{δB∞
1
ν

(λ)− ⟨λ, b⟩+ β

2
∥A∗(λ)− Zk +

Xk

β
∥2

F +
β

2
∥λ − λk∥2

H} (28)

= argmin
λ

{δB∞
1
ν

(λ) +
β

2
∥λ − (λk +

1
βκ

(b + βA(Zk)−A(Xk)− βAA∗(λk)))∥2
2}

= ΠB∞
1
ν

(λk +
1

βκ
(b + βA(Zk)−A(Xk)− βAA∗(λk))),

where the last equality holds by Proposition 1 and the computing for the projection can be
obtained by (7). Secondly, the Z-subproblem can be solved by

Zk+1 = argmin
Z

Lβ(λ
k+1, Z; Xk)

= argmin
Z

{δB2
1
(Z) + ⟨Xk,A∗(λk+1)− Z⟩+ β

2
∥A∗(λk+1)− Z∥2

F} (29)

= argmin
Z

{δB2
1
(Z) +

β

2
∥Z − (A∗(λk+1) + Xk/β)∥2

F}

= ΠB2
1
(A∗(λk+1) + Xk/β),

where the last equality holds by Proposition 1 and the computing result for projection can
be obtained by Proposition 4. Finally, we update the Lagrange multiplier by

Xk+1 = Xk + αβ(A∗(λk+1)− Zk+1). (30)

Now, we state the full steps of the semi-proximal ADMM for solving the dual prob-
lem (25) as follows Algorithm 2:
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Algorithm 2: sPDADMM

Initialization: Input X0, Z0 and λ0. Given constants β > 0, α ∈ (0, 1+
√

5
2 ), ν > 0,

κ > 0. Set k = 0.
While “not converge” Do
(1) Compute λk+1 via (28) for fixed Xk and Zk;
(2) Compute Zk+1 via (29) for fixed Xk and λk+1;
(3) Update Xk+1 via (30) for fixed Zk+1 and λk+1;
(4) Let k = k + 1.
End While
Output: Solution (λk, Zk, Xk) of the problem (25).

Now, we restate the convergence of the sPDADMM for solving the dual problem (25)
without proof, which can be referred to in the literature ([37], Theorem B.1) for more detail.
The sPDADMM is performed from an initial point (X0, Z0, λ0) that satisfies Assumption 1,
and both Q = 0 and H = κ I −AA∗ with κ ≥ ρ(AA∗) are positive semidefinite linear
operators. From the literature ([37], Theorem B.1), we can obtain the following conver-
gence result.

Theorem 3. Let the sequence {(λk, Zk, Xk)} be generated by the sPDADMM with α ∈ (0,
(1 +

√
5)/2), and then it converges to the accumulation point {(λ̄, Z̄, X̄)} such that {(λ̄, Z̄)}

is an optimal solution of the dual problem (25) and {X̄} is an optimal solution for the primal
problem (14).

4. Numerical Experiments

In this section, we will have a discussion to emphasize an important issue on choos-
ing denoising models for recovering a low-rank matrix. In many practical applications,
measured data are usually contaminated by different kinds of noise or their mixtures. It is
well known that models (4) and (5) are widely used to solve the matrix rank minimization
problem with noise. Both of them apply the l2-norm for the data-fitting term and usually
deal with the problems with Gaussian noise successfully, except non-Gaussian noise.

Thus, in this section, by carrying out kinds of numerical experiments, we demonstrate
that model (6) with l1 fidelity can handle several noise cases and perform better than
the models with l2 fidelity, and the proposed algorithms can solve the primal and dual
problems with approximately precise fidelity.

Now, we firstly give some parameter selections, the meaning of signs, the stopping
criterion, and the running environment as follows. m and n denote the row number and the
column number of the matrix, respectively. r denotes the rank of the original matrix, which
is far less than min{m, n}. Let sr and p be the sample ratio and the number of measurements,
respectively, where p is set to be p = sr × m × n. Let dr be the number of the degree of
freedom for a real-valued rank r matrix, which is dr = r(m + n − r). We note M as the real
low-rank matrix, which is generated by M = MLMT

R, where the matrices ML ∈ Rm×r and
MR ∈ Rn×r are generated with independent identically distributed Gaussian entries. The
M is produced by the Matlab script “randn(m, r)× randn(r, n)”. Ω is an index set of known
elements for the matrix completion problem, which are selected uniformly at random entries
from {(i, j) : i = 1, · · ·, m, j = 1, · · ·, n}. A linear map A in the general matrix rank minimization
usually is the partial discrete cosine transform (PDCT) operator. b is the given measurement
vector, and b = A(X) + ω, where ω = ωG + ωI is noise. ωG denotes a Gaussian noise of mean
zero and standard deviation σ, and it can be generated by ωG = σ × randn(p, 1). ωI represents
an impulsive noise, which can be set to ±1 at N random positions of b, where N = m × n × q,
and q = 0.01, 0.005, 0.001 can be chosen, respectively. ν is an exact penalty parameter, which can
be chosen to be slightly greater than the reciprocal of its corresponding Lagrangian multiplier.
τ and κ are approximate parameters. We can note that ρ(A∗A) = 1 for matrix completion
problems and PDCT measurements. However, we set τ, κ = 1.1 because the values of them are
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slightly greater than ρ(A∗A) can accelerate the convergence rate by experiments, which can
also be seen in [17]. Let X∗ represent the optimal solution produced by the proposed method.

Now, we terminate the process when the optimal solution X∗ produced by the pro-
posed method satisfies the following criterion

RelErr =
∥X∗ − M∥F

∥M∥F
≤ tol, (31)

where the relative error measures the quality of X∗ to the original M. The M is recov-
ered successfully by X∗ if the corresponding RelErr is less than 10−3, which has been
used in [7,13,38]. So, we usually take the tol = 10−5 and the maximum iteration as the
terminal condition.

As we noted, the computation of the matrix singular value decomposition (SVD) is
needed at each iteration for nuclear norm minimization problems, which may be expensive.
So, for all the tests, we apply a PROPACK package [39] for partial SVD. However, PROPACK
cannot automatically compute only those singular values greater than a threshold; it needs
us to choose the predetermined number svk of the singular values to be computed at the k-th
iteration. As in [14], initializing sv0 = min(m, n)/20, if svpk < svk, we set svk+1 = svpk + 1;
if svpk = svk, we obtain svk+1 = svpk + 5, where svpk represents the number of positive
singular values of the matrix.

All the experiments are performed under Windows 10 premium and MATLAB R2021a
running on a Lenovo laptop with an Intel core CPU at 4.6 GHz and 32 GB memory.

4.1. Matrix Completion Problems

In this subsection, we mainly solve the nuclear norm matrix completion problems with
different kinds of noise in order to show their properties for different noisy models. Nu-
merical experiments are tested for solving the following two matrix completion problems.
One is the following nuclear norm matrix completion problem with l1 fidelity

min
X∈Rm×n

∥X∥∗ +
1
ν ∑

(i,j)∈Ω
|Xi,j − Mi,j|. (32)

Another is the following nuclear norm matrix completion problem with l2 fidelity

min
X∈Rm×n

∥X∥∗ +
µ

2 ∑
(i,j)∈Ω

|Xi,j − Mi,j|2. (33)

In the following tests, we use the proposed sPADMM and the sPDADMM to solve
model (32). Model (33) is solved by the state-of-the-art algorithm ADMM-NNLS [17].

Test 1: The numerical results can be seen in Figure 1. We test the two problems (32)
and (33) with three noisy cases: impulsive noise only, Gaussian and impulsive noise, and
Gaussian noise only. Moreover, we choose the maximum iteration to be 200 and tol = 10−5

as the stopping rule in order to observe their performance more clearly.
From the first row of Figure 1, we can see that the proposed sPADMM and sPDADMM

for model (32) can obtain a higher accuracy than the ADMM-NNLS for model (33). More-
over, the sPDADMM can attain accuracy faster than the sPADMM. Observing the second
row, it is the case containing both Gaussian and impulsive noises. It is clear to see that
using model (32) can recover the matrix successfully; however, model (33) is inefficient only
if the measurement contains a little impulsive noise. In other words, no matter how small
the percentage of impulsive noise contained in the measurement b, model (32) performs
better than model (33). In the third row, we test the case with Gaussian noise only, where
the noisy level σ varies from 0.001 to 0.01. From the bottom row of Figure 1, we can see
that model (33) obtains a faster convergence rate than model (32) and attains a similar
accuracy of the solution as model (32). Additionally, it is illustrated that model (33) can
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efficiently solve the case of containing Gaussian noise only, but the proposed model (32) is
more efficient and robust for the case with non-Gaussian noise.
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Figure 1. Numerical comparisons of models (32) and (33) (m = n = 500, r = 10, and sr = 0.5). First
row: impulsive noise only (from left to right, q is 0.001, 0.005, and 0.01, respectively); second row:
Gaussian and impulsive noise; third row: Gaussian noise only (from left to right, σ is 0.001, 0.005,
and 0.01, respectively).

To sum up, these numerical results illustrate the following conclusions for the nu-
clear norm minimization problem. Firstly, whenever the observation data contain impul-
sive noise, Gaussian noise, or their mixtures, model (32) naturally performs better than
model (33) or its variants. In particular, the data with impulsive noise only can be recov-
ered exactly by using model (32) as the parameter chosen appropriately, but model (33)
is inefficient. Secondly, without impulsive noise, the l1-fitting model (32) does not harm
the quality of the solution as long as the measurement data do not contain a large amount
of Gaussian noise. The above analysis illustrates that model (32) has a broader scope of
applicability. Finally, when the data contain a large amount of Gaussian noise, the l2-fitting
model (33) performs better, but high accuracy would not be obtained no matter which
method is chosen.

Test 2: The numerical results can be seen in Figure 2. This test mainly observes
the performances of models (32) and (33) with different sr and r, which all contain both
Gaussian noise (σ = 0.001) and impulsive noises (q = 0.001).

From the first row of Figure 2, we can see that model (32) may perform better than
model (33) for the matrix completion problem with mixture noises when the sr is relatively
higher. Observing the second row of Figure 2, it is clear to see that both the sPADMM and
sPDADMM for (32) perform well with r increasing. Moreover, model (32) can obtain a
higher accuracy within 100 iterations than model (33). The above numerical analysis shows
the robustness of model (32) and the efficiency of the proposed algorithms.

Test 3: The numerical results on recovering real gray images can be seen in Figure 3,
which is a 512× 512 image. Firstly, we apply matrix SVD for obtaining the low-rank images.
Then, we randomly select 60% of the elements from the low-rank image and add some
different kinds of noise to obtain the corrupted images. Finally, the corrupted images are
recovered by using the proposed sPADMM and sPDADMM to solve model (32). Here, we
also use the RelErr to measure the quality of the recovered images.
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Figure 2. Numerical comparative results of models (32) and (33) (m = n = 500). First row: r = 10,
and sr is 0.2, 0.5, 0.8, respectively. Second row: sr = 0.5, and r is 5, 10, 20, respectively.
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d e

Figure 3. (a) Original gray image (512 × 512); (b) corresponding low-rank images with r = 20;
(c) randomly masked image from rank 20 with sr = 60%, σ = 0.001, and q = 0.02; (d) recovered
images by the sPADMM, whose “RelErr” is 3.10 × 10−3; and (e) recovered images by the sPDADMM,
whose “RelErr” is 9.71 × 10−3.

From the (d) and (e) in Figure 3, we can see that the proposed sPADMM and sP-
DADMM recovered the corrupted image with impulsive noise and Gaussian noise suc-
cessfully. In the same way, the (a4) and (a5) in Figure 4 show that the sPADMM and
sPDADMM can recover the corrupted image without randomly selecting samples, which
also contains only impulsive noise. In a word, these tests show that the proposed sPADMM
and sPDADM perform well on recovering these real corrupted images.

a1

a2 a3

Figure 4. Cont.
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a4 a5

Figure 4. (a1) Original gray image (512 × 512); (a2) corresponding low-rank images with r = 30;
(a3) randomly masked image from rank 30 with q = 0.02; (a4) recovered images by sPADMM; and
(a5) recovered images by sPDADMM.

4.2. Nuclear Norm Minimization with l1 Fidelity Term

In this subsection, we mainly describe some results of the sPADMM and sPDADMM
for solving the problem (6) to illustrate the robustness of model (6) and the efficiency of the
sPADMM and sPDADMM.

Test 4: The numerical results are shown in Table 1. We test the sPADMM and sP-
DADMM for solving (6) with impulsive noise.

Table 1. Numerical results of sPADMM and sPDADMM for problem (6), m = n, sr = 0.5, q = 0.005.

sPADMM sPDADMM

(m, r) p/dr Iter Time RelErr Iter Time RelErr

(100, 5) 5.13 117 0.77 9.48 × 10−6 85 0.20 9.35 × 10−6

(200, 5) 10.13 85 0.77 9.03 × 10−6 43 0.39 8.26 × 10−6

(400, 5) 20.13 91 3.19 9.01 × 10−6 50 2.22 8.63 × 10−6

(600, 5) 30.13 91 7.88 8.56 × 10−6 50 7.18 9.04 × 10−6

(800, 5) 40.13 88 16.41 9.41 × 10−6 52 16.06 7.65 × 10−6

(1000, 5) 50.13 90 34.09 9.20 × 10−6 54 31.68 9.35 × 10−6

(1200, 10) 30.13 35 39.91 7.62 × 10−6 74 112.76 8.38 × 10−6

(1400, 10) 35.13 34 61.55 9.72 × 10−6 41 62.03 9.24 × 10−6

(1600, 10) 45.13 34 67.11 9.11 × 10−6 41 150.57 9.55 × 10−6

(1800, 10) 50.13 34 100.97 8.40 × 10−6 40 235.03 8.33 × 10−6

(2000, 10) 50.13 34 135.99 8.90 × 10−6 41 316.22 9.49 × 10−6

From Table 1, we can see that all the situations can be recovered successfully and attain
high accuracy, which can be reviewed as successful recovery. In addition, the sPDADMM
is faster than the sPADMM as the scale is smaller. When the scale becomes larger, the
Z-subproblem needs to compute a full SVD, so it becomes expensive. Moreover, we can
solve some larger-scale problems if the CPU memory capacity is large enough. These
limited numerical results illustrate that the proposed sPADMM and sPDADMM are very
efficient for solving the nuclear norm minimization problem with impulsive noise.

Test 5: The numerical results can be seen in Table 2. In order to further illustrate the
efficiency of the sPADMM and sPDADMM and the robustness of the proposed model, we
test the sPADMM and sPDADMM to solve the problem (6) with different noises, which
are impulsive noise, Gaussian noise, and their mixtures, respectively. Here, we set the
terminated conditions to be tol = 10−5 and maxiter = 200.
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Table 2. Numerical results of sPADMM and sPDADMM for (6), m = n, sr = 0.5.

sPADMM sPDADMM

(m, r) p/dr q σ Iter Time RelErr Iter Time RelErr

(500, 10) 15.15 0.1 0.00 200 55.28 2.69 × 1020 67 13.33 9.58 × 10−6

(500, 10) 15.15 0.05 0.00 200 87.26 1.67 × 10−4 62 11.90 9.14 × 10−6

(500, 10) 15.15 0.01 0.00 122 13.02 8.79 × 10−6 56 10.04 8.86 × 10−6

(500, 10) 15.15 0.005 0.00 111 13.01 9.72 × 10−6 55 9.57 9.54 × 10−6

(500, 10) 15.15 0.001 0.00 104 11.41 9.82 × 10−6 55 9.64 8.22 × 10−6

(500, 10) 15.15 0.001 0.001 200 23.85 9.34 × 10−4 200 42.50 2.61 × 10−3

(500, 10) 15.15 0.005 0.005 200 26.52 4.65 × 10−4 200 35.01 1.24 × 10−3

(500, 10) 15.15 0.01 0.01 200 21.54 9.25 × 10−5 200 37.50 1.02 × 10−4

(500, 10) 15.15 0.00 0.01 200 45.33 9.26 × 10−4 200 69.90 2.49 × 10−3

(500, 10) 15.15 0.00 0.00 54 5.03 8.84 × 10−6 55 11.12 8.22 × 10−6

From Table 2, we can observe that the proposed sPADMM can successfully solve
almost all problems, except the case with only impulsive noise (q = 0.1). The mentioned
case q = 0.1 is a highly challenging problem because the noise level is so high. But the
proposed sPDADMM can successfully deal with all the cases; moreover, it can attain
high accuracy in the case of only impulsive noise (q = 0.1). Additional experiments are
conducted in the following Table 3 for illustrating the aforementioned results. The sampling
rate sr has a great influence on whether the problem can be solved successfully. Observing
the results in Table 3, the sPADMM cannot be successfully implemented for the cases of
sr ≤ 0.5, q = 0.1. As the sampling rate increases, so does the efficiency of both algorithms.
Moreover, the sPDADMM can solve successfully for the case of sr = 0.5 and is superior to
the sPADMM for all the cases. These numerical results illustrate that the sPDADMM for
solving the dual problem of (6) is more robust, which is our main contribution to apply an
effective and robust method for solving the nonsmooth convex optimization problem (6)
from the dual perspective. As the level of the Gaussian noise becomes high, it can be seen
that the sPADMM can obtain higher accuracy than the sPDADMM. Especially, both of the
proposed algorithms are efficient for the noiseless case.

Table 3. Numerical results of sPADMM and sPDADMM for (6), m = n.

sPADMM sPDADMM

(m, r) sr q σ Iter Time RelErr Iter Time RelErr

(500, 5) 0.3 0.1 0.00 200 96.72 1.34 × 1014 200 56.37 1.46 × 10−1

(500, 5) 0.5 0.1 0.00 200 94.05 4.84 × 1014 56 13.05 9.01 × 10−6

(500, 5) 0.8 0.1 0.00 101 17.14 8.85 × 10−6 25 5.11 6.98 × 10−6

(500, 10) 0.3 0.1 0.00 200 72.28 3.33 × 1015 200 45.17 1.26 × 10−1

(500, 10) 0.5 0.1 0.00 200 55.28 2.69 × 1020 67 13.33 9.58 × 10−6

(500, 10) 0.8 0.1 0.00 156 121.12 9.45 × 10−6 27 6.29 8.48 × 10−6

Test 6: The numerical results are displayed in Figure 5. We test the sPADMM and
sPDADMM for solving problem (6) with different sr.

Observing Figure 5, we can see that the sPADMM and sPDADMM perform better
with sr increasing and can even attain a higher accuracy than 10−12. In the meantime, as the
parameter is chosen appropriately, it can obtain an approximate exact solution for solving
the matrix nuclear norm minimization problem.

These numerical results show that the above conclusions on the matrix completion
problem (32) also apply to the general problem (6) as well. Moreover, if the measurement
contains kinds of noises, it is more efficient to choose the nuclear norm minimization
problem with the l1-norm fidelity term. Moreover, these tests illustrate that the sPADMM
is more robust and efficient for solving the case with non-Gaussian noise.
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Figure 5. sPADMM (left) and sPDADMM (right) for problem (6) with impulsive noise: m = n = 500;
r = 10; sr = 0.2, 0.4, 0.6, and 0.8; and q = 0.005.

5. Conclusions

In this paper, we proposed some efficient algorithms for solving the nuclear norm
minimization problem with the l1-norm fidelity term, which is suitable for recovering a
corrupted low-rank matrix with impulsive noise. Especially, when the parameter is chosen
appropriately, this proposed model is an exact penalty function problem. We applied
the sPADMM for solving it and gave some convergence analyses. Moreover, we first
proposed the semi-proximal ADMM for solving the dual problem and gained a more
efficient and robust algorithm. Finally, we presented some numerical experiments to
illustrate the efficiency of the proposed models and algorithms. The numerical results show
that the proposed l1 fidelity model is preferred over the l2 one when the data contain some
impulsive noise or the mixture with Gaussian noise. What is more, it is also competitive to
the model with l2 fidelity for the noiseless case. In particular, comparing the sPADMM with
the sPDADMM, we have noted that the sPADMM is less efficient than the sPDADMM for
the problem with the same level of impulsive noise. But as the scale gets larger, a quicker
computation of the SVD needs to be introduced for solving the Z-subproblem. Therefore,
we will accelerate the sPDADMM by introducing or designing a more efficient method to
compute the SVD in the future. Given proper nonconvex regularization achieves a better
low-rank estimation and is more robust to noise than the nuclear norm convex relaxation,
we will focus on designing efficient algorithms for solving the nonconvex robust low-rank
matrix estimation problems with non-Gaussian noise.
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