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Abstract: Solar power is considered a promising power generation candidate in dealing with climate
change. Because of the strong randomness, volatility, and intermittence, its safe integration into
the smart grid requires accurate short-term forecasting with the required accuracy. The use of solar
power should meet requirements proscribed by environmental law and safety standards applied for
consumer protection. First, time-series-based solar power forecasting (SPF) model is developed with
the time element and predicted weather information from the local meteorological station. Consider-
ing the data correlation, long short-term memory (LSTM) algorithm is utilized for short-term SPF.
However, the point prediction provided by LSTM fails in revealing the underlying uncertainty range
of the solar power output, which is generally needed in some stochastic optimization frameworks. A
novel hybrid strategy combining LSTM and Gaussian process regression (GPR), namely LSTM-GPR,
is proposed to obtain a highly accurate point prediction with a reliable interval estimation. The
hybrid model is evaluated in comparison with other algorithms in terms of two aspects: Point predic-
tion accuracy and interval forecasting reliability. Numerical investigations confirm the superiority
of LSTM algorithm over the conventional neural networks. Furthermore, the performance of the
proposed hybrid model is demonstrated to be slightly better than the individual LSTM model and
significantly superior to the individual GPR model in both point prediction and interval forecasting,
indicating a promising prospect for future SPF applications.

Keywords: solar power forecasting (SPF); long short-term memory (LSTM); Gaussian process regres-
sion (GPR); hybrid model; environmental protection

1. Introduction

Solar energy is considered a promising power generation candidate [1] for sustainable
development and is playing an increasingly important role in response to climate change [2]
because of the heavy carbon emission in the conventional power plant [3]. It is applied in
distributed and grid-connected systems [4] to power household appliances, commercial,
and industrial equipment [5]. However, reliable operation and planning of power grids are
strongly affected by the deep penetration of solar energy [6], which demands electricity
supply companies to achieve uncertainty prediction of solar power and avoid a potential
crisis in operation planning in advance. Any uncertainty of solar power generation caused
by unexpected fluctuations may have significant adverse impacts on the daily operation
safety of the entire power system and reduce the power quality enjoyed by energy con-
sumers. Consequently, obtaining short-term solar power forecasting (SPF) results with
highly precise point prediction and reliable interval range is becoming a crucial issue in
energy management systems. However, unlike the energy generated from power plants,
the solar power output cannot be absolutely planned and controlled due to some inherent
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characteristics, including volatility [7], intermittence, and randomness [8], which brings a
severe challenge to integrate solar energy into the smart grid.

Because of the importance and urgency of SPF research, numerous studies have been
extensively engaged in the literature. The predictive techniques can be roughly classified
into three categories: Physical, statistical, and machine learning methods. In the physical
method, such as numeric weather prediction (NWP) [9,10], solar irradiance and numerous
meteorological parameters, such as cloud coverage and wind speed require to be taken
into account to develop a complex physical mathematical model, while the computational
complexity and poor anti-interference performance have been an obstacle. Instead, sim-
pler than the physical method, the statistical method exclusively relies on historical data.
However, the utilized principle of persistence and disorder sequence restricts its prediction
performance because of the non-stationary characteristic existing in solar power time se-
ries [11]. Deriving from artificial intelligence, machine learning represented by artificial
neural networks (ANN) [12], support vector regression (SVR) [13], and Gaussian process
regression (GPR) [6] possesses a powerful capacity of nonlinear mapping and thus offers
competitive advantages in approximating the changing tendency of solar energy. There-
fore, machine learning is focused on in this study. Due to the deficiencies of insufficient
generalization ability and static regression, conventional neural networks, such as back
propagation neural network (BPNN), become incompetent when dealing with dynamic
time series, such as solar power sequence, while the extremely attractive technology, deep
learning, provides a promising method to tackle the disadvantage [14]. Recurrent neural
network (RNN) [15,16] is proposed to extract time-dependent correlation since feedback
loops in the hidden layer enable it to achieve memorization of temporal behavior. However,
long-term dependence problems will inevitably occur when long-term behavior requires
to be learned. Long short-term memory (LSTM) [17,18], as an advanced variant of RNN,
is then proposed to tackle this deficiency by constructing a memory cell where crucial
information is stored. Therefore, LSTM enables the dependence between the solar energy
data for consecutive hours and even the long-term information to be captured and learned.

However, models like LSTM only focus on the point prediction accuracy but fail in re-
vealing the uncertainty range of solar power output. Moreover, the prediction performance
of the methods by optimizing parameters or increasing structure complexity is close to that
of LSTM, but no qualitative breakthrough in terms of accuracy can be made. Most efforts
are devoted to improving the point prediction accuracy, but relatively limited studies are
engaged in obtaining the uncertainty range. Instead, the probabilistic prediction method is
recently popularized by researchers [19,20]. Achieving a reliable fluctuation range of power
output is more beneficial to energy dispatching. Based on statistical learning and Bayesian
theory, GPR is adapted to solve high-dimensional and nonlinear problems, whose appli-
cations can be observed in [21,22]. Thus a highly accurate point prediction and a reliable
interval forecasting can be simultaneously obtained by the LSTM- and GPR-based hybrid
model (LSTM-GPR). [23] explains that the hybrid model shows better performance than
individual models. An ensemble of ANN and support vector regression (SVR) [24] and
a combination of the seasonal autoregressive integrated moving average (SARIMA) and
support vector machine (SVM) [25] are the hybrid model examples for power forecasting.

Furthermore, weather forecasting information provided by local meteorological agen-
cies is the important and essential data support for increasing the SPF accuracy [26]. In
addition to the volatility of solar energy output caused by the weather uncertainty, how-
ever, time-based daily regularity of power output is obviously reflected as well. Thus, to
obtain higher SPF accuracy, comprehensive utilization of these two characteristics in the
prediction model is a reasonable and meaningful attempt [27,28]. Next is the design of the
above-mentioned hybrid model algorithm and how to incorporate the joint features into
the prediction model. The major contributions of this paper are listed as follows.

(1) Based on the correlation analysis between the weather attributes and solar power
generation and the revealed daily regularity, time-series-based SPF model is first developed
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with the predicted weather information and time element. LSTM algorithm capable of
learning the long-term behavior is introduced to perform SPFE.

(2) A novel hybrid model combining LSTM and GPR, called LSTM-GPR, is developed
to compensate for LSTM's failure in the uncertainty range forecasting and achieve a highly
accurate point prediction and a reliable interval prediction simultaneously.

(3) Several experiments are carried out to test and validate the proposed forecasting
models from two aspects: Point prediction accuracy and interval forecasting reliability.
Numeric investigations confirm that the hybrid model obtains the comprehensively best
highly precise point prediction and reliable interval forecasting and shows superiority over
the individual models.

The remainder of this paper is organized as follows. Section 2 reviews the theoretical
foundation of LSTM and GPR and illustrates the implementation process of LSTM-GPR.
Feature selection analysis, as well as complete model construction, is detailed in Section 3.
Section 4 reveals the forecasting results and relevant discussion guiding the direction of
future efforts. Section 5 closes off with conclusions.

2. Methodology
2.1. Long Short-Term Memory Network (LSTM)

Instead of considering the inherent correlation in data sequence, conventional ANNS,
such as BPNN, only deal with the static regression by establishing a nonlinear function
between the input and output variables, which results in the difficulty in dynamic time
series regression, such as SPF. Consequently, RNN introducing the concept of time sequence
is proposed to compensate for the deficiency by creating feedback loops in the hidden layer.
Temporal behavior can be learned, while the long-term dependence problems cannot be
solved. However, except for the outer recurrent of RNN, an internal recurrent is developed
in LSTM cell [29], which can be observed in Figure 1. Figure 1 illustrates the structure
of LSTM cell equipped with a memory cell and three multiplicative units. Thus, not
only the temporal solar power output behavior but long-term information can be learned
and captured.

h;‘./. Xk /IA./. Xk

!

Input Qutput
Gate Gate

Pyt X — —> /i

Forget
Gate

/1;‘./, Xk

Figure 1. Structure of long short-term memory (LSTM) cell.

As can be seen from the figure, fi, ir, Ok, Cx and Cy are the forget gate, input gate,
output gate, candidate value for Cy and memory cell state, respectively [30], detailed
definitions of which are described as follows.

fr = U(wxka + whfhk,l + bf) €))

ix = 0(WyiXg + wyihg_1 + b;) @
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Cr = tanh(wyexy + wychy_q + be) 3)
Ce = fi- Ce1 + ik - G 4)

O = o (wxoXx + Wpohx—1 + bo) ®)
Ce = fi- Cr—1 + ik - G (6)

where xy. is the input sequence fed into the network at current time k. hi_; and hy represent
the outputs of hidden layer at the previous time k — 1 and current time k, respectively. The
initial value of hy, is set to 0. w is denoted as the corresponding weight matrice between
the components and the bias b added to the formula is used to promote the network
flexibility, which need to be optimized during the network training. The memory cell state
Ck, updated with time steps, can be obtained according to the previous state Cx_1. Forget
gate determines the prior information that needs to be preserved or removed, while input
gate determines the useful new information that will be stored in Cj. Activation functions
of each gate and hidden layer adopt sigmoid function ¢ and hyperbolic tangent function
tanh, respectively, the calculation formulas of which are expressed as follows.

o) = s @)
tanh(x) = ;_7_72; 8)

o limits the value between 0 and 1 to restrict the information flow. Finally, the predicted
output value can be obtained by h.

vk = o (wyhg + by) )

2.2. Gaussian Process Regression (GPR)

As a probabilistic prediction algorithm developed from statistical learning and Bayesian
theory, GPR possesses powerful generalization capacity and is applied in high-dimensional
and nonlinear regression problems. GPR is deduced from function space view in this
chapter. A regression model can be described as Equation (10) for the observation Y with
independent Gaussian white noise e.

Y =f(X)+e (10)

where X is the input vector of training set and f stands for the regression function, obeying
the Gaussian distribution (f(X) ~ N(u(X),k(X, X))). ¢ is assumed to ¢ ~ N(0,03). Then
the prior distribution of observation Y can be obtained.

Y ~ N (p(X), k(X, X) + 021 (11)

Assuming the test set input X* and actual output Y*, the joint distribution of observa-
tion Y and test f(X*) is given by:

(o )3 ) (™ &) )

where I is an unite matrix. Kernel function K = k(X, X) represents the symmetric positive
definite covariance matrix, which calculates the self-correlation of training set X. Similarly,
the self-correlation of test set X* and correlation between X and X* can be calculated
by Kew = k(X*, X*) and K, = k(X*,X) = k(X, X*)T, respectively. Then the posterior
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distribution and corresponding predicted value i of test set and covariance function 05*
can be obtained based on Bayesian framework.

FOXCY, X, X) ~ N, 0) (13)

* 2 -1 *
W= Ke(K+21) (Y = (X)) + p(X") (14)

-1

0% = Koo — K (K n 0,31) KT (15)

* 2 -1 *
Hy = Ke(K+021) (Y = p(X)) + p(X") (16)

—1

Then the predicted 95% confidence interval can be calculated by [p; — 1.96(7{]2*, uy +

1.96(75*]. Matern 5/2 is identified as the most appropriate kernel function in this study,
whose formula is expressed as follows.

o _ N2 o
kM5/2(x,x’) _(72<1+\/5|x lx | +\f5(x 3;) ) ~exp<—\/§|xlx|> +02I  (18)

where hyper-parameters ¢ > 0 and I > 0 are the amplitude and characteristic length scale,
respectively [31], which can be defined by the likelihood function maximization.

2.3. Combination of LSTM and GPR (LSTM-GPR)

Since SPF with high precision can be achieved by LSTM, many researchers are commit-
ted to optimizing model parameters, simplifying model structure [32] to reduce training
time or even increasing structure complexity. The prediction performance of these methods
is close to that of LSTM, but no qualitative breakthrough can be made and no uncertainty
range of solar power can be provided. Due to the reliable probability prediction obtained
by GPR, a combination of LSTM and GPR is proposed to achieve a highly accurate point
prediction and reliable interval forecasting simultaneously. Considering the superiority of
LSTM in time series prediction is the first advantage of this hybrid model. Additionally, a
reliable prediction interval can be obtained by the second prediction of GPR.

The prediction flowchart of LSTM-GPR is depicted in Figure 2. X!" and X!, Y{" and
Y{¢ represent the input vectors and observations of training and test set, respectively. m
and 7 are the size of training and test set samples. Training set D{" = [X!", Y{"] is first fed
into the neural network to train LSTM, thus the mapping between the input and output

variables can be built. Based on the trained LSTM, the first predictions {yﬁfl, Y -yfm}

and [}/fl, yﬁelz, = -yffn} can be output according to the input X!" and X!¢. Especially, the first
predictions only contain point prediction results, namely, the predictions obtained by indi-
vidual LSTM. The construction of GPR is as follows. The first predictions {yﬁ’/ll ygf I y?m}

used as the input X4 and observations of training set Y{" = Y} are employed to define

GPR model, based on which, the second predictions [yé‘fl,yéfzp . -yé‘;n} can be obtained

according to the corresponding input X% = {yfl, Y, -yfn} . Compared with the first
prediction results, the second predictions include point prediction results as well as interval
forecasting results. Finally, the eventual predictions obtained by LSTM-GPR are used to
be compared with observations Y{¢ of test set to validate the performance of the proposed
hybrid model.



Sustainability 2021, 13, 3665

6 of 16

First training set: D7 =[ x7,%"] L X7 :[11"',:2 g ,r;]
First test set: D= xm | - i
: : =t st 2t]
Train GPR Train LSTM X —[ S ,r::']
¥ ¥
Test GPR Test LSTM “=Dageoi]
| |
| i
Y First pluiiLlinns:
S Je e e
GPR predictions:[ ¥ ¥2s*5 ¥, ] HasPiar s Yim | | Vi Hizs -J’m]

¥

1" o s
Xy = [yl,l’,"'l_’l"”!yLm]

\

Second training set:ny =[ X% "]

) fﬁi

Second test set:v} De=lar | Yy = [y:r,y:.-,' o J"ﬂ
Train GPR Xe= [»w Vil ]
* ‘("
Test GPR [J' 225 j

Second predictions:
fe _te e
Vo1 ¥220 Vo

ir xir' e e fe

x,”r x; ) X b gy
l P [ | l
Train and test LSTM
+ + + o + + +
Train and test GPR

Lum arison

4é é é Second predictions @ @
(%)

Figure 2. Prediction flowchart of long short-term memory and LSTM and Gaussian process regression
(LSTM-GPR).

3. Modeling Based on LSTM-GPR
3.1. Feature Selection Based on Weather Variables Correlation

Weather attributes employed in this paper have been summarized in Table 1. Their
selection for model input completely relies on the information availability and degree of
correlation with target output. Consequently, the correlation coefficient of all the eight
weather parameters with solar power output is first measured and depicted in Figure 3. It
follows from this figure that both visibility and temperature are mildly positively correlated
with solar power, while cloud coverage and humidity are mildly negatively correlated
with solar power. Additionally, other weather variables with relatively weaker correlation,
including dew point, wind speed, pressure, and altimeter, should not be neglected. Only
several major influencing factors are considered in most of the existing SPF methods.
However, it is unreasonable to only incorporate the most important weather variables into
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the model input since various environmental conditions have caused different degrees
of impact on solar power generation. Therefore, benefiting from the high-dimensional
weather data, performance improvement can be achieved despite the higher training time
cost, which can be ignored because of the offline training and speedy prediction.

Table 1. A summary of selected weather attributes.

Weather Attribute Unit Correlation Coefficient

Cloud coverage Y% —0.2604
Visibility Miles 0.3311
Temperature °C 0.3038
Dew point °C 0.0819

Relative humidity % —0.4150
Wind speed Mph 0.0408
Pressure inchHg 0.0999
Altimeter inchHg 0.0801

0.4 T T T T T T T

Correlation coefficients

05 I I I I I I I I
CloudCoverageVisibility Temperature DewPoint  Humidity WindSpeed Pressure  Altimeter

Weather variables
Figure 3. Correlation coefficient of weather attributes with solar power output.

3.2. Feature Selection Based on Time Correlation

The previous section has revealed that a meaningful attempt is to comprehensively
use weather information and time element for SPE. Because of the earth’s rotation, solar
power generation at a specific hour of a day shows considerable time correlation, i.e., daily
regularity. To intuitively display this feature, representing the four seasons in 2017, data
from 10 January to 20 January, from 10 May to 20 May, from 10 July to 20 July, and from 10
October to 20 October are selected to depict the distribution of daily solar power generation,
which is shown in Figure 4. Only during the period from 6:00 am to 5:00 pm is the sunshine
duration, zero observations of nightly energy are negligible here. It is observed that the
power output exhibits similar behavior among the days (uniform variance trend), while it
exhibits diverse and irregular behavior under the terrible or rapidly variational weather
conditions (abrupt turning points occurring at the hour other than 12:00 am). In regular
cases, solar power generates from the beginning of a day, and then gradually increases
until it peaks at noon (12:00 am), finally declines to zero as evening approaches, which
distinctly implies that the solar power output is considerably pertinent to the hour of the
day. To numerically present the time correlation, the correlation coefficient of the time
variable with solar power output is calculated as 0.1692. Due to the limited data support,
not only daily regularity but similar monthly and even annual behavior can be found and
discussed.
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Figure 4. Distribution of selected daily solar power generation.

3.3. LSTM-GPR Based Forecasting Modeling

Based on the above-mentioned analysis of weather and time correlation, the structure
of LSTM-GPR has been defined. Eight weather attributes at a given hour k and the
corresponding hour of the day are thus used as the model input feature vector X =
[X{", X4¢], solar power output at the corresponding time is directly treated as the output
Y = [Y{",Yl¢]. Benefiting from this designed structure, short-term SPF can be achieved
by using the predicted weather information. The following is to implement the hybrid
model algorithm (Section 2.3) according to the defined structure. Hence, in the hybrid
model, input variables of LSTM are composed of eight weather attributes and the time
variable, corresponding solar power output is the output. Therefore, the first results

{yfl,y%, . yﬁrm} and [yfl,yfz,~ : -yﬁfn} obtained by LSTM are the solar power output
predictions. Then [yﬁfl, Yl -yﬁ”m} and Y!" are treated as the input and output to train
GPR, respectively. The second predictions {yéel, y§f2, = ~y§’fn] can be obtained according to
the corresponding input [yﬁ‘fl,yfz,- : -yﬁeln} in GPR.

The advancement of the introduced LSTM and the superiority of the proposed LSTM-
GPR are confirmed by the comparison with other algorithms, including BPNN, individual
LSTM, and GPR. It is worth noting that the same input-output structure as the hybrid
model is implemented in BPNN and individual LSTM and GPR, while GPR of the hybrid

model executes the second prediction between the first results forecasted by LSTM and
observations.

4. Experimental Results and Discussion
4.1. Experimental Data

The solar power output and the corresponding eight weather parameters dataset
of the campus of the University of Illinois in Urbana-Champaign, from 1 February 2016
to 28 October 2017, is gathered from a publicly available database [33], which has been
pre-processed to obtain a consistent hourly resolution. It can be observed that sunshine
duration is only during the period from 6:00 am to 5:00 pm. Hence, observations ranging
from 6:00 a.m. to 5:00 p.m. are selected to implement the experiments and avoid the model
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performance degradation caused by the increasing variance noise from the nightly zero
observed energy. Two cases with different sample sizes are used to validate the proposed
hybrid model’s ability to perform highly precise point prediction and reliable interval
forecasting. Detailed sample information is presented in Table 2 and elaborated on in the
following chapter. All the models covered in this paper are programmed on MATLAB
2020a.

Table 2. Sample information of two cases.

Training Data Test Data
Datasets
Period m Period n
Datasetl 2016.5.31-2017.8.7 5136 2017.8.8-2017.8.9 24
Dataset2 2016.2.1-2016.9.25 2856 2016.9.26-2016.9.27 24

Before these raw data are fed into the model training and test, min-max normalization
is used to scale the experimental data to [0,1] to degrade the negative influence resulting
from the large difference in data scale.

4.2. Model Assessment Criteria
4.2.1. Assessment Criteria of Point Prediction

To qualitatively assess the models’ ability to perform SPF, commonly used assess-
ment criteria, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE), are calculated by the SPF results y; and
observations Y. The official function is written as follows. n represents the number of test
set samples.

RMSE = (19)
MAE = kﬂ# (20)
n
Yk — Yl / Yk
MAPE = =1 x 100% 1)

4.2.2. Assessment Criteria of Interval Forecasting

(1) Coverage rate (CR)

CR [34] is defined as the ratio of the number of observation values within the prediction
interval to all the observations, which is given by Equation (22). 1. and n are denoted as
the number of the former and latter observations, respectively.

CR = % % 100% (22)

(2) Mean interval width (MIW)

CR can be used to assess the interval prediction performance to some extent. However,
a sufficient wide interval signifies the coverage of 100%, which breaks the meaning of
evaluation value and brings about heavy burden for smart grid. MIW is defined as the
mean width of the prediction interval. It is obvious that a lower MIW and a higher CR
suggest a more reliable prediction interval. Therefore, MC defined as the ratio of MIW to
CR is introduced, which is expected to be a litter smaller.

f upy — downy,

MIW = HT (23)
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MC = MIW/CR (24)

where upy and down, are defined as the upper bound and lower bound of predictions,
respectively.

4.3. Experimental Results

Three tasks require to be completed in this chapter. First is to verify the advancement
of the introduced LSTM. Second, the proposed LSTM-GPR is compared with individual
models in terms of point and interval prediction. Third is to confirm the efficiency and
reliability of the hybrid model.

Two cases with different samples are used to test and validate the prediction perfor-
mance of the proposed models. In the first experiment, the data covering 5160 samples
are employed, and the last two days are selected as the forecasting days to test the perfor-
mance, while the second experiment is performed with fewer samples. To ensure a fair
comparison, all the involved models are trained with the same dataset and tested on the
same forecasting days. The point prediction can be obtained by all the involved models,
while the prediction interval can only be achieved using LSTM-GPR and individual GPR.

(1) Analysis of point prediction

The point prediction accuracy of LSTM-GPR is discussed in detail here. Numerical
assessment of all the involved models has been calculated in Table 3 and intuitively
depicted in Figure 5. It can be seen that LSTM produces considerable point prediction
results against BPNN whenever RMSE, MAE, and MAPE are considered in the two cases,
implying that LSTM taking into account the correlation between the solar power data
shows strong superiority over the conventional BPNN. Thus the advancement of the
introduced LSTM algorithm has been verified. For the hybrid model, we have achieved
the goal of satisfactory point prediction due to the reservation of LSTM and we even
obtained the results with a slight improvement. The reason is that the second training
of GPR between the first predictions obtained by LSTM and observations improved the
prediction performance. On the contrary, the individual GPR developed with weather
and time variables exhibits disappointing performance in both cases and even worse than
BPNN. Therefore, the excellent point prediction performance is mostly attributed to the
LSTM application. To vividly compare the prediction accuracy, the forecasting results of all
the involved models of the two cases are drawn in Figures 6 and 7. The conclusion drawn
from the figures is consistent with the above discovery. Consequently, the comprehensively
best point prediction performance is obtained by LSTM-GPR among all the models.

450 r T T T 650 T T T T
BPNN 600 |- BPNN E
400 - LSTM b 550 L LSTM |
LSTM-GPR ) LSTM-GPR
350 - GPR b 500 |- GPR E
450 | i
300 | .
400 | i
250 |- T 350 |- 4
200 | | 300 | i
250 |- i
150 |- . 200 L i
100 |- _ 150 i
100 |- i
50 .
50 - i
1 1 1 ! 0 L 1 ! )
RMSE MAE MAPE/% MC*100 RMSE MAE MAPE/% MC*100
Datasetl Dataset2
(a) (b)

Figure 5. Assessment criteria. (a) Assessment criteria of Datasetl, (b) Assessment criteria of Dataset2.
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Table 3. Numerical assessment of all the involved models.

Dataset Model RMSE MAE MAPE/% CR/% MIW MC * 100

BPNN 374.99 301.23 16.91 - - -

. . LSTM 296.25 221.56 14.78 - - -
atasetl  1orVv GPR 26498 201.77 9.43 100 1627.91 16.28
GPR 403.20 311.23 10.64 100 2797.76 27.98

BPNN 501.45 372.71 - - - -

D ) LSTM 288.81 227.07 - - - -
ataset2  1oTV GPR - 280.89 219.49 - 83.33 852.62 10.23
GPR 601.18 478.86 - 95.83 2550.21 26.61

(2) Analysis of interval forecasting

Interval forecasting reliability of LSTM-GPR is demonstrated here. Confidence coef-
ficient is set to 95% in this work. Numerical assessment can be seen in Table 3, and the
intuitive prediction interval of the two cases is drawn in Figures 6 and 7. In Datasetl,
benefiting from the highly accurate point prediction due to the LSTM application and
second prediction of GPR, MIW obtained by LSTM-GPR is significantly smaller than that
obtained by individual GPR, although both models have 100% CR. A similar phenomenon
about MIW can be found in Dataset2. However, individual GPR has a little higher CR
than LSTM-GPR, it is difficult to determine which model obtains a more reliable prediction
interval. MC is introduced to deal with this difficulty. It is observed from Table 3 that MC
of individual GPR is nearly twice as large as LSTM-GPR, which implies that the individual
GPR increases CR by expanding the interval width. Hence, the prediction interval obtained
by GPR has of no practical application value, and the comprehensively reliable interval
forecasting performance is obtained by LSTM-GPR.

In addition, it can be found that the prediction interval is relatively wider at the
volatility of solar power. Furthermore, LSTM-GPR fails in timely tracking the variability of
solar power, which may be solved by constructing the complex kernel function of GPR.

According to the above comparisons and analysis, forecasting results confirm the ad-
vancement and superiority of LSTM over the conventional neural networks and demonstrate
that LSTM-GPR achieves the best point prediction and interval forecasting performance.
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Figure 6. Forecasting results of Datasert1. (a) Forecasting results obtained by individual LSTM and
BPNN, (b) forecasting results obtained by LSTM-GPR, (c) forecasting results obtained by individ-
ual GPR.
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Figure 7. Forecasting results of Datasert2. (a) Forecasting results obtained by individual LSTM and
BPNN, (b) forecasting results obtained by LSTM-GPR, (c) forecasting results obtained by individ-
ual GPR.

4.4. Discussion

Based on the introduction of advanced LSTM, a novel combination strategy of LSTM
and GPR is proposed to achieve a highly precise point prediction and reliable interval
forecasting simultaneously for short-term SPF. However, some discussions require to be
conducted here to guide the direction of future research.

(1) Due to the limited data support, time-based regularity and periodicity of solar
power cannot be found by similar monthly and even annual behaviors. Therefore, a
combination of month, day of the month, hour of the day, and weather parameters can be
fed into the model input to improve the model structure if abundant data are available.

(2) The proposed hybrid model produces considerable results in regular cases, but it
cannot track the abrupt fluctuation of solar power due to the weather disturbances, which
probably partially results from the simple kernel function used in GRP. Future work will
focus on the complex kernel functions adapted to the solar power data.

(3) It is worth noting that LSTM-GPR not only can be applied in SPF applications but
in applications related to time series, such as wind speed and solar irradiance. In addition,
SPF with high precision is directly beneficial to the combination prediction of solar power,
wind power, and load in the complementary system.

(4) Environmental regulation will have consequential effects on current research.
Change of requirements prescribed by environmental regulation will increase the complex-
ity of the use of solar power. Continuing experiments on current research is necessary for
the change of environmental requirements in the future.

5. Conclusions

Short-term SPF method is first developed with time element and weather attributes in
this study. Additionally, LSTM is considered an attractive technique for short-term SPF
and introduced. However, it fails in predicting the uncertainty range of solar power, which
can be achieved by the probability prediction model, GPR. A novel hybrid model reserving
LSTM'’s superiority of arbitrary-length sequence dependence and exploiting GPR'’s ability
to predict uncertainty range is proposed. The novelty of this work lies in that deep learn-
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ing technology and probability prediction methods are combined to compensate for the
deficiencies of individual models and preserve their advantages. Two cases with different
samples have been carried out to test and validate the performance of the proposed method.
Several performance indicators have been proposed and defined for the assessment of point
prediction and interval forecasting. Numeric assessment and intuitive forecasting figures
have verified the advancement and superiority of LSTM by comparison with conventional
BPNN. Furthermore, LSTM-GPR obtains comprehensively highly accurate point prediction
and reliable forecasting interval due to the LSTM application and second prediction of
GPR. Although the highly precise point prediction has been achieved, LSTM-GPR fails in
timely tracking the violent fluctuation of solar power, which is the research direction for
future work. In general, LSTM-GPR will become a promising technology for future SPF
applications and other applications, such as load and solar irradiance prediction.

Author Contributions: Y.W. and Q.-5.H. conceived the main idea and wrote the manuscript. B.F. did
the simulations. L.S. reviewed the paper and gave improvement suggestions. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program under
Grant 2018YFB1502900.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of NAME OF INSTITUTE.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.
12.

13.

14.

Wang, F; Zhen, Z.; Liu, C.; Mi, Z.; Hodge, B.-M.; Shafifie-khah, M.; Catalao, ].P. Image phase shift invariance based cloud motion
displacement vector calculation method for ultra short-term solar PV power forecasting. Energy Convers. Manag. 2018, 157,
123-135. [CrossRef]

Masa-Bote, D.; Castillo-Cagigal, M.; Matallanas, E.; Caamafio-Martin, E.; Gutiérrez, A.; Monasterio-Huelin, F,; Jiménez-Leube, J.
Improving photovoltaics grid integration through short time forecasting and self-consumption. Appl. Energy 2014, 125, 103-113.
[CrossRef]

Sun, L.; Xue, W,; Li, D.; Zhu, H.; Su, Z.-G. Quantitative Tuning of Active Disturbance Rejection Controller for FOPDT Model with
Application to Power Plant Control. IEEE Trans. Ind. Electron. 2021, 1. [CrossRef]

Wang, F; Xiang, B.; Li, K.; Ge, X.; Lu, H.; Lai, ].; Dehghanian, P. Smart Households” Aggregated Capacity Forecasting for Load
Aggregators Under Incentive-Based Demand Response Programs. IEEE Trans. Ind. Appl. 2020. [CrossRef]

Ismail, A.M.; Ramirez-Iniguez, R.; Asif, M.; Munir, A.B.; Muhammad-Sukki, F. Progress of solar photovoltaic in ASEAN countries:
A review. Renew. Sustain. Energy Rev. 2015, 48, 399—412. [CrossRef]

Sun., L; Jin, Y.; Shen, J.; You, F. Sustainable Residential Micro-Cogeneration System Based on a Fuel Cell Using Dynamic
Programming-Based Economic Day-Ahead Scheduling. ACS Sustain. Chem. Eng. 2021. [CrossRef]

Van Haaren, R.; Morjaria, M.; Fthenakis, V. An energy storage algorithm for ramp rate control of utility scale PV (photovoltaics)
plants. Energy 2015, 91, 894-902. [CrossRef]

Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model
and time correlation modification under partial daily pattern prediction framework. Energy Convers. Manag. 2020, 212, 112766.
[CrossRef]

Alonso-Montesinos, J.; Monterreal, R.; Fernandez-Reche, J.; Ballestrin, J.; Carra, E.; Polo, ].; Barbero, J.; Batlles, F.; Lépez, G.;
Enrique, R.; et al. Intra-hour energy potential forecasting in a central solar power plant receiver combining Meteosat images and
atmospheric extinction. Energy 2019, 188, 116034. [CrossRef]

Ohtake, H.; Uno, F,; Oozeki, T.; Yamada, Y. The Latest Update of JMA Numerical Weather Prediction Models and its Solar Power
Forecasting Errors. IEE] Trans. Power Energy 2018, 138, 881-892. [CrossRef]

Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018. [CrossRef]
Pattanaik, D.; Mishra, S.; Khuntia, G.P.; Dash, R.; Swain, 5.C. An innovative learning approach for solar power forecasting using
genetic algorithm and artificial neural network. Open Eng. 2020, 10, 630-641. [CrossRef]

Lin, K.-P; Pai, P-F. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector
regression. J. Clean. Prod. 2016, 134, 456—462. [CrossRef]

Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers.
Manag. 2019, 198, 111799. [CrossRef]


http://doi.org/10.1016/j.enconman.2017.11.080
http://doi.org/10.1016/j.apenergy.2014.03.045
http://doi.org/10.1109/TIE.2021.3050372
http://doi.org/10.1109/TIA.2020.2966426
http://doi.org/10.1016/j.rser.2015.04.010
http://doi.org/10.1021/acssuschemeng.0c08725
http://doi.org/10.1016/j.energy.2015.08.081
http://doi.org/10.1016/j.enconman.2020.112766
http://doi.org/10.1016/j.energy.2019.116034
http://doi.org/10.1541/ieejpes.138.881
http://doi.org/10.1016/j.energy.2018.01.177
http://doi.org/10.1515/eng-2020-0073
http://doi.org/10.1016/j.jclepro.2015.08.099
http://doi.org/10.1016/j.enconman.2019.111799

Sustainability 2021, 13, 3665 16 of 16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

Li, G.; Wang, H.; Zhang, S.; Xin, ].; Liu, H. Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach. Energies
2019, 12, 2538. [CrossRef]

Zhou, H.; Zhang, Y.; Yang, L.; Liu, Q.; Yan, K.; Du, Y. Short-term Photovoltaic Power Forecasting based on Long Short Term
Memory Neural Network and Attention Mechanism. IEEE Access 2019, 7, 78063-78074. [CrossRef]

Lee, W.; Kim, K,; Park, J.; Kim, J.; Kim, Y. Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural
Networks. IEEE Access 2018, 6, 73068-73080. [CrossRef]

Mitsuru, K.; Yusuke, E.; Hiromasa, S.; Ikeda, R.; Kusaka, H. Probabilistic Solar Irradiance Forecasting by Conditioning Joint
Probability Method and its Application to Electric Power Trading. IEEE Trans. Sustain. Energy 2018, 10, 983-993.

Wen, Y.; Alhakeem, D.; Mandal, P.; Chakraborty, S.; Wu, Y.-K,; Senjyu, T.; Paudyal, S.; Tseng, T.-L. Performance Evaluation of
Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty. IEEE Trans.
Neural Netw. Learn. Syst. 2020, 31, 1134-1144. [CrossRef]

Sheng, H.; Xiao, J.; Wang, P. Lithium Iron Phosphate Battery Electric Vehicle State of Charge Estimation based on Evolutionary
Mixture Gaussian Regression. IEEE Trans. Ind. Electron. 2016, 64, 544-551. [CrossRef]

Samuelsson, O.; Bjork, A.; Zambrano, J.; Carlsson, B. Gaussian process regression for monitoring and fault detection of wastewater
treatment processes. Water Sci. Technol. 2017, 75, 2952. [CrossRef]

Kushwabha, V.; Pindoriya, N.M. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV
power generation forecast. Renew. Energy 2019, 140, 124-139. [CrossRef]

Rana, M.; Koprinska, I.; Agelidis, V.G. Univariate and multivariate methods for very short-term solar photovoltaic power
forecasting. Energy Convers. Manag. 2016, 121, 380-390. [CrossRef]

Bouzerdoum, M.; Mellit, A.; Pavan, A.M. A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale
grid-connected photovoltaic plant. Sol. Energy 2013, 98, 226-235. [CrossRef]

Kim, J.G.; Kim, D.H.; Yoo, W.S; Lee, J.; Kim, Y.B. Daily prediction of solar power generation based on weather forecast information
in Korea. IET Renew. Power Gener. 2017, 11, 1268-1273. [CrossRef]

Lu, HJ.; Chang, G.W. A Hybrid Approach for Day-Ahead Forecast of PV Power Generation. IFAC-PapersOnLine 2018, 51, 634-638.
[CrossRef]

Wessam, E.B.; Peter, T.; Ulrich, W. Day-ahead probabilistic PV generation forecast for buildings energy management systems. Sol.
Energy 2018, 171, 478-490.

Sun, G,; Jiang, C.; Wang, X.; Yang, X. Short-term building load forecast based on a data-mining feature selection and LSTM-RNN
method. IEE] Trans. Electr. Electron. Eng. 2020, 15, 1002-1010. [CrossRef]

Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res.
2017, 270, 654-669. [CrossRef]

Tolba, H.; Dkhili, N.; Nou, J.; Eynard, J.; Thil, S.; Grieu, S. GHI forecasting using Gaussian process regression: Kernel study.
IFAC-PapersOnLine 2019, 52, 455-460. [CrossRef]

Wojtkiewicz, J.; Hosseini, M.; Gottumukkala, R.; Chambers, T.L. Hour-Ahead Solar Irradiance Forecasting Using Multivariate
Gated Recurrent Units. Energies 2019, 12, 4055. [CrossRef]

Kuzmiakova, A.; Colas, G.; McKeehan, A. Machine Learning for Solar Energy Prediction. Available online: https://github.com/
ColasGael/Machine-Learning-for-Solar-Energy-Prediction (accessed on 1 July 2020).

Ranran, L.; Yu, J. A wind speed interval prediction system based on multi-objective optimization for machine learning method.
Appl. Energy 2018, 228, 2207-2220.


http://doi.org/10.1016/j.physd.2019.132306
http://doi.org/10.3390/en12132538
http://doi.org/10.1109/ACCESS.2019.2923006
http://doi.org/10.1109/ACCESS.2018.2883330
http://doi.org/10.1109/TNNLS.2019.2918795
http://doi.org/10.1109/TIE.2016.2606588
http://doi.org/10.2166/wst.2017.162
http://doi.org/10.1016/j.renene.2019.03.020
http://doi.org/10.1016/j.enconman.2016.05.025
http://doi.org/10.1016/j.solener.2013.10.002
http://doi.org/10.1049/iet-rpg.2016.0698
http://doi.org/10.1016/j.ifacol.2018.11.774
http://doi.org/10.1002/tee.23144
http://doi.org/10.1016/j.ejor.2017.11.054
http://doi.org/10.1016/j.ifacol.2019.08.252
http://doi.org/10.3390/en12214055
https://github.com/ColasGael/Machine-Learning-for-Solar-Energy-Prediction
https://github.com/ColasGael/Machine-Learning-for-Solar-Energy-Prediction

	Introduction 
	Methodology 
	Long Short-Term Memory Network (LSTM) 
	Gaussian Process Regression (GPR) 
	Combination of LSTM and GPR (LSTM-GPR) 

	Modeling Based on LSTM-GPR 
	Feature Selection Based on Weather Variables Correlation 
	Feature Selection Based on Time Correlation 
	LSTM-GPR Based Forecasting Modeling 

	Experimental Results and Discussion 
	Experimental Data 
	Model Assessment Criteria 
	Assessment Criteria of Point Prediction 
	Assessment Criteria of Interval Forecasting 

	Experimental Results 
	Discussion 

	Conclusions 
	References

