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Abstract: In clinical research, study outcomes usually consist of various patients’ information
corresponding to the treatment. To have a better understanding of the effects of different treatments,
one often needs to analyze multiple clinical outcomes simultaneously, while the data are usually
mixed with both continuous and discrete variables. We propose the multivariate mixed response
model to implement statistical inference based on the conditional grouped continuous model through
a pairwise composite-likelihood approach. It can simplify the multivariate model by dealing with
three types of bivariate models and incorporating the asymptotical properties of the composite
likelihood via the Godambe information. We demonstrate the validity and the statistic power
of the multivariate mixed response model through simulation studies and clinical applications.
This composite-likelihood method is advantageous for statistical inference on correlated multivariate
mixed outcomes.

Keywords: composite likelihood; multivariate analysis; mixed outcome; Godambe information

1. Introduction

Clinical research, such as toxicity studies and laboratory examinations, can provide relevant
information for measuring the effect of various treatments or experiments on the patients. This type
of research needs to jointly analyze different experimental outcomes, while the research outcomes
collected during the treatment are correlated and mixed with both categorical and continuous variables.
For example, we are studying the efficacy of treatments along with the toxicity and adverse drug
reactions simultaneously. In this case, the severity level could be measured as discrete or ordinal data,
while the clinical examination results such as the blood test measures are continuous. In the
traditional approach, these multiple outcomes are analyzed by different linear models to estimate the
effects of the treatments together with the relevant clinical and demographic information. However,
this approach ignores the correlation between the outcomes and only provides marginal inferences.
Thus, it is desirable to develop a multivariate approach, which can jointly model the multiple
mixed-type responses with the treatment and clinical covariates.

In the recent literature, there are two main approaches to build a joint model for mixed
response variables. The conditional Gaussian distribution model (CGDM) can decompose the
joint distribution of mixed response variables into a combination of the conditional distribution
and the marginal distribution. In the bivariate mixed case, the conditional Gaussian distribution
model can produce a conditional distribution of the categorical variables given the continuous
variables and marginal distribution for the continuous variables. In particular, Cox [1] provided
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the logistic conditional distribution for binary variables, and Cox and Wermuth [2] extended the
model with a probit-type function and showed the potential connection to the latent variable model.
Another conditional Gaussian distribution model, referred to as the general location model (GLOM),
was proposed by Olkin and Tate [3]. They adopted the opposite factorization, which consists
of a conditional normal distribution given the categorical variables and marginal multinomial
distribution. Teixeira-Pinto and Normand [4] compared this approach with the models proposed by
Sammel et al. [5,6] in a comprehensive review. Yang et al. [7] extended the model to mixed Poisson
and continuous response variables through a likelihood-based approach.

The grouped continuous model (GCM) proposed by Anderson and Pemberton [8] and de Leon [9]
provides another solution for this problem. The fundamental technique allows the categorical variables
to be treated as partitioned continuous latent variables with different nonoverlapping intervals
(Poon and Lee [10]; Skrondal and Rabe-Hesketh [11]). This type of transformation allows the latent
variables to follow a multivariate Gaussian distribution. Poon and Lee [10] demonstrated maximum
likelihood estimation for latent variables with polychoric correlations. As an extension of the grouped
continuous model, de Leon [9] proposed the conditional grouped continuous model (CGCM) to build a
joint model for the variables mixed with categorical and continuous outcomes. Catalano and Ryan [12],
Catalano [13], and Najita et al. [14] applied the conditional grouped continuous model to the studies
of fetal toxicity for longitudinal data. Gueorguieva and Agresti [15] proposed that the estimation of
correlated mixed response variables can be obtained by the expectation–maximization (EM) algorithm.
Zhang et al. [16] extended this to the parameter expanded EM algorithm under the full-likelihood
approach. de Leon and Carriére [17,18] developed a general mixed-data model, which aggregates the
CGDM and CGCM to jointly analyze correlated nominal, ordinal, and continuous data together.

It remains computationally challenging to estimate the joint distribution of multivariate mixed data.
The composite-likelihood method is based on compounded lower-dimensional distributions, which
offers an alternative solution to the estimation problem (Lindsay [19], Cox and Reid [20], Varin [21],
Varin et al. [22], and Reid et al. [23]). Faes et al. [24] applied this method for longitudinal data
with mixed outcomes. In their model, the correlation structure is induced by the random effect,
which does not have a closed-form expression. We aim to follow the approach of the CGCM and
use the composite-likelihood method to analyze the joint distribution of multivariate mixed-type
response variables, where the categorical response variables are modeled by continuous latent variables.
The parameters of the mean structure, as well as the correlation among different outcomes, can be
estimated simultaneously through the numerical algorithm. The proposed composite-likelihood
method consists of three types of bivariate joint densities: two continuous outcomes; two discrete
outcomes modeled by two continuous latent variables; and two mixed outcomes with one continuous
and one categorical variable.

We provide the numerical algorithm for composite-likelihood estimation and discuss the
asymptotical properties of the composite-likelihood estimates. In addition, we derive three
composite-likelihood test statistics for joint inference on the multivariate mixed response model.
Simulation studies were conducted to examine the empirical performance of the proposed method in
comparison with the conventional approaches. The algorithm was applied to the clinical data from a
colorectal cancer study. We analyze the effect of the treatment and other clinical factors’ on multiple
correlated responses of the patients.

2. Methodology

2.1. Model Setup

Suppose there are n observations z1, z2, . . . , zi, . . . , zn in a clinical dataset, and each observation
contains q multiple outcomes zi = (zi1, zi2, . . . , zij, . . . , ziq)

T , which are correlated and mixed with
continuous and binary variables. Suppose we wish to model the effects of a collection of covariates,
and the generalized linear model can be constructed for each outcome as
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gj(E(zij)) = xT
ij β j,

in which the covariate xij with i = 1, 2, . . . , n and j = 1, 2, . . . , q for different responses can be
the same or different, and gj denotes the link function used for the jth response. If we want to
analyze these multivariate mixed-type outcomes simultaneously with the corresponding covariates,
the conventional likelihood-based approach needs to identify the multivariate joint densities of
all responses. Alternatively, we can set up the pairwise likelihood function for responses zij and
zik as

Ljk(θjk) =
n

∏
i=1

f (zij, zik), (1)

where θjk denotes the parameters associated with the pairwise likelihood. The log-likelihood function
is given by ljk(θjk) = log Ljk(θjk), and the score function is given by

Ujk(θjk) =
n

∑
i=1

f (zij, zik)
−1 ∂

∂θjk
f (zij, zik). (2)

According to Lindsay [19] and Cox and Reid [20], the pairwise composite-likelihood function of
these q response variables is the product of (q

2) paired likelihood functions:

CL(θ) =
q−1

∏
j=1

q

∏
k=j+1

Ljk(θjk),

and the score function is constructed by defferentiating the composite log-likelihood function:

U(θ) =
∂

∂θ
log CL(θ). (3)

Our multivariate mixed response model estimates the parameters of interest θ by numerically
solving the composite score Function (3) equal to 0 through the Newton–Raphson [25] method.
Since the outcomes are mixed with continuous and categorical variables, the score Function (2) can be
derived under three different bivariate structures: outcomes with both continuous response variables,
outcomes with both binary response variables, and outcomes mixed with one continuous and one
binary response variable.

2.1.1. Case 1: Continuous Outcomes

We first discuss the case that both responses zij and zik are continuous and assume they follow a
bivariate normal distribution:(

zij
zik

)
∼ N2

((
µij
µik

)
,

(
σ2

j , ρjkσjσk

ρjkσjσk, σ2
k

))
,

where the mean structure of zij and zik is associated with the generalized linear models as µij = xT
ij β j

and µik = xT
ikβk. Thus, the pairwise density of zij and zik is the same as a bivariate normal density

based on Johnson and Wichern [26]:



Stats 2020, 3 206

f (zij, zik) =
1

2πσjσk

√
1− ρ2

jk

exp
[
− 1

2(1− ρ2
jk)
×

( (zij − µij)
2

σ2
j

−
2ρ(zij − µij)(zik − µik)

σjσk
+

(zik − µik)
2

σ2
k

)]
.

The pairwise composite-likelihood function can be constructed by

Ljk(θjk) =
n

∏
i=1

f (zij, zik),

with the parameters of interest θjk = {β j, βk, σj, σk, ρjk}, and the log-likelihood function ljk(θjk) =

∑n
i=1 log f (zij, zik), which gives the score function of both continuous responses used in the

Equation (2):

Ujk(θjk) =
∂ljk(θjk)

∂θjk
. (4)

2.1.2. Case 2: Binary Outcomes

For binary outcomes, the transformation can be obtained using the threshold value t such that
if the latent variable z∗ij ≥ t, then the response zij = 1, otherwise zij = 0. Without loss of generality,
the value of t is set to 0, and we have µij = P(zij = 1) = P(z∗ij ≥ 0). We follow the grouped continuous
model settings with the distributional assumptions zij ∼ Bernoulli(µij) and z∗ij ∼ N(µ∗ij, σ2

j ). Thus,
the model can be constructed with the covariates xij as

probit(µij) = xT
ij β j.

Since the mean µ∗ij and the variance σ2
j are not identifiable at the same time, we follow the rescaling

method based on Dunson [27] by setting σ2
j = 1. Therefore, the mean of the latent variable can be

simplified as µ∗ij = xT
ij β j.

Since we jointly analyze binary variables zij and zik, the paired latent variables z∗ij and z∗ik are
generated from a model with the polychoric correlation. Thus, the joint function of (zij, zik) can be
derived by following composite-likelihood functions in four cases

P(zij = 1, zik = 1) = P(z∗ij ≥ 0, z∗ik ≥ 0) = Φ2(µ
∗
ij, µ∗ik, ρjk),

P(zij = 1, zik = 0) = P(z∗ij ≥ 0, z∗ik < 0) = Φ2(µ
∗
ij,−µ∗ik,−ρjk),

P(zij = 0, zik = 1) = P(z∗ij < 0, z∗ik ≥ 0) = Φ2(−µ∗ij, µ∗ik,−ρjk),

P(zij = 0, zik = 0) = P(z∗ij < 0, z∗ik < 0) = Φ2(−µ∗ij,−µ∗ik, ρjk),

where±ρjk represents the polychoric correlation under different scenarios and Φ2 denotes the bivariate
normal cumulative density function. The equations above can be rewritten as

P(zij, zik) = Φ2((2zij − 1)µ∗ij, (2zik − 1)µ∗ik, (2zij − 1)(2zik − 1)ρjk)

= Φ2(sijµ
∗
ij, sikµ∗ik, sijsikρjk),

with sij = (2zij − 1) and sik = (2zik − 1). The log-likelihood function of paired binary responses is

ljk(θjk) =
n

∑
i=1

log Φ2(sijµ
∗
ij, sikµ∗ik, sijsikρjk).
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The score function can be derived as

Ujk(θjk) =
n

∑
i=1

P(zij, zik)
−1 ∂

∂θjk
log P(zij, zik). (5)

2.1.3. Case 3: Mixed Outcomes

When one response variable zij is binary, and another response variable zik is continuous, we can
model the mixed outcomes together by adopting a latent normal variable z∗ij as the conditional grouped
continuous model. Thus, they follow a bivariate normal distribution given the polyserial correlation ρjk:(

z∗ij
zik

)
∼ N2

((
µ∗ij
µik

)
,

(
σ2

j , ρjkσjσk

ρjkσjσk, σ2
k

))
.

The factorization method can be applied for the joint bivariate normal distribution with a marginal
density for the continuous response P(zik) and a conditional density for the latent variable P(z∗ij|zik)

given the continuous response.

1. zik is the continuous response

zik ∼ N(µik, σ2
k );

2. z∗ij is the latent variable for the binary response zij:

z∗ij|zik ∼ N
(

µij|k = µ∗ij + ρjk
σj

σk
(zik − µik), σ2

j|k = σ2
j (1− ρ2

jk)

)
.

Let dij = −
µij|k
σj|k

, the conditional probability P(z∗ij|zik) can be written as

P(z∗ij|zik) =

{
Φ(dij), if zij = 0,

Φ(−dij), if zij = 1.

The pairwise likelihood function and log-likelihood function is given as follows:

Ljk =
n

∏
i=1

P(z∗ij|zik)p(zik),

ljk =
n

∑
i=1

log P(zik) + log 1(zij = 0)Φ(dij) + log 1(zij = 1)Φ(−dij).

The score function can be obtained as

Ujk =
n

∑
i=1

1
P(zik)

∂P(zik)

∂θjk
+
[1(zij = 0)

Φ(dij)
−

1(zij = 1)
1−Φ(dij)

]∂Φ(dij)

∂θjk
. (6)

A similar formulation was extended to the longitudinal settings by Najita et al. [14]. More
derivation details are included in Appendix A.

The model setting above can simplify the score Function (3) with three types of components as
in Equations (4)–(6). We can obtain the maximum composite-likelihood estimate θ̂ (MCLE) for the
parameters θ by solving the score function numerically. Our numerical algorithm is presented below
(Algorithm 1):
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Algorithm 1: Multivariate Mixed Response Model Algorithm.

1. Select the initial values θ(0) of the parameters. Calculate the score function U(θ(0)) in
Equation (3) and the Hessian matrix ∇θU(θ(0)) as the derivative of the score function;

2. Implement the Newton–Raphson method to obtain the updated parameters θ(t)

with t = 0, 1, · · · ;
θ(t+1) = θ(t) − [∇θU(θ(t))]−1U(θ(t));

3. Calculate the score function and Hessian matrix with the updated parameters θ(t+1);
4. Repeat step 2 and 3 until convergence.

2.2. Statistical Inference Using the Composite-Likelihood Method

Cox and Hinkley [28] and Kent [29] presented various hypothesis testing procedures using the
full-likelihood function. The composite-likelihood function can be treated as the misspecified-likelihood
function. Its asymptotic properties were reviewed and discussed by Varin et al. [22], Reid et al. [23],
Jin [30], and Gao and Song [31]. Following this framework, the pairwise composite-likelihood function
implemented in our proposed model produces the estimators, which are consistent and asymptotically
normally distributed.

The Godambe information [32] G of the parameters θ for the log composite-likelihood function
involves the sensitivity matrix H and the variability matrix J:

G(θ) = H(θ)J−1(θ)H(θ),

where the sensitivity matrix and variability matrix are defined as

H(θ) = Eθ{−∇θU(θ; zi)} and J(θ) = Varθ{U(θ; zi)},

where U(θ; zi) denotes the score function of the ith observation and the total score function U(θ) =

∑n
i=1 U(θ; zi).

Theorem 1. Let θ0 ∈ <d denote the true parameter value to set up the multivariate mixed response model.
Under regularity conditions, n→ ∞, the maximum composite-likelihood estimator θ̂ is asymptotically normally
distributed as √

n(θ̂− θ0)
d−→ Nd(0, G−1).

Theorem 2. Under regularity conditions, n→ ∞, the maximum composite-likelihood estimator θ̂ is consistent
to θ0 satisfying

√
n(θ̂− θ0) = Op(1).

The sensitivity matrix H and the variability matrix J can be evaluated by the empirical estimates
under the maximum composite-likelihood estimators:

H(θ̂) = − 1
n

n

∑
i=1
∇θU(θ; zi)

∣∣
θ̂

and J(θ̂) =
1
n

n

∑
i=1

U(θ; zi)U(θ; zi)
T .

Furthermore, according to Theorem 1, the composite Wald statistic, the composite score statistic,
and the composite-likelihood ratio statistic for testing the null hypothesis H0: θ = θ0 are given
respectively by

We = n(θ̂− θ0)G(θ̂− θ0)

Wu = n−1U(θ0)J−1(θ̂)U(θ0),

W = 2{log CL(θ̂)− log CL(θ0)}.
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Testing with Nuisance Parameters

Suppose the parameters are partitioned as θ = {ψ, λ} with ψ ∈ <s, λ ∈ <p, and d = s + p.
The parameter of interest is ψ, and λ is treated as the nuisance parameter for hypothesis testing. In this
setting, the Godambe information matrix and its inverse can be partitioned as

G =

[
Gψψ Gψλ

Gλψ Gλλ

]
and G−1 =

[
Gψψ Gψλ

Gλψ Gλλ

]
,

and the inverse of the submatrix pertaining to ψ is given by Gψψ,λ = (Gψψ)−1 = Gψψ − GψλG−1
λλ Gλψ.

According to the asymptotic theorem, the composite Wald statistics under the null hypothesis H0:
ψ = ψ0 using λ̂(ψ0) is given by

We(ψ0) = n(ψ̂− ψ0)Gψψ,λ(ψ̂− ψ0),

which has an asymptotic χ2
q distribution. Similarly, we define the composite score statistics:

Wu(ψ0) = n−1U(ψ0, λ̂(ψ0))HψψGψψ,λHψψU(ψ0, λ̂(ψ0)),

where the matrix Hψψ can be obtained by partitioning the inverse sensitivity matrix H. Furthermore,
the composite-likelihood ratio statistic can be obtained by

W(ψ0) = 2{log CL(ψ̂, λ̂)− log CL(ψ0, λ̂(ψ0))},

with the unrestricted maximum composite-likelihood estimate θ̂ = {ψ̂, λ̂}. However, the asymptotic
distribution of the composite-likelihood ratio under H0 is given by ∑

q
j=1 λjχ

2
1(j), where χ2

1(j) are

independent χ2
1 variates and λ1, λ2 · · · , λq are the eigenvalues of the matrix Hψψ,λGψψ with Hψψ,λ =

Hψψ − Hψλ H−1
λλ Hλψ. There are different adjustments to this nonstandard weighted chi-square

distribution (Rotnitzky and Jewell [33], Geys et al. [34], and Pace et al. [35]). For example, we can apply
the adjustment by introducing the scaling factor λ̄ = ∑

q
j=1 λj/q, then the adjusted composite-likelihood

ratio has the same asymptotic distribution as We(ψ0) and Wu(ψ0):

W
λ̄

d−→ χ2
s . (7)

Therefore, the composite-likelihood method can simplify the modeling of correlated responses
with multiple generalized linear models and allow users to conduct statistic inferences on parameters
of interest from different generalized linear models. Moreover, we can select a subset of the parameters
and conduct the further inferential assessment in the presence of nuisance parameters.

3. Simulation

Different simulation studies were implemented to show the validity of the multivariate mixed
response model. The estimation results from the proposed model are compared with the full-likelihood
and marginal approaches, respectively.

3.1. Comparison with Maximum Full-Likelihood Estimation

In the multivariate regression with correlated continuous outcomes, the full-likelihood
estimation can be conducted without numerical integration. Thus, we can compare the maximum
composite-likelihood estimates with the full-likelihood approach through the simulation study.
The simulated samples contain four continuous response variables zic1 , zic2 , zic3 , and zic4 , which are
generated from Equation (8):
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zic1 = αc1 + βc1 xic1 + γc1 yic1 + εic1 ,

zic2 = αc2 + βc2 xic2 + γc2 yic2 + εic2 ,

zic3 = αc1 + βc1 xic1 + γc1 yic1 + εic1 ,

zic4 = αc2 + βc2 xic2 + γc2 yic2 + εic2 .

(8)

The covariates {xic1 , xic2 , xic1 , xic2} ∼ N(0, 1) and {yic1 , yic2 , yic1 , yic2} ∼ N(0, 0.5) are independently
simulated. The errors are correlated and generated from a multivariate normal distribution N4(0, Σ),
and the variance–covariance matrix Σ is given by

σ2
c1

σc1 σc2 ρc1c2 σc1 σc3 ρc1c3 σc1 σc4 ρc1c4

σc1 σc2 ρc1c2 σ2
c2

σc2 σc3 ρc2c4 σc2 σc4 ρc2c4

σc1 σc3 ρc1c3 σc2 σc3 ρc2c3 σ2
c3

σc3 σc4 ρc3c4

σc1 σc4 ρc1c4 σc2 σc4 ρc2c4 σc3 σc4 ρc3c4 σ2
c4

 .

In the simulation, the variances are designed as σ2
c1
= 1, σ2

c2
= 1, σ2

c3
= 2.25, and σ2

c3
= 4, and an

identical correlation ρ = 0.3 is applied between the errors in the data generating process.
The simulation results (Figure 1) were obtained through 1000 independent replications.

The maximum composite-likelihood estimators demonstrate similar performance when compared
with the full-likelihood approach. The simulated results also show that the estimates are close to each
other, and the maximum likelihood estimators have slightly higher relative efficiency.

Response

Outcome 1

Outcome 2

Outcome 3

Outcome 4

Coefficients

αc1 = .7

βc1 = .4

γc1 = .3

αc1 = .4

βc2 = .8

γc2 = .5

αc1 = .5

βc3 = .7

γc3 = 1

αc1 = .4

βc4 = .5

γc4 = .8

Ratio of MSE

0.999

1.852

1.932

1.001

1.638

1.614

1.001

1.321

1.391

0.999

0.861

0.877

0 0.5 1
Estimate and 95% Confidence Interval

MCLE
MLE

Figure 1. The comparison between the maximum full-likelihood estimation and maximum composite-
likelihood estimation for the regression coefficients on the multivariate continuous outcomes. The ratio
of the mean squared error (MSE) was computed using the MSE of the maximum composite-likelihood
estimate (MCLE) over the MSE of the maximum likelihood estimate (MLE).

3.2. Comparison with the Marginal Approach

For the mixed outcome regression, the full-likelihood approach is computationally challenging,
and marginal regression is often resorted to in order to conduct the analysis. We implemented
simulation studies to evaluate the performance of our proposed method in comparison with marginal
regression. We first tested the overall performance of the point estimates when the outcomes had
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different levels of dependency and covariates. Next, we focused on the test of the composite statistics.
The multivariate mixed response model can provide the statistical inference with nuisance parameters
and attains a higher statistical power in terms of dealing with joint inference.

3.2.1. Simulation Settings

We generated the sample data consisting of two binary responses zib1 and zib2 and two continuous
responses zic1 and zic2 . The binary variables were obtained based on the corresponding latent normal
variables z∗ib1

and z∗ib2
through the probit link function:

probit(µib1) = µ∗ib1
,

probit(µib2) = µ∗ib2
.

The simulation studies of the responses are based on Equation (9) associated with covariates
xi = {xib1 , xib2 , xic1 , xic2} and yi = {yib1 , yib2 , yic1 , yic2}, respectively:

z∗ib1
= αb1 + βb1 xib1 + γb1 yib1 + εib1 ,

z∗ib2
= αb2 + βb2 xib2 + γb2 yib2 + εib2 ,

zic1 = αc1 + βc1 xic1 + γc1 yic1 + εic1 ,

zic2 = αc2 + βc2 xic2 + γc2 yic2 + εic2 .

(9)

We provided different simulation scenarios of the covariates values and three levels of correlation
to analyze the response variables with the proposed model. The regression parameters were arbitrarily
chosen and set to be fixed values in each simulation study. The errors in Equation (9) follow a
multivariate normal distribution N4(0, Σ), and the variance-covariance matrix Σ is given by

σ2
b1

σb1 σb2 ρb1b2 σb1 σc1 ρb1c1 σb1 σc2 ρb1c2

σb1 σb2 ρb1b2 σ2
b2

σb2 σc1 ρb2c1 σb2 σc2 ρb2c2

σb1 σc1 ρb1c1 σb2 σc1 ρb2c1 σ2
c1

σc1 σc2 ρc1c2

σb1 σc2 ρb1c2 σb2 σc2 ρb2c2 σc1 σc2 ρc1c2 σ2
c2

 .

In the following data generating processes, the values of the variance-covariance parameters are
set as σ2

b1
= 1, σ2

b2
= 1, σ2

c1
= 16, and σ2

c2
= 25, and the correlation is designed at the levels of low

(all ρ = 0.3), medium (all ρ = 0.5), and high (all ρ = 0.7), respectively, to assess the underlying model.
Since there is no constraint on the sign of the correlation, the negative correlation can be estimated
through our algorithm without further assumptions. Our simulation studies focus on the overall
performance of the multivariate mixed response model through independent replications.

3.2.2. Point Estimates

Different simulation scenarios were designed to assess the performance of the underlying model
on the point estimates by 1000 independent replications. There are two different sets of simulations
for the data generating process, and within each setting, we analyze three levels of correlation,
respectively. As shown in Table 1, the values of the regression parameters and the standard deviation
of the continuous response variables are given across all simulation studies. In the first simulation
setting, we provide 300 samples, and the mixed response variables are associated with covariates of
distinct values. The covariate sets of xi and yi are identically and independently simulated from a
normal distribution N(0, 1), respectively, in each linear model.

In the second simulation setting, we present the multivariate mixed response model dealing with
the common covariate. Regarding the data generating process with 1000 samples, all responses share
one common covariate, which was generated from a normal distribution N(0, 1), such as xib1 = xib2 =

xic1 = xic2 in Equation (9). The second covariates yi are from a Bernoulli (0.5), and they are different
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for each response. This setting represents the scenario in practice when a common factor is included in
all of the response models.

Table 1. The ratio of the mean squared error (MSE) of the multivariate mixed response model (MMR)
to the marginal model (GLM). Results based on 1000 independent simulation under two different
scenarios and three different levels of correlation.

Simulation I * Simulation II †

Low Med High Low Med High

αb1
= 0.2 1.00 0.99 0.98 0.97 0.92 0.85

βb1
= 0.3 0.93 0.81 0.66 1.00 0.99 0.97

γb1
= 0.3 0.93 0.81 0.66 0.95 0.85 0.71

αb2 = 0.2 1.00 0.98 0.97 0.97 0.92 0.86
βb2 = 0.3 0.94 0.84 0.69 1.00 0.98 0.95
γb2 = 0.5 0.94 0.83 0.70 0.95 0.86 0.71

αc1 = 0.5 1.00 1.00 1.00 0.96 0.89 0.79
βc1 = 8 0.89 0.73 0.50 1.00 1.00 1.00
γc1 = 10 0.90 0.74 0.51 0.93 0.80 0.59
σc1 = 4 1.01 1.01 1.01 1.01 1.01 1.01

αc2 = 0.4 1.00 1.00 1.00 0.97 0.90 0.79
βc2 = 5 0.92 0.77 0.53 1.00 1.00 1.00
γc2 = 8 0.92 0.75 0.50 0.94 0.80 0.57
σc2 = 5 1.01 1.01 1.01 1.01 1.01 1.01

* Simulation I: N = 300, and the four responses have different covariates, e.g., xi and yi generated from a normal
distribution N(0, 1); † Simulation II: N = 1000, the responses shared one common covariate xi ∼ N(0, 1) and
added a different covariate yi ∼ Bernoulli (0.5).

In Table 1, we provide the ratio of the mean squared error (MSE) of the proposed method to
the marginal approaches. This ratio represents the relative efficiency of the proposed method in
comparison with the marginal method under different settings. In most of the simulation settings,
the ratio rates of the MSE are well below 1. When the responses are highly correlated and have different
covariate sets, our method can reduce MSE by 50%, which indicates a large efficiency gain.

3.2.3. Statistical Test

The test of composite-likelihood statistics can jointly assess the parameters of interest
across different generalized linear models, while the conventional methods cannot achieve this.
The simulation studies were conducted to measure the type I error rate and the power in comparison
with the marginal approaches.

This simulation study was conducted to perform the hypothesis test. The correlated responses
were generated based on Equation (9) with all correlation ρ = 0.3. The parameters of interest are the
regression coefficients {βb1 , βb2 , βc1 , βc2} of the first covariates across four generalized linear models,
and the first covariates xi are independently simulated from N(0, 1). The regression coefficients of
the second covariates yi and other parameters are nuisance parameters with yi ∼ N(0, .5). In the
simulation study to assess the type 1 error rate, the regression parameters {βb1 , βb2 , βc1 , βc2} are
equal to zero in all generalized linear models, while other parameters have the same values as
the previous simulation in Table 1. To assess the power, we fixed the values of the regression
parameters as βb1 = βb2 = 0.1 for the binary responses and βc1 = βc2 = 0.3 for the
continuous responses. In comparison, we combined the results of the marginal approaches by applying
the Bonferroni adjustment.

Table 2 illustrates the results over 2000 independent replications. The proposed model analyzes
all responses simultaneously, and the simulated type I error rates are valid and close to the 0.05.
Through the test of the joint effect of the covariate of interest on all responses, the simulated power
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is enhanced by our proposed model in comparison with the results from the Bonferroni test. As the
sample size increases from 500 to 1000, the composite-likelihood statistics produce increased statistical
power from approximately 0.800 to 0.989. The overall performance demonstrates that the composite
statistics are more powerful than the conventional approach.

Table 2. Type 1 error rate and power under different sample sizes (N = 500 and N = 1000).

Type I Error Power
N = 500 N = 1000 N = 500 N = 1000

Composite-Likelihood Method

H0 : βb1
= βb2 = βc1 = βc2 = 0

Likelihood ratio 0.054 0.043 0.804 0.988
Wald statistics 0.058 0.043 0.800 0.989
Scoring statistics 0.058 0.042 0.798 0.989

Multiple Test

Bonferroni test 0.051 0.040 0.569 0.902

The likelihood ratio statistic is adjusted as Equation (7), which approximates to a χ2
4.

4. Data Analysis

In this section, the multivariate mixed response model is applied to the clinical data from a
colorectal cancer study. The data consist of clinical observations and demographic information on
743 patients, which are mixed with both categorical and continuous data. Our research interest was
to evaluate the effect of treatment and other clinical factors on the toxicity outcomes. We focused on
four common toxicity events that are related to colorectal cancer treatment. First, we chose nausea and
diarrhea as two categorical responses. They are made up of ordinal data measuring the severity of
the toxicity from grade 1 to 4. In our model setting, we only considered the occurrence of nausea and
diarrhea for each patient. Therefore, these two responses were designed as binary variables, which are
coded as 1 if they occurred and 0 if there is no record during the treatment. The continuous responses
include two blood test measures, namely the hemoglobin (HGB) count and the white blood cell (WBC)
count. Each patient had several blood examinations during the treatment, and we took the highest
value for analysis. The explanatory variables contain the treatment effect, demographic information,
tumor status, and genetic markers for each patient. There are two different treatment therapies in
this colorectal cancer study. The patient demographic and clinical information, such as age, height,
and weight, were collected as continuous variables. The tumor identified in either the colon or rectum
was recorded as a binary variable. The study also includes the genetic markers, such as PERF1, PERF2,
and KRAS, which are binary variables showing the occurrence of mutation. In total, we needed to
jointly estimate 68 parameters for the coefficients of four linear models and the correlation between
each outcome.

Table 3 shows the main result of the effect of the treatment, and the complete result is presented
in Appendix B. We can observe that the statistical inference on the effect of the treatment through two
models was in agreement. The second treatment therapy resulted in lower measures of the hemoglobin
and indicates a negative association with the occurrence of nausea and diarrhea, whereas, the effect
difference on the measures of white blood cells is insignificant. We can use the composite statistics
to jointly assess the overall effect of this therapy on four responses. Table 4 provides the standard
deviation and the correlation of the four clinical outcomes estimated based on the proposed model.

Using the conventional approach, we cannot make a statistic inference across different
linear models. The proposed model is able to test the hypothesis H0 : βb1 = βb2 = βc1 = βc2 = 0
based on the asymptotical properties of the composite-likelihood function. The test statistics of the
composite Wald statistics under the H0 is approximately 138.5890, the composite score statistics is
476.975, and the adjusted composite-likelihood ratio is 264.3069, which are all greater than the critical
value of χ2

4. Therefore, we can reject the null hypothesis and conclude that the two different treatments



Stats 2020, 3 214

have a statistically significant difference in terms of patient toxicity response. More specifically, in our
estimation results, we infer that there exists a significant difference in terms of the occurrence of nausea
and diarrhea and a significant difference in HGB between the two treatments.

Table 3. The difference in the effect of treatment between the two treatment therapies. GLM: the
generalized linear model; MMR: the multivariate mixed response model.

Regression Parameter
Models

GLM MMR

zb1
: occurrence of nausea

Interceptαb1
−0.2685± 2.502 −0.2793± 2.582

(p value) (0.833) (0.832)
Treatment effectβb1

−0.2644± 0.190 −0.2724± 0.193
(p value) (0.006) (0.006)

zb2 : occurrence of diarrhea
Intercept αb2 0.6631± 2.557 0.6741± 2.605
(p value) (0.611) (0.612)
Treatment effect βb2 −0.6231± 0.192 −0.6422± 0.198
(p value) (<0.001) (<0.001)

zc1 : measures of hemoglobin
Intercept αc1 160.3758± 32.989 160.3775± 32.984
(p value) (<0.001) (<0.001)
Treatment effect βc1 −12.492± 2.498 −12.496± 2.454
(p value) (<0.001) (<0.001)

zc2 : measures of white blood cell
Intercept αc2 12.295± 9.331 12.2946± 9.515
(p value) (0.010) (0.011)
Treatment effect βc2 −0.1591± 0.706 −0.1597± 0.702
(p value) (0.659) (0.656)

Table 4. Estimation Results II: the estimated parameters contain second moments of each outcome.

Esimated Correlation
Estimated Standard Deviation

Nausea Diarrhea HGB WBC

Nausea 1.0000 0.3954 0.0736 0.0899 -
Diarrhea 1.0000 0.0351 −0.0126 -
HGB 1.0000 0.0139 16.796
WBC 1.0000 4.7507

5. Discussion

The problem of mixed outcomes is widely discussed in health-related studies. As a result of the
computational complexity, most existing methods mainly focus on the case of two outcomes mixed
with one continuous variable and one categorical variable. As an extension of the conditional grouped
continuous model, we present the multivariate mixed response model to solve high-dimensional
mixed multivariate regressions. Our model is constructed using the pairwise composite-likelihood
method, such that multiple outcomes are analyzed through different bivariate models simultaneously.
Regarding data mixed with continuous and binary responses, our method simplifies the problem of
multiple outcomes into three types of scenario, which is both methodologically flexible and analytic
appealing. From the simulation studies, the estimators of the proposed model demonstrate a lower
MSE than the marginal approaches. The composite statistics also provide increased statistical power for
joint hypothesis testing across different generalized linear models, which could make this a favorable
approach to analyze clinical data with multiple mixed-type responses.
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In addition, the model can be generalized to deal with ordinal and continuous data simultaneously.
Under the same setup, the latent variable z∗ij is normally distributed with mean µ∗ij = xT

ij β j and variance

σ2
j = 1. If the latent normal variable z∗ij ∈ [tl−1, tl) with the threshold values −∞ = t0 < t1 < · · · <

tl < · · · < tL−1 < tL = ∞, the ordinal variable zij = l with l = 1, 2, · · · , L. Thus, the bivariate model
of two ordinal outcomes can be formulated by the pairwise probability:

P(zij = l, zik = l
′
) = P(z∗ij ∈ [tl−1, tl), z∗ik ∈ [tl′−1, tl′ )) =

∫ tl

tl−1

∫ t
l′

t
l′ −1

φ2(ωij, ωik; µ∗ij, µ∗ik, ρjk)dωijdωik.

The score function can be obtained by taking the derivatives of ∑n
i=1 ∑

q−1
j=1 ∑

q
k=j+1 log P(zij = l,

zik = l
′
), and the thresholds tl’s need to be estimated with the monotone restriction. The maximum

composite-likelihood estimation for mixed outcomes can be conducted through the same approaches
as proposed in this paper. Further research will be considered to analyze multivariate outcomes with
various distributions.
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Appendix A. Derivatives for Mixed Response Variables

The score Function (6) contains the derivative of log marginal normal density and the log of the
conditional probability:

Ujk =
∂

∂θjk
log P(zk) +

[1(zj = 0)
Φ(dj)

−
1(zj = 1)
1−Φ(dj)

]∂Φ(dj)

∂θjk
.

To illustrate the derivation, let zj and zk represent the n× 1 vector response variables with the
design matrices Xj and Xk, respectively. Let

ck =
(zk − µk)

σk
, and dj =

µ∗j + ρjk
σj
σk
(zk − µk)

σj

√
1− ρ2

jk

.

The normal CDF has the following properties:

Φ′(dj) = φ(dj), φ′(ck) = −ckφ(ck), φ′ ′(ck) = (c2
k − 1)φ(ck).

The first component in the score function can be simplified as

∂

∂θjk
log P(zk) =

∂

∂θjk
log(

1
σk

φ(ck))

=
1

φ(ck)

∂φ(ck)

∂θjk
− 1

σk

∂σk
∂θjk

= −ck
∂ck
∂θjk
− 1

σk

∂σk
∂θjk

,

∂2 log P(zk)

∂θjk∂θT
jk

=
1
σ2

k

∂σk
∂θjk

∂σk

∂θT
jk
− 1

σk

∂2σk

∂θjk∂θT
jk
− ∂ck

∂θjk

∂ck

∂θT
jk
− ck

∂2ck

∂θjk∂θT
jk

.
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The derivatives of the second component has a simple format with respect dj:

∂Φ(dj)

∂θjk
= φ(dj)

∂dj

∂θjk
,

∂2Φ(dj)

∂θjk∂θT
jk
= −djφ(dj)

∂dj

∂θjk

∂dj

∂θjk
T + φ(dj)

∂2dj

∂θjk
T∂θjk

T .

By adding the results above, the score function and its derivative can be given by

∂ljk

∂θjk
= − 1

σk

∂σk
∂θjk
− ck

∂ck
∂θjk

+
[1(zj = 0)

Φ(dj)
−

1(zj = 1)
1−Φ(dj)

]
φ(dj)

∂dj

∂θjk

∂2ljk

∂θjk∂θT
jk
=
( 1

σ2
k

∂σk
∂θjk

∂σk
∂θT −

1
σk

∂2σk

∂θjk∂θT
jk
− ∂ck

∂θjk

∂ck

∂θT
jk
− ck

∂2ck

∂θjk∂θT
jk

)
−
[1(zj = 0)
(Φ(dj))2 +

1(zj = 1)(
1−Φ(dj)

)2

][
φ(dj)

2 ∂dj

∂θjk

∂dj

∂θjk
T

]
+
[1(zj = 0)

Φ(dj)
−

1(zj = 1)
1−Φ(dj)

]
×
[
− djφ(dj)

∂dj

∂θjk

∂dj

∂θT
jk
+ φ(dj)

∂2dj

∂θjk∂θjk
T

]
.

Furthermore,

∂ck
∂βk

= − 1
σk

Xk,
∂ck
∂σk

= − 1
σk

ck,
∂2ck

∂σ2
k
=

2
σ2

k
ck,

∂2ck
∂βk∂σk

=
1
σ2

k
Xk.

For the term dj, more derivation is given here:

∂dj

∂βk
=

ρjkXk

σk

√
1− ρ2

jk

,

∂dj

∂β j
= −

Xj

σj

√
1− ρ2

jk

,

∂dj

∂σk
=

ρjkck

σk

√
1− ρ2

jk

,

∂dj

∂σj
=

Xjβ j

σ2
j

√
1− ρ2

jk

,

∂dj

∂ρjk
= − ck√

1− ρ2
jk

−
Xjβ jρjk

σj(1− ρ2
jk)

3
2
−

ρ2
jkck

(1− ρ2
jk)

3
2

,

∂2dj

∂σ2
k
= −

2ρjkck

σ2
k

√
1− ρ2

jk

,
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∂2dj

∂σ2
j
= −

2XT
j β j

σ3
j

√
1− ρ2

jk

,

∂2dj

∂ρ2
jk

= −
ckρjk

(1− ρ2
jk)

3
2
−

XT
j β j

σj

[ 1

(1− ρ2
jk)

3
2
+

3ρ2
jk

(1− ρ2
jk)

5
2

]

− ck

[ 2ρjk

(1− ρ2
jk)

3
2
+

3ρ3
jk

(1− ρ2
jk)

5
2

]
,

∂2dj

∂ρjk∂σk
=

ck
σk

[ 1√
1− ρ2

jk

+
ρ2

jk

(1− ρ2
jk)

3
2

]
,

∂2dj

∂β j∂σj
=

Xj

σ2
j

√
1− ρ2

jk

,

∂2dj

∂β j∂ρjk
= −

Xjρjk

σj(1− ρ2
jk)

3
2

,

∂2dj

∂βk∂ρjk
=

Xk
σk

[ 1√
1− ρ2

jk

+
ρ2

jk

(1− ρ2
jk)

3
2

]
,

∂2dj

∂σk∂βk
= −

ρjkXk

σ2
k

√
1− ρ2

jk

.

In conclusion, the score function Ujk(θjk) with respect to each parameter is given by

∂ljk

∂βk
=

ck
σk

Xk +
[1(zj = 0)

Φ(dj)
−

1(zj = 1)
1−Φ(dj)

] φ(dj)ρjkXk

σk

√
1− ρ2

jk

,

∂ljk

∂β j
=
[1(zj = 0)

Φ(dj)
−

1(zj = 1)
1−Φ(dj)

][
−

φ(dj)Xj

σj

√
1− ρ2

jk

]
,

∂ljk

∂σk
= − 1

σk
+

c2
k

σk
+
[1(zj = 0)

Φ(dj)
−

1(zj = 1)
1−Φ(dj)

] φ(dj)ρjkck

σk

√
1− ρ2

jk

,

∂ljk

∂σj
=
[1(zj = 0)

Φ(dj)
−

1(zj = 1)
1−Φ(dj)

]
φ(dj)

Xjβ j

σ2
j

√
1− ρ2

jk

,

∂ljk

∂ρjk
=
[1(zj = 0)

Φ(dj)
−

1(zj = 1)
1−Φ(dj)

]
φ(dj)

×
[
− ck√

1− ρ2
jk

−
Xjβ jρjk

σj(1− ρ2
jk)

3
2
−

ρ2
jkck

(1− ρ2
jk)

3
2

]
.
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Appendix B. Estimation Results of the Clinical Data From a Colorectal Cancer Study

Table A1. The estimated regression coefficients β and the standard deviation (sd). GLM: the estimation via the generalized linear model; MRM: estimation via
proposed multivariate mixed response model; the column of ∗ lists the significant covariates.

1. Nausea 2. Diarrhea 3. HBG 4. WBC

Parameters GLM MMR GLM MMR GLM MMR GLM MMR ∗

Intercept −0.2685 (1.277) −0.2793 (1.317) 0.6631 (1.304) 0.6741 (1.329) 160.3759 (16.831) 160.3775 (16.829) 12.2949 (4.761) 12.2946 (4.855) 3, 4
Treatment −0.2644 (0.097) −0.2724 (0.099) −0.6231 (0.098) −0.6422 (0.101) −12.4921 (1.274) −12.4957 (1.252) −0.1591 (0.360) −0.1597 (0.358) 1, 2, 3
OS −0.0037 (0.009) −0.0039 (0.009) 0.0219 (0.009) 0.0228 (0.009) 0.5674 (0.115) 0.5675 (0.117) −0.1764 (0.032) −0.1764 (0.029) 2, 3, 4
OS event 0.0650 (0.195) 0.0702 (0.194) 0.1173(0.200) 0.1208 (0.194) 1.5154 (2.592) 1.5159 (2.614) 0.1290 (0.733) 0.1295 (0.562)
PFS 0.0305 (0.020) 0.0315 (0.020) 0.0066 (0.021) 0.0062 (0.022) −0.1628 (0.259) −0.1627 (0.258) 0.1242 (0.073) 0.1243 (0.062)
IN −0.0204 (0.188) −0.0200 (0.190) −0.8622 (0.203) −0.8907 (0.212) −11.1599 (2.486) −11.1621 (2.932) −0.0809 (0.703) −0.0803 (0.810) 2, 3
PD 0.1263 (0.136) 0.1319 (0.139) −0.1375 (0.136) −0.1432 (0.142) −7.1013 (1.782) −7.1005 (1.667) −0.3695 (0.504) −0.3689 (0.528) 3
PR −0.0213 (0.169) −0.0207 (0.171) 0.0691 (0.176) 0.0707 (0.174) 3.6782 (2.234) 3.6781 (2.210) 0.4003 (0.632) 0.4005 (0.5277)
Age −0.0142 (0.008) −0.0091 (0.005) 0.0029 (0.008) 0.0018 (0.005) −0.1463 (0.061) −0.1464 (0.061) −0.0382 (0.017) −0.0382 (0.018) 3, 4
Gender −0.0086 (0.005) −0.0091 (0.005) 0.0016 (0.005) 0.0018 (0.005) 9.0894 (1.798) 9.0836 (1.825) −0.1079 (0.509) −0.1096 (0.534) 1, 3
Colon 0.2313 (0.165) 0.2378 (0.169) 0.1017 (0.170) 0.1059 (0.177) −1.1366 (2.189) −1.1338 (2.105) 0.5706 (0.619) 0.5713 (0.676)
Rectum −0.0075 (0.154) −0.0111 (0.157) 0.1760 (0.158) 0.1844 (0.166) −1.6947 (2.032) −1.6940 (1.913) 0.9096 (0.575) 0.9094 (0.649)
Height 0.0048 (0.007) 0.0050 (0.008) −0.0050 (0.007) −0.0051 (0.008) −0.0820 (0.097) −0.0820 (0.097) 0.0237 (0.028) 0.0237 (0.028)
Weight 0.0023 (0.003) 0.0024 (0.003) 0.0012 (0.003) 0.0012 (0.003) 0.0906 (0.044) 0.0907 (0.042) −0.0189 (0.012) −0.0189 (0.012) 3
PERF1 0.2046 (0.107) 0.2132 (0.110) 0.0898 (0.109) 0.0933 (0.110) −4.8490 (1.414) −4.8469 (1.352) 0.6028 (0.400) 0.6036 (0.380) 3
PERF2 0.5041 (0.187) 0.5244 (0.187) 0.2637 (0.189) 0.2692 (0.193) −7.1494 (3.814) −7.1455 (2.628) 1.8158 (0.688) 1.8176 (0.685) 1, 3, 4
KRAS −0.0407 (0.292) −0.0387 (0.295) 0.0080 (0.293) 0.0150 (0.294) 1.3456 (3.814) 1.3455 (3.285) −0.7323 (1.079) −0.7325 (0.936)

In Section 4, we illustrate some estimation results of the regression parameters and correlation between outcomes. The complete analysis of these data consists of 68 parameters.
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