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Abstract: Emotion is a form of high-level paralinguistic information that is intrinsically conveyed
by human speech. Automatic speech emotion recognition is an essential challenge for various
applications; including mental disease diagnosis; audio surveillance; human behavior understanding;
e-learning and human-machine/robot interaction. In this paper, we introduce a novel speech emotion
recognition method, based on the Squeeze and Excitation ResNet (SE-ResNet) model and fed with
spectrogram inputs. In order to overcome the limitations of the state-of-the-art techniques, which fail
in providing a robust feature representation at the utterance level, the CNN architecture is extended
with a trainable discriminative GhostVLAD clustering layer that aggregates the audio features
into compact, single-utterance vector representation. In addition, an end-to-end neural embedding
approach is introduced, based on an emotionally constrained triplet loss function. The loss function
integrates the relations between the various emotional patterns and thus improves the latent space
data representation. The proposed methodology achieves 83.35% and 64.92% global accuracy rates
on the RAVDESS and CREMA-D publicly available datasets, respectively. When compared with the
results provided by human observers, the gains in global accuracy scores are superior to 24%. Finally,
the objective comparative evaluation with state-of-the-art techniques demonstrates accuracy gains of
more than 3%.

Keywords: deep convolution neural networks; speech emotion recognition; emotion metric learning;
utterance level feature aggregation

1. Introduction

Speech action is a rich and dense form of human communication that includes both
linguistic and paralinguistic elements of information. The former refers to the verbal
content itself, while the latter concerns the manner in which the speech action is performed
and involves aspects related to facial expression, gesture, intonation and pitch. All these
elements contribute to the emergence of the concept of emotion that is a characterization of
the affective, psychological state associated with a given speech action. Emotion plays an
import role in identifying the intention, the empathy and, in some cases, even the meaning
of the spoken message.

In this paper, we specifically tackle the issue of emotion identification exclusively
from audio features. Emotion characterization first requires the consideration of a generic
emotional model. The extensive research carried out in the last few decades in various
fields, including psychology, neurosciences and medicine, makes clear various emotional
models—both continuous and discrete [1].

Among the most popular continuous emotion representations let us mention the 2D
activation—valence model [2]. Activation (or arousal) quantifies the amount of energy
required to express a certain emotion. For example, anger or joy involves a high energy

Sensors 2021, 21, 4233. https:/ /doi.org/10.3390/s21124233

https://www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21124233
https://doi.org/10.3390/s21124233
https://doi.org/10.3390/s21124233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124233
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124233?type=check_update&version=2

Sensors 2021, 21, 4233

20f18

pitch, while sadness is rather characterized by low energy values. On the contrary, valence
describes the degree of positivity /negativity of an emotion. For example, the valence can
be used to distinguish between emotions such as being angry or happy, where activation is
high in both cases.

In the case of discrete emotion representations, the emotions are quantified into a set
of discrete categories. In their pioneering work [3], Eckman and Friesen identified a set
of six basic, universal emotions (i.e., anger, disgust, fear, happiness, sadness and surprise)
that humans perceive in a similar manner, regardless of their regional, ethnical or cultural
differences. Contempt was subsequently added as one of the basic emotions [4]. Since then,
numerous other models have emerged, but this issue is out of the scope of our work.

The automatic recognition and identification of emotions from speech is a task that
is naturally performed by humans in everyday life. However, it is highly challenging
to design fully automatic speech emotion recognition (SER) approaches that are able to
detect complex emotions from natural speech. The information included in the audio
signal depends on multiple factors, including sample duration, speaker accent, gender
or language. In addition, the emotion recognition process is highly subjective because
people can interpret emotions differently depending on various factors, such as culture,
environment, or state of mind [5]. Moreover, labeling speech utterances with the suitable
emotion during data annotation is also subject to human perception.

An important issue to be considered concerns the temporal level of granularity at
which the emotion should be recognized. Emotion is not an instantaneous characteristic
that can arbitrarily fluctuate from one instant to another, but rather a stable affective state
over a whole sentence (or set of sentences) expressed in a given time interval. This leads
to the concept of utterance, which can be defined as a continuous piece of speech that
is preceded by silence and followed by silence or a change of speaker. In the context of
emotion recognition, the goal is to condense speech information into a single utterance-
level representation that is able to capture the speech dynamics. This feature aggregation
process becomes extremely important for audio signals obtained with background noise
or in unconstrained conditions, where the irrelevant parts must be filtered out and their
contribution to the final descriptor should be minimized.

In this paper, we notably propose a novel speech emotion recognition methodology
based on GhostVLAD [6] utterance-level feature aggregation and end-to-end emotional
metric learning. The main contributions of the paper are the following:

1. A deep learning-based, end-to-end speech emotion recognition technique. The
method exploits the recently introduced Squeeze and Excitation ResNet architec-
ture [7]. The challenge is to derive a fixed-length, discriminative representation at the
utterance level for audio segments of arbitrary length.

2. The introduction within the aggregation process of a trainable GhostVLAD [6] layer.
In contrast to [8], where a NetVLAD [9] approach is used for feature aggregation, in
our case we privilege the use of ghost clusters. We show that they are able to capture
noisy segments and thus obtain a more robust feature representation.

3. Alearnable emotional metric which enriches the traditional triplet loss function with
an additional emotional constraint. By taking into account the relations between the
considered emotional categories, as defined in the Mikel’s wheel representation [10],
the method makes it possible to obtain more discriminative embeddings, with more
compact emotional clusters and increased inter-class separability.

The rest of the paper is organized as follows. Section 2 reviews the speech emotion
recognition state-of-the-art techniques. Section 3 describes the proposed architecture and
details the key elements involved. Sections 4 and 5, respectively, present the experimental
setup and the evaluation results obtained. Finally, Section 6 concludes the paper and opens
some perspectives of future work.



Sensors 2021, 21, 4233

30f18

2. Related Work

The performance of an SER system greatly relies on the considered features/representations
and those extracted from the audio signal. Traditional model-based approaches encode
the emotional speech into one global feature vector, which most often represents the
statistics (e.g., mean, median, standard deviation) of some low-level, hand-crafted audio
primitives. Such representation is defined either in the temporal, spectral or time-frequency
domains [11]. The audio descriptors involve features that are related to the speaking
rate [12-14], spectral features, such as such as coefficients (MFCCs), linear prediction
cepstral coefficients (LPCCs), modulation spectral features [15-17] or voice quality features
(e.g., shimmer, jitter or normalized amplitude quotient) [18-20]. A detailed comparison
between various hand-crafted audio features is reported in [21]. The main limitation of
such global-level acoustic representations is related to their limited capability of capturing
the speech variation dynamics along a given utterance segment [22].

Notably, the rest of this chapter focuses on emotion recognition methods, based on
pattern recognition algorithms that are able to automatically learn relevant emotional fea-
tures from a given training dataset. The majority of the reported state-of-the-art works aim
at identifying a discrete set of emotional categories, more or less inspired from Eckman’s
taxonomy (sub-sets or super-sets).

Within this context, the feature representation is used to train different machine learn-
ing systems, such as support vector machines [23-25], 1D-convolutional neural networks
(1D-CNN) [26,27], 2D-CNN [28-32] or recurrent neural networks (RNN) [33-36].

In [24], joint spectro-temporal features are extracted from the audio signal and are
applied to detect the emotional status of noisy speech segments using a linear kernel SVM
classifier. Similarly, in [23], a multi-modal emotion recognition system based on deep SVM
techniques is introduced. The framework uses both audio-visual sources of information
for emotion recognition purposes. The novelty of the approach relays on the SVM classifier
extended with deep metric learning that jointly obtains a discriminative score and a robust
representation in the latent space of both modalities. In [25], the authors propose an
analysis of the speech data using machine learning techniques in order to extract low-level
features such as mel-frequency cepstral coefficients, delta and delta—delta MFCCs and
spectral centroids. The reported experimental results show that ensemble learning yields
superior performances when compared to single estimators. However, the SVM classifier
does not perform well when the data set is noisy (i.e., target classes are overlapping) or
when the emotion datasets are large.

With the recent advances in deep learning techniques, the scientific community has
focused its attention on developing SER systems that can identify emotions without any
human intervention. Such techniques, also called end-to-end systems, prove to be much
more independent, regarding the choice of features, than the model-based approaches.
A 1D-CNN framework that takes the mel-frequency cepstral coefficients, chroma-gram,
mel-scale spectrogram, Tonnetz representations and spectral contrast features as inputs
is proposed in [26]. The approach works directly with raw audio data without the need
for any visual information. Another 1D-CNN approach is proposed in [27]. The system is
used to detect events and classify emotions over long range audio-visual datasets. As a
general observation, it can be highlighted that the CNN systems are intensively used for
speech emotion recognition due to their ability to learn low level feature descriptors from
raw data [37].

Another family of approaches concerns 2D-CNN techniques. In [28], the authors
propose inferring salient features by using 3D convolutional neural networks (2D-CNN).
The CNN training process is performed in two successive stages. Initially, the unlabeled
samples are used to learn local invariant features (LIF) using a sparse auto-encoder with
reconstruction penalization. Secondly, the LIF are used as inputs to a feature extractor using
a novel objective function that encourages feature saliency. The method can disentangle
affective salient features from other noisy factors, such as speakers and language. In
addition, the system shows superior performance when compared with several state-
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of-the-art hand-crafted feature representations. Ma et al. [29] propose an emotion-pair
framework that constructs discriminative feature subspaces for every two different types of
emotions (emotion-pair) in order to generate more precise emotion bi-classification results.
The authors observe that, in the high dimensional emotion spaces, the distances between
some archetypal emotions are closer than the others (e.g., happy and angry are closer
than happy and sad, indicating that happy is more similar to angry than to sad). Based
on this observation, a 2D-CNN classifier with decision fusion is proposed. In [30], Lian
et al. propose a speech emotion recognition framework based on a Siamese network. The
2D-CNN architecture exploits a contrastive loss function in order to reduce the ambiguity
of various emotions by encouraging intra-class compactness and inter-class separability.
The experimental evaluation is performed upon multiple features and pairwise selection
mechanisms. The gains in accuracy scores obtained when compared with traditional
Siamese network with cross entropy loss are of 2.55%.

In order to take advantage of the high robustness of deep convolutional neural net-
works, in [31], a pre-trained 2D-CNN is used in the context of speech emotion recognition.
The CNN is designed to extract low-level features from state-of-the-art speech emotional
datasets. Subsequently, a correlation-based selection technique is applied in order to de-
termine the most appropriate and discriminative features that can be exploited for SER
purposes. Concerning the emotion classification itself, various machine learning algorithms
are evaluated, including SVM, random forests, k-nearest neighbor and neural network
classifiers. In [32], end-to-end neural network embedding, based on triplet loss and resid-
ual learning, is proposed. Embedding is learnt from the emotional information of speech
utterances and is based on the ResNet (Residual Neural Networks) [38] architecture. The
2D-CNN is trained using soft-max and triplet-loss functions. The similarity between vari-
ous types of emotions is determined by computing the cosine distance between low-level
feature representations. Recently, an utterance-level representation for SER has been intro-
duced [8]. A NetVLAD layer is used here as a trainable discriminative clustering method in
order to aggregate frame-level descriptors into a compact, single-utterance-level vector. In
addition, in order to reduce the influence of unbalanced emotional classes, unigram label
smoothing with prior emotional class distribution is proposed. Aside from their effective
means of identifying emotions, the methods based on CNN present some limitations. The
CNNss are able to learn low-level feature representation from high dimensional data but are
highly sensitive to small variations and distortions. In addition, the corresponding CNN
models require large memory capabilities.

In [33], a deep learning method for automatic identification of emotionally relevant
features from speech is proposed. The considered RNN (Recurrent Neural Network) learns
a set of short-time, frame-level acoustic features that are emotionally relevant. In addition,
the salient features are obtained using a novel strategy of feature pooling over time. A
multi-modal emotion recognition approach from video streams is introduced in [34]. A
long—short time memory recurrent neural network (LSTM-RNN) is used here in order to
incorporate knowledge about emotion evolution over time and to derive various cues from
isolated pitch signals. The low-level feature descriptors extracted from both the audio
and video streams are concatenated and fed to a support vector machine (SVM) classifier
in order to obtain the final prediction. Another SER framework, based on RNN, that
incorporates both low-level descriptors (local features) and statistical characteristics, (global
features) is introduced in [35]. The extracted features are used to determine emotions at
various temporal scales, including frame, phoneme, word and utterance. The experimental
evaluation reported shows that speech utterances varying from 2 to 5 secs return the
highest accuracy scores. A triplet loss framework, based on LSTM, is presented in [36]. The
system learns mapping from the acoustic to discriminative embedding features, which are
further used to train an SVM. The model jointly and simultaneously uses triplet loss and
supervised loss. Triplet loss is designed to reduce the intra-class distances, while increasing
the inter-class distances. The supervised loss incorporates the class label information into
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the decision. In order to deal with variable speech inputs, three different strategies are
evaluated (cycle, repeat and pad mode).

In a general manner, the state-of-the-art analysis highlights that the existing emotion
recognition approaches still leave room for improvement with respect to their accuracy
scores and heavily depend on the quality of the training datasets. Most emotion datasets
consist of elicited or acted speech segments, typically created in a studio, where the actors
read a written text. Another difficulty in emotion speech analysis is that the utterances have
variable length. Some approaches obtain equal length inputs by clipping the utterance,
meaning that longer speech segments are cut while the shorter ones are zero-padded. Most
authors propose obtaining a feature representation of fixed dimension for every sample,
based on various aggregation techniques.

The emotion recognition methodology, proposed in this paper, notably aims at over-
coming these limitations and difficulties. The following section describes the proposed
approach and details the various modules involved.

3. Proposed Approach

Figure 1 presents an overview of the proposed architecture, which involves three
different parts: audio pre-processing, audio feature extraction and the emotion metric
learning.

;’_\_rlrg;_pi(g‘e]eb dataset - l

= Audio stregm Fetie odimeien Softmax based pre-training
pre-processing 5 !

Voice activity CNN Architecture

dEEeem | ResNet & SE blocks H’L‘ﬂmr‘ . Sys.tem trair}inlg witAh
. ] bedding
Input audio i NetVlad & GhostVlad SHIbeCAne emcillon me?lci;cimmg
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Figure 1. The proposed methodological framework with the main steps involved: audio-stream
preprocessing, feature extraction and utterance level aggregation, system training with emotion
metric learning and SVM training.

3.1. Audio Signal Pre-Processing

A pre-processing step is initially applied to each audio segment, which consists of
voice activity detection and silence removal [39]. The clean segments are regrouped into
a single audio stream, represented with the help of a spectrogram image (Figure 2). The
spectrogram is generated using a sliding Hamming window of width 32 ms and an offset
step of 10 ms. We have used the FFT implementation proposed in [40] with 512 input
samples, which yields 256 frequency components that, together with the DC component,
form the 257 frequency components of the resulting STFT (Short-Time Fourier Transform).
Finally, the spectrograms are zero-meaned and normalized by their standard deviation.

Thus, the obtained spectrogram is a (257 x T) matrix, with T being the number of time
instants of the considered audio segment. Such an image-like representation is naturally
adapted for further processing with a convolutional neural network. However, the output
of this feature extractor is a variable-length feature vector, which is dependent on the
temporal length of the input utterance.
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Figure 2. Audio signal pre-processing: voice activity detection, silence removal and spectrogram
image computation.

In a first stage, in order to boost the discriminative power of the representation, we
have adopted a modified version of the Squeeze and Excitation ResNet-34 architecture [7]
that is here modified in a fully convolutional way in order to encode 2D spectrograms.
Compared to the standard ResNet, we cut down the number of channels in the residual
block. The CNN architecture maps the input spectrogram of size 257 x T x 1 onto a set of
T/32 feature descriptors of size 512. The dimension reduction from T to T/32 is given by
two max-pooling operations and three convolution operations, with stride 2 applied at the
beginning of each convolutional block, while 512 represents the number of filters of the
last convolution layer. This approach makes it possible to derive, starting from a global
representation, a semi-local one, which is subsequently adaptively learnt. At the end of
this process, the audio signal is described by a number of T/32 feature descriptors. Each
segment contributes, in a different manner, to the global feature descriptor by taking into
account the temporal dynamics of the audio signal.

This representation still has a variable length, which depends on the duration T of
the considered audio segment. However, it is intrinsically well-adapted for deriving a
globalized, fixed-length representation. In our work, we have retained a GhostVLAD [6]
feature aggregation layer, which is described in the following section.

3.2. GhostVLAD Feature Aggregation

GhostVLAD is a recent extension of the NetVLAD technique previously introduced
in [9]. In its original form, NetVLAD can be interpreted as a trainable discriminative
clustering technique. Here, every segment-level descriptor is softly assigned to different
clusters, and their residuals are encoded as output features. The NetVLAD layer receives, as
an input, M = T/32 dense descriptors { pi}lM :_é, taken from the last convolutional layer of
the considered SE-Resnet model and yields a single (K x D) dimensional matrix of speech
descriptors V, where D represents the size of each input descriptor p; (in our case, D = 512),
and K is the number of considered clusters. More precisely, the NetVLAD descriptor
matrix V stores the cumulated differences (residuals) between the feature descriptors
and the clusters’ centroids. The GhostVLAD technique further extends the NetVLAD,
with the introduction of a number of G dummy clusters, so-called ghosts. The ghost
clusters contribute to the soft assignment of the individual descriptors as any regular ones
(Figure 3). However, their corresponding residuals are discarded from the final output
descriptor. The matrix V can be computed as follows:

M ewlz-pﬁ*bk

V(i k) = i;lw(i?i(j) — (7)) M

where p;(j) and ¢, (j), respectively, denote the j-th component of the i-th descriptor and
the k-th cluster center, {wy } and {by} are trainable parameters, and k € [1, 2, ..., K]. The
term wy represents the soft assignment of the individual components of the input vector p;
to the k cluster, while by is a bias term. Each D-dimensional column of the V matrix stores
the sum of residual (p; — ¢x) of descriptors assigned to cluster c;. The matrix V(j, k) is first
L,-normalized column-wise, and, subsequently, L,-normalized entirely.
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Figure 3. SE-ResNet CNN extension with a GhostVLAD layer for feature aggregation.

The incorporation of ghost clusters allows the network to adjust the contribution of
each example to the template representation by assigning examples to be ignored to the
ghost clusters. In this way, it becomes possible to increase the robustness of the recognition
process, by discarding irrelevant samples.

In the ideal case, the role of the ghost clusters is to capture the noisy speech inputs,
making their contribution to non-ghost clusters close to zero, and thus annihilate their effect
to the final descriptor representation. We need to highlight that we do not explicitly force
noisy/confusing speech segments to assign to ghost clusters, but instead we let the network
discover the optimal behavior through end-to-end training for emotion recognition. We
thus obtain a D x K fixed-length descriptor that globally describes the analyzed speech
segment at the utterance level.

This entire process can be interpreted as an embedding method that encodes a given
audio segment x into a feature space V = f(x) € RP*K. Of course, the learned embedding
can be directly used for emotion classification purpose by considering, for example, a
softmax output layer.

In our work we have considered a different emotion-constrained optimization function
that takes into account in a finer manner the relations between emotions.

The principle consists of designing a loss function that forces the embedded features
V =f(x) to fulfill a set of constraints in terms of relative distances. The objective is to ensure
that the feature extractors yield similar representations for the embeddings assigned to the
same (or similar) emotion categories and distant representations for samples belonging to
different classes. In terms of methodology, this requires the specification of an adapted loss
function to be used when training both the SE-ResNet-34 and GhostVLAD layers.

The proposed emotion metric extends the triplet loss function with an emotional
constraint, as described in the following section.

3.3. Emotion Metric Learning

In order to define the relationships between emotions, we considered the 2D valence-
arousal emotional model, described by the Mikel’s wheel of emotions (Figure 4). With
respect to the Eckman and Friesen discrete set of emotions, we can identify four negative
(i.e., sadness, fear, disgust and anger) and three positive emotions (i.e., surprise, happiness
and calmness). As it can be observed, the neutral state is situated in the center of the wheel
with zero valence and arousal scores.

We propose integrating, within the triplet loss function, a component describing the
sentiment constraint by taking into consideration the relations between various emotions.
In its traditional formulation, the triplet-loss constraint usually generates mini batches of
triplets (x7, xf , xi), with: x{anchor, xf—positive instance (sample belonging to the same
class) and x'—negative instance (sample belonging to a different class), with (x¢, xf, xl')
€ TI', where I is the set of all possible (anchor, positive, negative) triplets in the training
dataset.
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Figure 4. Emotion representation in the valence-arousal space using Mikel’s wheel of emotions.

The goal is to learn a metric that assigns a smaller distance to images belonging to the
same class, while maximizing the distance to other categories, as described in the following
equation:

D(xf , xf) +a < D(xf, x}) )

with:
2
D(xi,x;) = ||f(xi) — f(xj)|]2 ®)
where f(x;) and f (xj) are the embedding feature representations associated with samples
x;, and x;, respectively, and « > 0 is a margin parameter that enforces the separation

between positive and negative pairs.
Then, the triplet loss that needs to be minimized can be expressed as follows:

N

Loss = ) {D(x? , xf) —D(xf, x) +0¢]+ 4)
i=1

where [m], = max(m, 0) and N is the cardinality of the training dataset.

Within this context, we propose extending the traditional triplet loss with an emotion
constraint. For this purpose, we introduce an additional element of so-called related
emotions. With respect to the anchor, the related emotions are defined as negative samples
that have the same polarity as the anchor. The objective, then, is to force the loss function
to yield distances between the anchor and the relative samples that are higher than those
between the anchor and the positive samples but are inferior to those between the anchor
and the purely negative (i.e., different from the anchor categories and with opposite
polarity) samples.

This principle is illustrated in Figure 5. In contrast to the existent triplet constraint
that involves anchors, positive and negative samples (Figure 5a), the proposed emotion
constraint consists of anchors—positive, related and negative samples (Figure 5b)—and is,
thus, able to take into account the natural polarities of emotion labels.

Mathematically, the emotion constraint (Figure 5b) can be formulated as described in
Equations (5) and (6):

D(x?,xf)+ac<D(x?,xfl) 5)

D(x{, x?) + B < D(x{, x}) ©)

where &« > 0 and B > 0 are the control margins between various positive, related and
negative samples.
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Figure 5. Difference between the triplet loss function and the emotion constraint. (a) The triplet loss
function, and (b). The proposed emotion metric.

Finally, the emotion loss function is defined as:

D(xf, xf) =Dt 2") +a *,.il[D(x?' x?) = D(xf, ) + 8], ?)

N
LosSemotion = Z
i=1

In the case of a neutral emotion, no related examples were identified. Therefore, for
this particular class, the traditional triplet loss function is utilized.

Regarding the training sample selection, even for small emotion datasets the number
of pairs is overwhelming. Therefore, it is crucial to select a hard set of samples that violate
the emotion constraints defined in Eq. 5 and 6. In our implementation, we decided to select
the elements that violate the hard constrains within mini batches of features.

Figure 6 shows the sample features distribution on the CREMA-D dataset. Solely for
visualization purposes, a 2D representation obtained with t-SNE embedding was used.
Figure 6a presents the sample feature distribution when applying the softmax loss function.
We can observe that the emotional classes are highly correlated and hence form similar
clusters.
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. Anger

. Disgust

. Fear

. Happiness

- Neutral e un. a0
. Anger HE g

. Disgust
] . Fear

- Happiness &
Sadness &

-20
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Figure 6. Visualization of the feature embedding using t-SNE on the CREMA-D dataset: (a) softmax
loss, (b) triplet loss, and (c) emotion metric learning.

In Figure 6b we illustrate the feature space after applying the triplet loss function.
It can be highlighted that the triplet loss improves the cluster forming, leading to better
separated emotions in the novel sub-space. However, the number of formed clusters is
not well defined. Figure 6¢ depicts the sample distribution within the feature space when
using the proposed emotional constraint loss. As can be observed, the emotion classes are
separated in this case more effectively. In addition, the obtained emotional clusters are
more compact, while the inter-class variance is increased. Finally, in order to determine
the degree of generalization of the proposed deep metric loss function, we conducted a
similar experiment as above, this time on the RAVDESS dataset. A similar behavior can be
observed (Figure 7). Let us note that the clusters are better structured and that the emotion
classes can be clearly identified.
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Figure 7. Visualization of the feature embedding using t-SNE on the RAVDESS dataset: (a) softmax
loss, (b) triplet loss, and (c) emotion metric learning.

Following metric computation, we applied the obtained feature vectors as inputs to
an SVM classifier with an RBF kernel. Let us note that other classification approaches are
also possible at this stage (e.g., inclusion of a softmax layer on top of the network at the
test stage), but this is not a critical choice.

4. Experimental setup

In order to demonstrate the efficiency of the proposed method, we conducted an exten-
sive experimental evaluation, carried out on two emotion-recognition datasets: RAVDESS [41]
and CREMA-D [42].

4.1. Dataset Selection

The RAVDESS dataset [41] is a gender-balanced database consisting of 24 professional
actors, vocalizing lexically matched statements in English. The dataset contains 1440
samples with eight basic emotions: calm, happy, sad, angry, fearful, surprised, neutral
and disgusted. Each expression is produced at two levels of intensity (strong and normal),
except for the neutral one, which is performed only at the normal level. All media formats
are available: face-and-voice, face-only and voice-only. In our experiments, we considered
exclusively the voice-only elements.

The CREMA-D dataset [42] consists of facial and vocal emotional expressions in
sentences with six basic emotion labels: happy, sad, anger, fear, disgust and neutral. The
database is composed of 7442 clips spoken by 91 actors (43 females and 48 males). Their
ages ranged between 20 and 74 with diverse ethnic backgrounds (African American, Asian,
Caucasian and Hispanic). The actors were asked to speak 12 utterances at four different
levels of intensity (low, medium, high and unspecified). The human recognition of the
intended emotions for the audio-only stream was 40.9%. The results were obtained on a
panel of 2443 users with ages ranging between 18 and 89 years and with 40.5% males and
59.5% females.

We used the RAVDESS and CREMA-D datasets for both the training and evaluation of
the proposed emotion recognition framework, strictly focusing our attention on the audio
signal. To the very best of our knowledge, there is no technical evaluation baseline for
the considered datasets. In order to perform a fair evaluation, we divided the data into
training, validation and testing sets, with all the samples from each speaker only belonging
to particular set. We adopted a 10-fold cross validation with a split driven by the actors that
are expressing the utterances. Thus, there is no overlap between the subjects’ clips: they are
in either the test, validation or train datasets. The targeted percentages between the train,
validation and test datasets are of 80%, 10% and 10%, respectively. The cross-validation
technique is a well-known and widely used tool for evaluating the performances of a given
model [43]. This makes it possible to obtain statistically consistent performance estimations
and to assess how the results will generalize into an independent dataset. In order to ensure
the full reproducibility of our results, the considered folds are reported in Table 1 (the
native numberings of segments that are available for each database are here considered).
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Table 1. The 10-fold cross-validation scheme applied on the considered datasets.
Figure 1. 1 2 3 4 5 6 7 8 9 10

. 9—24; 11—24; 13—24; 15—24; 17—24; 19—24;

Train 1—18 3—18 5—22 7—24 S 1 i s 0 1

CREMA-D Val. 19—21 21—23 23724" 1—3 35 5—7 7—9 9—11 11—13 13—15
Test 2224 1274?2 2—4 46 6—8 8—10 10—12 12—14 1416 16—18
. 28—91; 37—91; 46—91; 55—91; 64—91; 73—91; 82—91;

AVDESS Train 1—=73 10—82 19—91 1—9 1—18 1—27 1—36 1—45 1—54 1—63
RAVDE Val. 7482 83—91 1—9 10—18 1927 28—36 37—45 4654 55—63 64—72
Test 83—91 1—9 10—18 19—27 28—36 37—45 46—54 55—63 64—72 73—81

The performance measures reported in Section 5 are averaged on the considered
10-fold cross-validation scheme.

4.2. Hardware Configuration

Model training and testing were performed on Nvidia 1080Ti GPU with 3584 CUDA
cores, 88 ROPs and 11 GB of GDDR5X Virtual RAM, with Intel Core -i7-8700K CPU @
3.70 GHz, 16 GB RAM CPU system with Ubuntu 18.04.

4.3. CNN Training Details

For CNN training, we used a batch size of 32, the Adam optimizer and an initial
learning rate of 0.001, which is divided by 10 at each of 20 epochs until convergence.

The direct training of deep networks on a relatively small audio emotion datasets is
prone to overfitting. In order to mitigate this problem, we performed initial preliminary
training on an additional dataset in order to obtain models with high capacity, thereby
enhancing the performance of the emotion recognition system. To select the appropriate
auxiliary data, a large-scale speaker identification dataset is used. This process makes it
possible to obtain weight initialization that already captures some salient audio features.

In our work, we considered the VoxCeleb2 [44] dataset (a database with ~ 1.1 million
utterances). In the second phase, the model was fine-tuned to each of the considered emotion
datasets that were retained (conform. Section 4.1). We observed that pre-training the model on
larger speech datasets, and further fine-tuning the model on additional emotion datasets, has
a positive impact on emotion recognition accuracy (conform. Section 5).

5. Experimental Results

In order to objectively evaluate the performances of the proposed approach, we con-
sidered the traditional accuracy score [45], defined as the percentage of correctly recognized
utterances over the whole set of samples in the considered test set. In order to investigate
the impact of each component on the emotion recognition performances, we considered
the following five testing strategies:

e (S1) An emotion recognition approach that trains from scratch (i.e., with random
weight initialization) the SE-ResNet architecture [7] on the considered emotion datasets.
This approach will be considered as a baseline.

e  (52) An emotion recognition method that performs multi-stage CNN training (denoted
by SE-ResNet with multi-stage training). In this case, the network is pre-trained on the
VoxCeleb2 [44] dataset and the resulting model is fine-tuned on the two considered
emotion recognition datasets. For both the (S1) and (S2) models, ghost clusters are not
considered within the aggregation phase (which is equivalent to applying a NetVLAD
aggregation procedure).

e  (53) An emotion-recognition method that extends the SE-ResNet architecture with the
GhostVLAD feature aggregation layer. The same multi-stage training used in Strategy
2 is employed here.
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(S4) A speech emotion identification framework that involves the SE-ResNet with the
GhostVLAD layer and the classical triplet loss function with the SVM-RBF classifier
on top.

(S5) A proposed framework that involves multi-stage SE-ResNet training, GhostVLAD
feature aggregation layer, and emotional metric learning (cf. Section 3.3) with the
SVM-RBEF classifier on top.

For the 51, S2 and S3 approaches, the SE-ResNet-34 architecture ends with two fully

connected layers, one with 512 neurons, and the output layer with a number of neurons
equal to the number of emotion classes. In all of these cases, the cross-entropy loss function
(softmax loss) is used to train the network.

The obtained experimental results are summarized in Table 2. The scores reported

here are the average, minimum, maximum and standard deviation of the accuracy rate
obtained over the 10 considered folds.

Table 2. The experimental results presenting the influence of each component over the emotion recognition framework.

Method Accuracy
RAVDESS [9] CREMA-D [10]
AVG % MIN % MAX % STD % AVG % MIN % MAX % STD %
Human observers Not reported 40.90 - - -
(S1). Baseline method 67.94 63.95 70.48 2.33 53.38 49.25 56.02 2.12
(52). SE-ResNet with 74.81 71.93 77.16 1.61 59.47 56.24 62.56 1.89
multi-stage training
(S3). SE-ResNet with
GhostVLAD layer 79.78 76.96 81.98 1.68 61.25 59.38 63.79 1.31
(54). SE-ResNet with GhostVLAD ¢ 55 78.42 82.94 141 62.44 59.86 64.14 1.25
layer + triplet loss
(S5). Proposed framework:
SE-ResNet + GhostVLAD layer + 83.55 81.22 85.65 1.33 64.92 62.85 66.84 1.16

emotion constraint

The analysis of the results presented in Table 2 makes it possible to draw the following

conclusions:

The lowest accuracy scores (67% and 53%, respectively, for RAVDESS and CREMA-D
datasets) are obtained by the baseline emotion recognition method, which trains the
considered SE-ResNet architecture from scratch. The results can be explained by the
relatively small size of the datasets, which is not sufficient for taking into account the
complexity of the related audio emotional features.

Multi-stage SE-ResNet training partially solves the above-mentioned problem. The
use of additional speech data (VoxCeleb2) allows for obtaining models with a higher
capacity. Thus, the multi-stage training increases the overall system performance with
more than 6%.

The extension of the SE-ResNet with a GhostVLAD layer produces more effective
feature representations. From the experimental results, presented in Table 1, we
observe that the introduction of the aggregation layer on top of the CNN architecture
increases emotion recognition accuracy for both considered databases (4.97% and
1.78% for RAVDES and CREMA-D, respectively).

Compared to softmax loss, the introduction of the triplet loss function offers an
average improvement of 1.2%. As we employ semi-hard sampling where all the
positive/negative spectrogram images are selected within a mini batch, the system
converges faster and yields better results in terms of accuracy on both datasets.

The best results (with accuracy scores of 83% and 64% on the RAVDESS and CREMA-D
datasets, respectively) are obtained by the complete method that integrates the whole
chain, with SE-ResNet, GhostVLAD aggregation layer and the emotional metric loss.
The use of the emotion constraint significantly increases the system’s performance by
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reinforcing emotional clustering. Remarkably, the proposed framework outperforms
the recognition rate provided by human observers with more than 24%.

Figure 8 presents the accuracy variation, in terms of min, max and average scores,
when considering 10-fold cross-validation on the (S1-S5) testing strategies. As can be
observed, the experimental results are statistically consistent.

Accuracy

20.00
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80.00
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70.00
65.00
60.00
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50.00
45.00

40.00

51
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45.00
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53 54 5 51 52 53 54 55
Strategy
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a. b.

Figure 8. The statistical experimental results of the considered databases: (a) RAVDESS, (b) CREMA-D.

Figure 9 presents the confusion matrices obtained on the two considered datasets.
For RAVDESS, the highest performance score was obtained by the calm category, while
the lowest accuracy rates were returned by the happy class for all of the considered test
scenarios. For CREMA-D, the highest accuracy scores were obtained for the angry category
and the lowest for the fear emotion in all scenarios.

When analyzing the experimental results obtained using RAVDESS (Figure 9a), it
can be observed that the proposed framework (S5) recognizes anger, surprise and calm
emotions with more than 90% accuracy, while the lowest accuracy score was obtained for
happiness (around 70%). In addition, if we analyze the confusion matrices for the various
classes involved, it can be observed that, for scenarios (51-54), the fear is confused with the
surprise emotion and vice versa.

However, this behavior is alleviated in (S5) by the emotional metric loss that takes
into account the polarity between various classes of emotions. From Figure 9b, it can
be concluded that, with CREMA-D, the proposed framework performs recognition well
on the neutral and anger emotions. Particularly, its performance reaches 75.92% on the
angry category. On the other hand, the system returns the lowest recognition scores on
fear and happiness emotions with accuracy rates of less than 60%. This behavior can
be explained by the enhanced relevance of the audio stream in predicting anger. Here,
again, happiness cannot be reliably recognized. In our opinion, this shows the limitations
of solely considering audio features, which can lead to ambiguities, notably in the case
of categories with similar valences. One solution would be the integration of multiple
modalities, i.e., audio and visual features, which can provide complementary information
into the classification process.

We also evaluated the impact of the most important parameters involved in the
system’s performance: the number of pertinent (K) and ghost clusters (G) within the
GhostVLAD aggregation layer and the &, 8 control-margin parameters between various
positive, related and negative samples within the emotion metric loss (Figure 10).
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Figure 9. The confusion matrixes on the evaluation dataset (a) RAVDESS and (b) CREMA-D. (S1).
The baseline method; (S2). SE-ResNet with multi-stage training; (S3). SE-ResNet with GhostVLAD
layer; (S4). The SE-ResNet with the GhostVLAD layer and the classical triplet loss function; (S5).
The proposed framework, which involves SE-ResNet with the GhostVLAD aggregation layer and
emotion constraint loss.
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Figure 10. The system performance evaluation on RAVDESS and CREMA-D datasets with the different parameters involved:
(a) the number of NetVLAD clusters (K) and (b) the number of GhostVLAD clusters (G).

For the GhostVLAD layer, we found that K = 8 and G = 2 clusters led to the best
results in the considered range. Too large or too low numbers of clusters would negatively
affect the performances. Intuitively, the value of K should be compliant with the number
of emotion categories. This implicitly indicates that the retained clusters correspond to
the aggregation of the spectrograms to the emotional categories. The introduction of
two ghost clusters brings about a significant improvement over NetVLAD. The ghost
clusters enable the system to automatically down-weight the contribution of noisy speech
segments. Using a low number of ghost clusters (one or two) improves recognition accuracy.
Furthermore, increasing the number of ghost clusters (starting from 3—4) penalizes the
overall performances, since, in this case, significant samples can be assigned to such ghost
clusters.

Next, we investigated the influence of « and B (Equation (7)) margin parameters,
which are involved in emotional metric loss. The obtained results are presented in Figure 11.
Based on these results, we selected a value of 0.1 for &, and a value of 0.15 for §, which led
to the best performances on both the RAVDESS and CREMA-D datasets.
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Figure 11. The system performance evaluation for different values of the control margins & and 8 on
(a) RAVDESS dataset; (b) CREMA-D dataset.

Finally, we compared the proposed emotion recognition framework with several
state-of-the art techniques (Table 3). We retained, for comparison, a variety of emotional
classification methods [8,25,26,32] that are based solely on audio features. For the method
of Ghaleb et al. [23], which proposes a multi-modal framework, we only considered the
results for the audio module. When available, we used the author’s code to evaluate the
method. The parameters for all methods were selected to maximize the performance on
the testing video dataset. Otherwise, we considered the results reported by the authors.
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Table 3. Comparative experimental results of the proposed emotion recognition framework with
various state-of-the-art methods.

Method Accuracy
RAVDESS [41] CREMA-D [42]
Bhavan et al. [25] 2019 75.69% -

Issa et al. [26] 2020 71.61% -
Kumar et al. [32] 2021 79.67% 58.72%
Ghaleb et al. [23] 2020 - 59.01%

Huang et al. [8] 2020 - 61.53%
Proposed framework 83.35% 64.92%

As can be observed, our approach yields a gain in accuracy within the range 3.49%—7.66%
over the state-of-the-art techniques and on both benchmark datasets. Such high performances
can be explained by the complexity and robustness of various modules involved in our
framework, as well as by their combination within a unified workflow.

6. Conclusions

In this paper, we introduced a novel speech emotion-recognition approach. The pro-
posed method is based on the Squeeze and Excitation ResNet (SE-ResNet) architecture,
which is modified in a fully convolutional way in order to encode 2D spectrograms. The
CNN architecture is extended with a GhostVLAD layer, used for feature aggregation to
produce a compact, high-level feature representation of the audio stream. From a method-
ological point of view, the core of the approach relies on an extended triplet loss function
with an emotion constraint, which is able to improve latent space data representation. Finally,
the emotion class is predicted using an SVM classifier with RBF kernel.

The experimental evaluation carried out on the two publicly available datasets,
RAVDESS [41] and CREMA-D [42], validates the proposed methodology, which yields
recognition rates of more than 83% and 64%, respectively. When compared with the recog-
nition rates obtained by human observers, the proposed methodology yields an increase in
the global accuracy scores of more than 24%. Finally, the comparison with various state-of-
the-art methods [8,23,25,26,32] demonstrates the superiority of the proposed methodology,
with yields an increase in accuracy which ranges from 3.49% to 7.66%.

In future work, we envisage further integrating a visual recognition module into the
architecture. Our objective is to increase recognition performances by taking advantage of
complementary information provided by the different visual and audio modalities.
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