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Abstract: Deep reinforcement learning (DRL) has been utilized in numerous computer vision tasks,
such as object detection, autonomous driving, etc. However, relatively few DRL methods have
been proposed in the area of image segmentation, particularly in left ventricle segmentation. Re-
inforcement learning-based methods in earlier works often rely on learning proper thresholds to
perform segmentation, and the segmentation results are inaccurate due to the sensitivity of the
threshold. To tackle this problem, a novel DRL agent is designed to imitate the human process to
perform LV segmentation. For this purpose, we formulate the segmentation problem as a Markov
decision process and innovatively optimize it through DRL. The proposed DRL agent consists of
two neural networks, i.e., First-P-Net and Next-P-Net. The First-P-Net locates the initial edge point,
and the Next-P-Net locates the remaining edge points successively and ultimately obtains a closed
segmentation result. The experimental results show that the proposed model has outperformed the
previous reinforcement learning methods and achieved comparable performances compared with
deep learning baselines on two widely used LV endocardium segmentation datasets, namely Auto-
mated Cardiac Diagnosis Challenge (ACDC) 2017 dataset, and Sunnybrook 2009 dataset. Moreover,
the proposed model achieves higher F-measure accuracy compared with deep learning methods when
training with a very limited number of samples.

Keywords: left ventricle segmentation; image segmentation; deep reinforcement learning; double
deep Q-network; Markov decision process

1. Introduction

The movement of the boundary of the left ventricle (LV) could be used to measure
mechanical dyssynchrony. For the diagnosis and treatment of heart diseases, doctors
usually need to delineate the LV boundary from the cardiac magnetic resonance (MR)
images manually, which is time-consuming and reduces the efficiency of diagnosis. Hence,
automatic and robust identification of the LV boundary is important. However, due to
the motion of LV during image acquisition, the captured images are usually characterized
by blurring and intensity inhomogeneity, which makes the segmentation of magnetic
resonance LV images challenging. To address this problem, numerous methods have been
proposed for the automatic segmentation of LV images, which can be divided into three
groups: hand-engineered features-based segmentation, deep learning-based segmentation,
and reinforcement learning based segmentation.

Traditionally, segmentation was carried out using hand-crafted features like thresh-
old or edge/region information to obtain the final segmentation results. For instance,
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Rundo et al. [1] exploited the split-and-merge algorithm to find multiple homogeneous
seed-regions and performed the segmentation through the multi-seed region growing
procedure guided by appropriate similarity properties of intensity features. However,
poor image quality may limit the performance of these methods. In contrast, the deep
learning-based LV segmentation methods have achieved state-of-the-art performance [2–5].
It extracts features from the input image in a hierarchical fashion, i.e., from low-level
features to more abstract and data specific features. Shallow layers in the neural networks
have a narrow receptive field, which can learn features from the local area while deep layers
have a larger receptive field, which can learn abstract features like semantic information.
However, deep learning approaches are data-driven and their performances are highly
correlated with the amount of data available for training. LV dataset is relatively small and
hard to acquire, which restricts the performance of deep learning-based approaches.

Reinforcement learning (RL) has achieved considerable attention since Alpha Go
defeated the human champion on Go Game. It is an interactive process between a software
agent or multiple software agents and the environment. The environment gives the agent
an initial state, and the agent interacts with the environment by making an action, receiving
an immediate reward, and goes to the next state. The goal of the artificial agent is to learn
an optimal policy to maximize the accumulated reward [6,7]. Deep reinforcement learning
(DRL) employs concepts and principles in RL and builds a neural network to represent
a value function or a policy. The most basic and widely used method in DRL is Deep
Q-Network (DQN) [8] proposed by Mnih et al. in 2012. DQN is the first algorithm that
combines reinforcement learning and deep learning. It achieved human-level performance
in Atari games and even beyond human players’ performances in some games. Since then,
more and more researches on DQN have been carried out. Techniques like double DQN [9],
dueling DQN [10], recurrent DQN [11] and prioritized experience replay [12] have been
proposed to improve the performance of vanilla DQN.

DRL has been widely researched in object detection [13–15], video tracking [16],
intelligent driving [17], etc. However, in the field of image segmentation, especially medical
image segmentation, DRL methods are quite rare. Inspired by the human segmentation
process, this paper explores how to utilize DRL to perform LV segmentation. For instance,
a person can complete the task of delineating an object from an image by firstly finding an
initial point on the edge of the object, and then gradually positioning other edge points.
If we treat the LV segmentation process as deciding the LV edge points one by one, then
the DRL agent can imitate the human process to perform image segmentation. The initial
state of the agent is given when finding the first edge point and the action is to draw the
next LV edge point. After making the action, the agent will receive a new state. This
process is repeated until the agent draws a closed LV contour. The DRL agent records
the coordinates of all positioned boundary points to obtain a closed contour, which is
fundamentally different from the deep learning method that outputs the segmentation
probability of each pixel.

An example of the segmentation performance of the proposed method among different
training epochs is shown in Figure 1. The model first finds the initial edge point and
iteratively locates the next edge points coordinates, which corresponds closely to the field
of vision and viewing patterns of the human eye. The localized edge points constitute the
final image segmentation result. The key module of the proposed method is the DRL agent
that learns how to find the next edge point step by step. In this paper, we choose Double
DQN as the core algorithm because it reduces the overestimation of vanilla DQN. This
significantly contributes to the stability of learning. The main contributions of this paper
are as follows:

(1) We formulate the segmentation problem as a sequential decision-making process
(Markov Decision Process), optimize it through DRL using double Deep Q-Network and
innovatively define state, action, and reward.
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(2) The proposed model records a list of the boundary points coordinates, which is
fundamentally different from conventional deep learning-based LV segmentation methods
that output the segmentation probability of each pixel.

(3) The segmentation process of the proposed model corresponds closely to the field
of vision and viewing patterns of the human eye.

(4) The proposed model can address the problem that deep learning-based methods
require big data because it can be trained by utilizing a very limited number of samples and
achieves higher F-measure accuracy compared with deep learning (DL) baseline methods.

The remainder of this paper is organized as follows. In Section 2, we briefly review
related works in image segmentation. In Section 3, we provide the methodology of the
proposed DRL method for LV segmentation in detail. Later, the experimental results and
discussions are elaborated in Section 4. Finally, we conclude the paper and explore avenues
for further research of our work in Section 5.

Figure 1. An example of the segmentation results of an image on Automated Cardiac Diagnosis
Challenge (ACDC) 2017 training dataset across different epochs in the training process. The ground
truth (GT) boundary is plotted in blue and the magenta dots are the points found by Next-P-Net.
The red pentagram represents the first edge point found by First-P-Net.

2. Related Works

Deep learning-based medical image segmentation. Deep learning methods have
achieved great success in image segmentation since its successful incarnation in 2012.
Minaee et al. [18] provided a comprehensive review of the deep learning techniques in im-
age segmentation. Chen et al. [19] comprehensively reviewed the recent deep learning tech-
niques for cardiac image segmentation, and Litjens et al. [20] provided a thorough overview
of state-of-the-art deep learning approaches in cardiovascular image analysis. For the left
ventricle segmentation, top performing methods are based on deep learning technolo-
gies [21–25], in particular fully convolutional networks (FCN) [26] and U-Net [2]. Both of
them can be applied to the entire input image and perform convolution/deconvolution to
output a semantic likelihood map. Abdeltawaba et al. [27] proposed a novel FCN2 archi-
tecture based on FCN to reduce the memory footprint for cardiac segmentation. Recently,
U-Net architecture is the most well-known deep learning architecture in medical image
segmentation. Liu et al. [28] provided a comprehensive literature review of U-shaped
networks applied to medical image segmentation tasks. Several improvements have been
made to U-Net architecture, e.g., UNet++ [21], Attention U-Net [22]. UNet++ re-designed
the skip pathways that connect the two sub-networks in UNet. Attention U-Net introduces
a novel attention gate to highlight salient features that are passed through the skip con-
nections. Rundo et al. [29] incorporated Squeeze-and-Excitation blocks [30] into every
encoder or decoder block in U-Net to boost the segmentation performance with feature
recalibration. Galea et al. [31] presented a practical approach to perform cardiac image
segmentation through ensembling of DeepLab-V3+ [32] and U-Net [2].



Sensors 2021, 21, 2375 4 of 19

Different from the classic segmentation method proposed by Militello et al. [33],
who introduced a user-friendly Graphical User Interface tool to support radiologists in
epicardial adipose tissue (EAT) segmentation and quantification, Commandeur et al. [34]
exploited a convolutional neural network (CNN) for automated and fast EAT volume
and density quantification. Moreno et al. [35] employed two CNNs to develop a fully
automatic LV segmentation method. The first one defined the region of interest of the
cardiac chambers and the second one, which is based on U-Net, segmented the myocardium
and the blood pool. Romaguera et al. [36] and Nasr-Esfahani et al. [37] proposed a deep
fully convolutional neural network architecture to perform LV segmentation. Some authors
have combined deep learning with classical segmentation method, where the most common
combination was deep learning and deformable model [38–40]. Avendi et al. [38] combined
deep learning and deformable models to conduct fully automatic LV segmentation, where
deep learning algorithms detect and infer the shape of LV. In [39], Ngo et al. integrated
a deep belief network into a level-set model, where the deep belief network can reliably
model the shape and appearance of the LV.

Reinforcement learning-based image segmentation. Apart from deep learning meth-
ods, various studies have been carried out on reinforcement learning-based image segmen-
tation methods. Shokri et al. [41] introduced a simple Q learning model to find the optimal
threshold for digital images. Song et al. [42] introduced an automatic seed generation tech-
nique with dueling DQN to solve the interactive segmentation problem. The function of
this reinforcement learning networks is to find several seeds to distinguish foreground and
background, and the segmentation process is based on the random walker segmentation al-
gorithm [43]. Han et al. [44] made the assumption that object segmentation mainly relies on
the interaction between object regions and their context, and implemented a cutting-policy
network (CPN) to find the optimal object box and context box, and a cutting-execution
network (CEN) to carry out object segmentation. The CPN is a Deep Q Network and the
CEN takes the architecture of FC-DenseNet [45]. The reinforcement learning network in
these methods cannot complete the object segmentation task directly since they barely
provide useful information to the segmentation part, and the segmentation process is
achieved via other networks. In [46,47], the authors constructed a recurrent neural network
to model the sequence of 2D vertices of the polygon outlining an object and reformulate
the polygon prediction task as a RL problem.

Reinforcement learning-based medical image segmentation. RL architectures have
also been applied in analyzing medical images obtained from magnetic resonance imaging
(MRI), computerized tomography (CT) scan, ultrasound (UlS), etc. However, to the best of
our knowledge, the research on medical image segmentation is limited [48–54], especially
in LV segmentation [55–57]. In [58], Mahmud et al. reviewed various important applica-
tions of deep learning and reinforcement learning to biological data. RL methods tended
to segment the medical images by exploiting a suitable threshold earlier, and adopted the
simple thresholding method for segmentation. As a result, the final segmentation output
was rough and inaccurate. For instance, the methods proposed in [52,53] divided the
prostate ultrasound image into several sub-images and employed a Q learning scheme to
optimally find the appropriate local threshold and structuring element values for each sub-
image individually. In 2019, Liao et al. [54] employed an Actor-Critic model to iteratively
refine the coarse previous segmentation by integrating user interactions in order to get a
precise result for 3D medical image segmentation. However, this method requires an initial
segmentation result and human hints based on error regions. Mortazi et al. [57] developed
a network optimization search algorithm based on a policy gradient (PG) reinforcement
learning. In this paper, we show that DRL enables us to implement LV segmentation in a
more human-like manner. It can accomplish the image segmentation process directly and
achieve acceptable performance after several epochs.
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3. Methodology

The overall process of the proposed system is shown in Figure 2. The proposed system
consists of two neural networks: First-P-Net and Next-P-Net.

Figure 2. The overall process of the proposed system: The First-P-Net finds the first edge point and generates a probability
map of edge points positions. The Next-P-Net locates the next point based on the previous edge point and image information.

First-P-Net: The goal of First-P-Net is to find a good initial (or first) edge point to start
the segmentation process and generate the probability feature map of edge point positions.
First-P-Net is a traditional CNN network, which is trained before Next-P-Net.

Next-P-Net: After obtaining the first edge point from First-P-Net, Next-P-Net gener-
ates the next point based on the previous edge points and image information. The system
proceeds iteratively with the image and edge points. The input of Next-P-Net is an edge
point-centric concatenated matrix. In addition to the original grayscale image, the concate-
nated input contains the edge information obtained by Sobel filter, two probability feature
maps of edge points positions and a map of past points. Given the concatenated matrix
as input, the output of Next-P-Net is the coordinate of the next edge point. Segmentation
of the image by adopting all localized points in the current step results in a new binary
mask, which can be utilized for computing the reward signal by comparing it with the
ground truth mask. The reward signal evaluates the goodness or badness of the next point
generated by Next-P-Net and is employed to update the Next-P-Net parameters.

The cyclic operations for finding the next edge point are repeated with the reward
signal updating the DRL neural network in the training process. In the testing process,
the system runs without the reward part, and generates new point iteratively until reaching
the end point. We obtain the final segmentation binary mask by plotting all points localized
by First-P-Net and Next-P-Net.

3.1. Markov Decision Process (MDP)

The fundamental part of the proposed system is the optimal generation of the next
edge point. Generating acceptable edge points can be formalized as MDP because given
the current state and operation, finding the next edge point is independent of the past.
A MDP is a tuple < S, A, P, R, γ >, where S is a set of states, A is a set of chosen actions,
P is the state transition probability matrix, R is a set of immediate rewards and γ is a
discount factor in the range [0, 1]. In our proposed segmentation system, the state, action
and reward of MDP are defined as follows.

State: The state is the input of Next-P-Net, which contains important image informa-
tion to enable the DRL agent to make the best action. In addition to the original grayscale
image (size: W × H), some auxiliary knowledge should be added to provide more details.
Since our method is an edge-based method, we detect the edge information using a Sobel
operator. Besides, the size of the original probability map of edge points positions gener-
ated by First-P-Net is one-eighth of the input height and width. Then, the 8× up-sampled
version of the probability map, which has the same size as that of the input image, is also
concatenated. Therefore, the concatenated image includes three layers, which are grayscale
layer, edge information layer (Sobel layer) and 8× up-sampled probability map layer.
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In our problem formulation, an edge point-centric cropped matrix is defined as the
state. The edge point is given by the first edge point found by First-P-Net or the previous
point found by Next-P-Net. Each state consists of 3 layers cropped from the concatenated
image (size: w× h× 3) and two other layers (size: w× h× 2). One of the additional layers
is the global probability map of edge points positions, which contains important global
information. The original probability map generated by the First-P-Net is resized to w× h
to form the global probability map. Another additional layer is cropped from the map of
previous edge points coordinates. The trajectory of previously identified points records the
interaction between the DQN agent and the environment. The trajectory history allows the
agent to remember the positions of previous identified edge points and enables the agent
to make more coherent actions. The default value of the past points map is set to 0 because
no point was found at the beginning. Thereafter, this map is updated by adding the newly
localized point and filling the point position with a value of 1.

In summary, the state has five layers (size: w× h× 5). Four of them are cropped from
the concatenated image or past points’ map. The fifth layer is the fixed global probability
map. Regardless of the position of the edge points, the spatial dimensions of the state (w× h)
are fixed and should be chosen appropriately according to the image size. w � W and
h� H since firstly, if the cropped size is too small, it cannot provide enough information
to Next-P-Net and may result in terrible action decision. On the other hand, we implement
double DQN [9] as the reinforcement learning algorithm. Q-learning based methods need
to store a replay buffer which contains a certain number of state transitions. If the cropped
size is too large, the replay buffer will occupy enormous computer resources. In addition,
as the system proceeds by finding the edge points iteratively, it is unnecessary to exploit
large image grayscale information. The idea finely accords with the human segmentation
process by modeling the segmentation task as a sequential decision-making process. When
human segments an object from the background, the person mainly focuses on the local
information and combining global information to some extent. In the proposed model,
the cropped layers in the state provide the local information and the global probability
map provides the global information. When the size exceeds the original image, a crop and
resize function like that in Fast R-CNN [59] is employed to make sure that the size of the
cropped image is exactly w× h.

Action: Given the state, the DQN agent outputs one action from the action space.
Centered on the edge point, eight actions corresponding to the eight “neighborhoods” of
the edge point are determined. The “neighborhoods” are defined as n-pixels distance from
the edge point. Figure 3 illustrates the defined neighborhoods of a given point, where we
term n skip neighborhoods. The action space in step t is defined as At = {0, 1, 2, 3, 4, 5, 6, 7}.
The different number represents different action for the corresponding neighborhood
chosen. The grids in the left image represent the image pixels. Suppose the agent has
located the red edge point, the action space is defined as the 8 skip neighborhoods centered
on the located point. The agent locates the next corresponding edge point according to
the action value output. For instance, if the action is “4”, the next edge point is the green
pixel under the red pixel. If the action is “7”, the next edge point is the green pixel in the
upper right corner of the red pixel. The traditional definition of eight neighborhoods only
allows the agent to move one step at each time. Thus, it takes a lot of steps for the agent to
complete a closed contour. Using skip neighborhoods helps the agent to segment an image
more effectively.
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Figure 3. The left image defines the n skip neighborhoods centered on the red point. The green points
represent the eight skip neighborhoods of the red point. The middle image shows the defined action
space and the corresponding action directions. The right image gives an example of the segmentation
result. The ground truth (GT) boundary is plotted in blue and the magenta dots are the points found
by Next-P-Net. The red pentagram represents the initial edge point.

Reward: The immediate reward signal evaluates the goodness or badness of the
action generated by the DQN agent. It is the interaction result between the agent and
the environment. If the agent finds the next edge point optimally, it should be given a
high immediate reward. Otherwise, the immediate reward should be small. The goal of
a RL system is to maximize the cumulative reward. Generally, the reward is related to
the evaluation metrics. For our problem formulation, one of the most intuitive evaluation
metrics in LV segmentation is F-measure. A basic reward function regarding F-measure is
to employ the difference of F-measure between the current segmentation mask and the
previous segmentation mask. If the difference is greater than 0, the reward should be
positive since the current action selected by the agent is acceptable and it makes the F-
measure become larger than the previous one. However, we found that using the difference
in Intersection over Union (IoU) achieves better segmentation results than using difference
F-measure as difference IoU gives a more accurate evaluation on the current action and
it can effectively avoid the clustering of points. Hence, we define difference IoU reward
as Rdi f f _IoU .

Meanwhile, the distance between the localized edge point and the ground truth point
can also evaluate the effectiveness of the DQN agent. If the distance is smaller than 10,
the agent will obtain a positive Redge_dist reward which is inversely proportional to the
distance. However, if the distance exceeds 10, the reward is 0. Hence, we define two reward
functions according to difference IoU and edge distance as Rdi f f _IoU and Redge_dist.

The definition of Rdi f f _IoU is as follows: Rdi f f _IoU =
1, IoU(Mcurr, GT)− IoU(Mprev, GT) > 0
0, IoU(Mcurr, GT)− IoU(Mprev, GT) = 0
−1, IoU(Mcurr, GT)− IoU(Mprev, GT) < 0

(1)

where Mcurr is the segmentation binary mask computed by the first edge pixel and all
localized next points. Mprev is the segmentation binary mask which is computed by the
first edge pixel and all localized next points except for the last 5 points. GT is the ground
truth mask. IoU(x, y) is the IoU between x and y. We employ the interval of 5 points to
compute difference IoU reward since it helps the stability of the training process comparing
with using the interval of 1 point. With a 1-point interval, the difference IoU between the
current segmentation mask and previous mask segmented one step earlier is too small and
unable to evaluate the current action.

The definition of Redge_dist is as follows:

Redge_dist =

{
ratio ∗ (10− dist), dist < 10
0, otherwise

(2)

where dist donates the minimum distance between the localized edge point and the ground
truth point. The ratio is set to 0.05 in our system. The introduction of the ratio factor is to
normalize edge distance reward to [0, 0.5] so that the difference IoU reward remains to be
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the dominant and most direct reward in our model. Otherwise, if the edge distance reward
accounts for a large portion of the total reward, the points found by Next-P-Net may gather
at the first point and the agent will always get high edge distance reward regardless of
smaller difference IoU reward. Thus, normalizing the edge distance reward to a small
interval highly encourages the agent to find edge points which increase difference IoU.

In the experiments, we found that some gathering situations still occurred even
though we have normalized the edge distance reward. To discourage the occurrence of
such situations, we define points clustering reward as

Rpoints_clus =

{
−0.5, std < 10
0, otherwise

(3)

where std is the standard deviation of the last 20 edge points coordinates. Adding this
reward positively helps the agent to avoid turning around one edge point and accelerates
the convergence of the proposed model. The final immediate reward r is the sum of the
above rewards and is given by Equation (4).

r = Rdi f f _IoU + Redge_dist + Rpoints_clus (4)

According to the ranges of three separate rewards, the range of immediate reward r is
[−1.5, 1.5]. The three separate reward functions are plotted in Figure 4.

Figure 4. Three separate reward functions: difference IoU reward function, edge distance reward
function and points clustering reward function.

3.2. Double Deep Q-Network (Double DQN)

We implemented double DQN [9] to train the DRL agent. Double DQN learns the
action-value function Q(s, a) through a deep neural network. Q(s, a) is the expected
cumulative reward starting from state s, taking action a. The optimal policy can be obtained
from maximizing Q function:

a = arg max
a∈A

Q(s, a) (5)

Double DQN utilizes two neural networks of the same structure: evaluation network
and target network. The evaluation network parameters are updated in each iteration while
the target network parameters are fixed during a certain number of iterations. After several
iterations, the parameters of evaluation network are assigned to the target network. This
fixed target network method has significantly improved reinforcement learning stability.
Besides, ε-greedy policy is employed to balance exploration and exploitation. ε-greedy
policy is an exploration policy with a probability of ε for the agent to randomly select
an action and a probability of 1-ε for the agent to select the action that maximizes the Q
function. In addition, Q learning method is an off-policy method, so the system stores state
transitions (s, a, r, s

′
) to a replay memory unit, where s

′
is the next state, and randomly

selects some experiences from this memory unit. This experience replay disrupts the corre-
lation between experiences and makes neural networks update more efficiently. The target
Q value is expressed as:

Qtarg = r + γQ(s
′
, arg max

a′
Q(s

′
, a
′
; θeval); θtarg) (6)
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where a
′

is the action of next state s
′
, θeval is the evaluation network parameters and θtarg

is the target network parameters. The loss function for training the double DQN can be
expressed as:

Loss(θeval) = (Qtarg −Q(s, a; θeval))
2 (7)

3.3. Model Architecture

The architectures of First-P-Net and Next-P-Net are illustrated in Figures 5 and 6.
The input sizes of First-P-Net and Next-P-Net are [W × H × 3] : [368 × 368 × 3] and
[w× h× 5] : [51× 51× 5], respectively and the inputs are normalized to [−1, 1]. The back-
bones of First-P-Net and Next-P-Net are ResNet-50 and ResNet-18 [60]. To decrease the
complexity of neural networks, we modify ResNet architecture by reducing the number of
layers used in the network. In First-P-Net, we modify ResNet-50 architecture by reducing
the number of layers to layers = [2, 2, 2, 2]. Since the spatial dimensions of different block
outputs of ResNet are not equivalent, they cannot be concatenated directly. We employ
3× 3 convolution and bilinear up-sampling with corresponding scale factor to the block
outputs followed by batch normalization [61] and ReLU non-linearities to resize their
dimensions into 184× 184× 64. Then these four blocks are concatenated to 184× 184× 256.
After obtaining the concatenated features, we add four convolutional blocks with a kernel
size of 3× 3 to output a feature map with size 46× 46× 16. The probability map is obtained
by employing 1× 1 convolution to the feature map. Afterward, the probability map is
flattened and the log SoftMax function is employed to select the top 1 value as the predicted
first edge point. Next-P-Net is a double DQN. We also modify ResNet-18 architecture
by using layers = [1, 1, 1, 1] to decrease the complexity. After that, an adaptive average
pooling and a fully connected layer are performed on the ResNet feature map to output
the action probability.

Figure 5. The architecture of First-P-Net. 3 × 3 conv or 1x1 conv: 3 × 3 or 1 × 1 convolution layer followed by batch normal-
ization and ReLU activation function. resblk: revised ResNet Block. 2×: 2 upsampling. 4×: 4 upsampling. 0.5×: 0.5 down-
sampling. 1/8×: 1/8 downsampling.

Figure 6. The architecture of Next-P-Net. 7 × 7 conv: 7 × 7 convolution layer followed by batch normalization and ReLU
activation function. resblk: ResNet Block.
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4. Experiments

To demonstrate the efficiency of the proposed model, we performed experiments
on two widely used public LV segmentation datasets: ACDC 2017 dataset [62], Sun-
nybrook 2009 dataset [63], and a set of 15 subjects randomly selected from the ACDC
dataset. In addition, we also analyze the effect of different states and rewards on the
proposed model.

4.1. Datasets

Automated Cardiac Diagnosis Challenge 2017-ACDC 2017 dataset [62]. This dataset
is composed of 100 sequences from 20 healthy subjects and 80 diseased subjects. These
diseased subjects can be divided into four classes: heart failure with infarction, dilated
cardiomyopathy, hypertrophic cardiomyopathy, abnormal right ventricle. The ground
truth segmentations of LV endocardium and epicardium references are only available for
both end-diastolic and end-systolic phase instances by one clinical expert. This dataset can
also be utilized to classify different sequences into the corresponding type of disease. In this
work, our goal is to segment LV endocardium. Since the LV covers only a small region in
cardiac MRI, the RoI around the LV is extracted. A total of 1670 RoIs on this dataset are
extracted and images are resized to 368× 368 with bilinear interpolation method.

The Sunnybrook Cardiac MR Left Ventricle Segmentation Challenge-Sunnybrook
2009 dataset [63]. Cardiac images in this dataset are acquired from 45 sequences, comprising
heart failure with ischemia, heart failure without ischemia, hypertrophic cardiomyopathy
and normal subjects. It is an early published dataset for automated myocardium seg-
mentation from short-axis MRI, held by a MICCAI workshop in 2009. For each patient
record, the hand-drawn contours of the left endocardium and epicardium coordinates for
End-Diastolic (ED) and End-Systolic (ES) slices are given as segmentation ground truth.
The contours are saved in text files that consist of the x-coordinates and y-coordinates of
contour points. A total of 803 RoIs on this dataset is extracted and images are resized to
368× 368 with bilinear interpolation method.

4.2. Training

Both networks are trained from scratch. Neither image pre-processing method nor
data augmentation is adopted in the training process. First-P-Net is similar to the residual
encoder architecture of [47]. The skip connections in First-P-Net combine low-level features
like edges and high-level features like semantic information. We obtain the edge points
coordinates of ground truth image and down-sample the size to the size of original proba-
bility map and employ binary cross-entropy loss as the loss function. First-P-Net is trained
using the Adam optimizer [64] with a batch size b1 = 1 and a learning rate λ1 = 1× 10−5.
The training epochs for both datasets are 10 epochs, and the proposed model takes 2.1 and
4.3 h on average to train an epoch on Sunnybrook 2009 dataset and ACDC 2017 dataset,
respectively. The difference in training time is due to the inequality training samples in the
two datasets. All the experiments are run on a single NVIDIA GeForce GTX 1080 Ti card.

In the training process, 21,000 state transitions are collected to build an experience
replay buffer before Next-P-Net’s learning. When the replay buffer is full, the newest
transition will replace the oldest transition, and the evaluation network starts to update its
parameters every time step using the Adam optimizer with a batch size b2 = 256 and a
learning rate λ2 = 1× 10−4. The parameters of the evaluation network are assigned to the
target network every 2000 iterations. In n skip neighborhoods, n is set to 5. The maximum
step for an agent to find the contour is set to 300 steps empirically. After 100 steps, if the
distance between the next point and the first point is less than 40, n changes into 3 to obtain
more dense and accurate segmentation results. When the distance is less than 20, this
episode is ended and breaks down early to stop the agent from repeatedly finding the image
contour. Otherwise, the agent keeps operating until it spends 300 steps. After network
convergence, the agent took only 100 to 150 steps to find the closed contour (around 0.9 s
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per image). For exploration, ε greedy policy with ε set to 0.2 is employed in both training
and testing process. The discount factor γ is set to 0.9.

4.3. Performance

Figure 7 shows some segmentation outcomes on Sunnybrook 2009 testing dataset and
ACDC 2017 testing dataset. The first three rows are the segmentation performances on
Sunnybrook 2009 testing dataset and the last three rows are the segmentation performances
on ACDC 2017 testing dataset. No post-processing steps are adopted for better boundary
smoothness. Some examples of the first edge point found by First-P-Net on the ACDC
2017 testing dataset are depicted in Figure 8. The red pentagram represents the first edge
point and the small image on the upper left or upper right corner is the partial enlargement
of the first point. From Figure 8, we can see that the first point found by First-P-Net is
very accurate. The first point locates nearby the image edge, which provides the DRL
agent a suitable initial state. From Figure 7, the LV contours segmented by the proposed
system are consistent with the ground truth contours, which shows the validity of the
proposed model. In some LV images, there exists depressions caused by trabeculations
and papillary muscles since typically, they have a similar intensity as the myocardium
in magnetic resonance imaging. However, the DRL agent can still make sensible actions.
The reason is that First-P-Net is trained with ground truth images and the probability
map it produced has encoded the information that the LV is a round object. Therefore,
the probability map, as one of the concatenated layers of state, can provide the DQN agent
prior object shape knowledge and prevent the agent from getting stuck in depressions.

Figure 7. Examples of segmentation outcomes. The first three rows are the segmentation performances on Sunnybrook 2009
testing dataset and the last three rows are the segmentation performances on ACDC 2017 testing dataset. The ground truth
(GT) boundary is plotted in blue and the magenta dots are the points found by Next-P-Net. The red pentagram represents
the first edge point found by First-P-Net.
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Figure 8. Examples of the first edge point found by First-P-Net on ACDC 2017 testing dataset.
The red pentagram represents the first edge point and the small image on the upper left or upper
right corner is the partial enlargement of the first point.

The Q-value function Q(s, a) evaluates the expected cumulative reward starting from
state s, taking action a. Based on the definition of state, if an edge point is centered on the
cropped image, it is a promising state and the corresponding Q-value of this state tends
to be high. Conversely, if there is no edge point on the cropped image, no matter what
action the agent makes, this state owns lower Q-value. Figure 9 illustrates some states
with different Q-values. Comparing the states of high Q-values and low Q-values, we can
see that high Q-value states have obvious boundary pixels appearing in the center of the
images while the center points of low Q-value states do not locate any boundary pixels.

Figure 9. States with different Q-values on ACDC 2017 testing Dataset. The first two rows show
some images centered on the yellow point with low Q-value, while the last two rows show some
images centered on the yellow point with high Q-value.

4.4. Ablation Study

State, action and reward function are the key elements in the design of a DRL system.
To analyze the effect of these elements in the proposed model, we employed different
forms of state and reward to train the model. Experiments were carried out on ACDC 2017
dataset by changing only the corresponding components while keeping other parts intact.

State: In addition to the original grayscale layer, the defined state concatenates four
additional layers, which are Sobel layer (S), cropped probability map layer (C), global
probability map layer (G) and past points’ map layer (P) (Experiment 0: SCGP). The state
contains more detailed information than the original grayscale image. To verify the effec-
tiveness of state, we trained Next-P-Net by exploiting other simpler state representations
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for comparison. One representation of the state consists of three layers by omitting two
probability map layers (Experiment 1: SP). Hence, the layers of state defined in Experiment
1 are grayscale layer, Sobel layer and past points map layer. Another state is composed of
four layers by omitting past points’ map layer (Experiment 2: SCG).

The changes in rewards and assessment criteria according to the learning iterations
in the training process are plotted in Figure 10. In this figure, one iteration involves the
whole training process inside an image. Average perpendicular distance (APD), Precision,
Recall and F-measure (or DICE/ Jaccard index) are computed to quantitatively evaluate
LV boundaries. APD measures the distance between the segmented contour and the GT
contour, computed by averaging over all segmented contour points. A high value implies
that the two contours do not match closely. F-measure evaluates the trade-off between
Precision and Recall. From these six graphs, we can see that the upward trends in three
separate rewards and the total reward are obvious, implying that our model is learning.
Comparing the curves of Experiment 0–2, the total reward and F-measure achieved by
the proposed state are higher than those achieved by the other experimental states in
most training iterations. Besides, the curves of Experiment 0 are more stable than other
experiments curves. Comparisons of Experiment 0–2 on ACDC 2017 testing dataset are
reported in Table 1. Numbers in bold represent the best results. From this table, we observe
that all the assessment criteria of Experiment 0 are better than that of Experiment 1 and
Experiment 2. The average F-measure of either deleting past points map or two probability
map layers on the training dataset is around 0.88. Adding the past points map and
probability map together achieved the average F-measure of 0.93, showing an increase of
5% compared to using only one of them. Thus, it can verify that both past points map and
probability map provide useful image information, and the proposed representation of the
state is more comprehensive than using only one of them.

Figure 10. The changes in three separate reward values, total reward value, F-measure accuracy and APD accuracy according
to the learning iterations in the training process on ACDC 2017 Dataset.
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Table 1. Experiments on ACDC 2017 dataset: different state definitions and reward definitions. Numbers in bold represent
the best results.

Exp State Reward Difference
IoU Reward

Edge Distance
Reward

Points Clusting
Reward

Total
Reward APD Precision Recall F-Measure

0 SCGP RdReRp 110.9860 44.8845 −3.9499 149.9206 4.1757 0.9383 0.9500 0.9428
1 SP RdReRp 98.6766 35.1291 −4.9411 128.8646 11.6372 0.8580 0.9181 0.8808
2 SCG RdReRp 96.2734 38.4739 −13.5838 121.1635 6.1673 0.8824 0.9004 0.8825
3 SCGP Rd 124.3672 0 0 124.3672 24.4755 0.6723 0.8043 0.6997

Reward: The reward function is designed as the sum of difference IoU reward (Rd),
edge distance reward (Re) and points clustering reward (Rp). To validate the positive
effects of the edge distance reward and points clustering reward, we barely employed the
difference IoU reward as the final immediate reward to train Next-P-Net (Experiment 3:
Rd) while the state is composed of five layers the same as Experiment 0. From Figure 10,
comparing the curves of Experiment 0 and Experiment 3, the difference IoU reward sees
an increase when discarding edge distance reward and points clustering reward. How-
ever, the total reward and average F-measure in both training process and testing process
decreases. Utilizing the difference IoU reward as the final immediate reward only achieved
0.69 F-measure on the testing dataset as reported in the last row of Table 1, showing a
dramatic decrease of 33% compared to employing the sum of difference IoU reward, edge
distance reward and points clustering reward. We can conclude that adding edge distance
reward and points clustering reward provides a more overall evaluation to the action made
by the DQN agent. Figure 11 illustrates the changes in assessment criteria according to the
learning epochs in the training process on ACDC 2017 dataset.

Figure 11. The changes in APD, F-measure, Precision and Recall according to the learning epochs in
the training process on ACDC 2017 dataset.

4.5. Comparison with Other Methods

To verify the effectiveness of the proposed model in LV segmentation, we conducted
comparison experiments on ACDC 2017 dataset [62] and Sunnybrook 2009 dataset [63].
To the best of our knowledge, left ventricle image segmentation approaches based on RL are
rare [55–57]. Wang et al. [55,56] introduced the context-specific segmentation concept and
developed a general segmentation framework using reinforcement learning for LV segmen-
tation, but they carried out the experiments on private dataset, achieving 0.895 F-measure
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on healthy LV data and 0.834 F-measure on diseased LV data. Mortazi et al. [57] developed
a network optimization search algorithm based on policy gradient to perform LV segmen-
tation. In order to conduct a comprehensive experiment, we compare the proposed model
with deep learning baselines. In medical image segmentation tasks, popular convolutional
neural network architectures include fully convolutional network (FCN) [26], U-Net [2]
and their variants, e.g., UNet++ [21], Attention U-Net [22], FCN2 [27], the combination
of DeepLab and U-Net [31]. Accuracy comparisons with these deep learning methods
are listed in Table 2. Numbers in bold represent the best results. In the experiments,
all networks are trained from scratch. From this table, we observe that Attention U-Net and
U-Net++ give better segmentation results on both ACDC 2017 dataset and Sunnybrook
2009 dataset. Although in these two public datasets, the segmentation accuracy achieved
by the proposed model is not as high as U-Net architecture, it still achieved acceptable LV
segmentation performances.

Table 2. Accuracy comparison on ACDC 2017 dataset and Sunnybrook 2009 dataset. Numbers in
bold represent the best results.

Dataset Model Method APD Precision Recall F-MeasureDL RL

FCN-8s [26] X 4.8724 0.9340 0.9329 0.9326
U-Net [2] X 4.3779 0.9395 0.9401 0.9388

UNet++ [21] X 4.0660 0.9429 0.9420 0.9418
ACDC AttenU-Net [22] X 3.8900 0.9357 0.9589 0.9465

2017 [62] FCN2 [27] X 6.865 - - 0.94
DeepLab+U-Net [31] X - - - 0.9502
Policy Gradient [57] X 8.9 - - 0.928

The proposed X 4.1757 0.9383 0.9500 0.9428

FCN-8s [26] X 5.4146 0.9418 0.9193 0.9292
U-Net [2] X 5.4541 0.9475 0.9141 0.9295

Sunnybrook UNet++ [21] X 5.2907 0.9242 0.9409 0.9317
2009 [63] AttenU-Net [22] X 5.1936 0.9490 0.9238 0.9351

The proposed X 5.7185 0.9155 0.9431 0.9270

4.6. Performance on Small Datasets

In order to discuss the performance of different approaches on small datasets, experi-
ments were held out on 15 subjects randomly selected from [62]. We randomly divided
15 subjects into 3 subsets (Set 1, Set 2, Set 3) and each set contains 5 subjects for 3-fold
cross validation. The three subsets contain 82, 86 and 91 images, respectively. In exper-
iments, a single subset is retained as the validation data for testing the model, and the
remaining 2 subsets are used as training data. All the models on the three small datasets
were trained separately and trained from scratch. In the experiments, we found that the
segmentation accuracy achieved by the proposed model increases very rapidly in the
beginning. After only 5 epochs, the model has converged and achieved higher segmen-
tation accuracy than FCN and U-Net architecture. The segmentation results of different
networks on the small datasets are reported in Table 3. Numbers in bold represent the
best results. It achieves the highest Precision, Recall and F-measure accuracy on the small
dataset. On the other hand, as the number of training samples decreases, we can see
that the segmentation performances of UNet++ and Attention U-Net have deteriorated
compared to vanilla U-Net.

The proposed model can efficiently exploit the information inside the training images
as this model can be trained with only a few interactions and rapid convergence. However,
it requires higher computation loading since the DQN agent needs to find edge points
step by step. For each image, it takes 100–150 steps to find the closed contour. For each
step, the agent needs to make an action, interact with the environment, obtain the reward,
update its parameters through back-propagation, and go to the next state. The computation
load of segmenting a single image for the DQN agent is heavier than that for traditional
deep learning methods, and this results in a longer time when running an epoch.
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Table 3. Accuracy comparison with deep learning baselines on the small dataset randomly extracted
from ACDC 2017 dataset (3-fold cross validation). Numbers in bold represent the best results.

Train Set Test Set Model APD Precision Recall F-Measure

FCN-8s [26] 8.5395 0.9147 0.8513 0.8796
U-Net [2] 7.0136 0.8707 0.8979 0.8828

1 + 2 3 UNet++ [21] 8.4232 0.8217 0.8839 0.8504
AttenU-Net [22] 7.4199 0.8348 0.9085 0.8689

The proposed 8.9178 0.8770 0.9281 0.8983

FCN-8s [26] 6.5695 0.9307 0.8846 0.9055
U-Net [2] 5.3193 0.9059 0.9402 0.9216

1 + 3 2 UNet++ [21] 5.8975 0.9153 0.9266 0.9197
AttenU-Net [22] 5.1295 0.9094 0.9284 0.9175

The proposed 4.8773 0.9334 0.9416 0.9357

FCN-8s [26] 6.1855 0.9421 0.8717 0.9047
U-Net [2] 5.4322 0.9287 0.9079 0.9167

2 + 3 1 UNet++ [21] 6.5104 0.9053 0.8846 0.8931
AttenU-Net [22] 5.5275 0.9171 0.9111 0.9126

The proposed 6.4510 0.9041 0.9385 0.9181

FCN-8s [26] 7.0982 0.9292 0.8692 0.8966
U-Net [2] 5.9217 0.9018 0.9153 0.9070

average result UNet++ [21] 6.9437 0.8808 0.8984 0.8877
AttenU-Net [22] 6.0256 0.8871 0.9160 0.8997

The proposed 6.7481 0.9048 0.9360 0.9173

5. Conclusions

In this paper, unlike the conventional deep learning-based segmentation methods
that gradually adjust the segmentation probability of each pixel, we propose a novel
edge-based image segmentation model using DRL, and train a DRL agent to delineate the
outline of the left ventricle. This agent tries to imitate the behavior of a human observer
by finding an initial point on the edge of left ventricle, and then gradually positioning
other edge points. This model contains two neural networks: First-P-Net and Next-P-Net.
The goal of the First-P-Net is to find the first edge point of the object and generate a
probability map of the edge point position. After that, Next-P-Net iteratively locates the
coordinates of the next edge point and obtains a closed and accurate segmentation result.
Based on deep learning benchmarks of ACDC 2017 dataset and Sunnybrook 2009 dataset,
the performance of the proposed model is better than previous reinforcement learning
methods and has comparable performance of deep learning baselines. Compared with
deep learning methods, the proposed model can also be trained on small datasets with fast
convergence and achieves higher F-measure accuracy.

However, there are some weaknesses in the proposed model. For instance, once the
agent finds the edge of the wrong direction and deviates far from the truth, it is difficult
to return in the correct way. More appropriate exploration policy or combining global
information should be considered to improve the stability of the DRL agent in the feature
work. In addition, we only utilize a probability map to provide prior knowledge of the
object shape. In order to better understand the object to be segmented, more high-level
information is expected to be added to the state representation. For instance, the feature
map before the probability map in the First-P-Net contains richer global and edge infor-
mation than the probability map. We may skip-connect this feature map with the feature
map outputted by Next-P-Net and train the two networks simultaneously. Informative
state representation enables the agent to make more sensible actions and achieve better
segmentation performance. Besides, the hyper-parameter n in n skip neighborhoods is fixed
in the proposed method. An adaptive step n is more flexible to design for the action space
in the future.
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