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Abstract: This study presents incremental learning based methods to personalize human activity
recognition models. Initially, a user-independent model is used in the recognition process. When
a new user starts to use the human activity recognition application, personal streaming data can
be gathered. Of course, this data does not have labels. However, there are three different ways to
obtain this data: non-supervised, semi-supervised, and supervised. The non-supervised approach
relies purely on predicted labels, the supervised approach uses only human intelligence to label
the data, and the proposed method for semi-supervised learning is a combination of these two:
It uses artificial intelligence (AI) in most cases to label the data but in uncertain cases it relies on
human intelligence. After labels are obtained, the personalization process continues by using the
streaming data and these labels to update the incremental learning based model, which in this case
is Learn++. Learn++ is an ensemble method that can use any classifier as a base classifier, and this
study compares three base classifiers: linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), and classification and regression tree (CART). Moreover, three datasets are used in
the experiment to show how well the presented method generalizes on different datasets. The results
show that personalized models are much more accurate than user-independent models. On average,
the recognition rates are: 87.0% using the user-independent model, 89.1% using the non-supervised
personalization approach, 94.0% using the semi-supervised personalization approach, and 96.5%
using the supervised personalization approach. This means that by relying on predicted labels with
high confidence, and asking the user to label only uncertain observations (6.6% of the observations
when using LDA, 7.7% when using QDA, and 18.3% using CART), almost as low error rates can be
achieved as by using the supervised approach, in which labeling is fully based on human intelligence.

Keywords: personalization; human activity recognition; incremental learning; human AI collaboration

1. Introduction

This study focuses on human activity recognition based on inertial sensor data, which can be
collected for instance using smartphone sensors. Traditionally, activities are recognized by training
a user-independent recognition model relying on data that are given prior to training. The problem
of this approach is that it assumes that structure of the data remains static in the future. However,
this is not normally the case in real world problems as the world around us constantly changes.
On the other hand, in human activity recognition the biggest problem is not the changing world,
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instead the main problem is the differences between humans: People are unique for instance in
terms of physical characteristics, health state or gender. Due to this, studies have shown that a
user-independent model that provides accurate results for one person, does not necessarily work
as accurately with somebody else’s data. For instance, it was shown in [1] that user-independent
models are not accurate if they are trained with healthy study subjects and tested with subjects who
have difficulties moving. Therefore, instead of a user-independent model, it would be better to use
personal recognition models as they provide more accurate recognition [2,3]. However, the challenge
of personal recognition models is that they normally require personal training data, and therefore, a
personal data gathering session [4], making this approach unusable out-of-the-box. In addition, there
are differences within-users. For instance, gait changes when users get older. Due to this, models
should not only be personal, they should also be able to adapt to the changes in a person’s style of
performing activities and their environment.

Instead of personal models, also personalized models, which are a combination of
user-independent and personal models, can be used in the recognition process. Some personalization
methods rely on transfer learning and they require only a small amount of training data from the target
user, for instance [5]. Therefore, in these cases, the personal data gathering session can be quite short.
However, there are also personalization methods that do not necessarily require a separate personal
training data gathering session at all. For instance, Siirtola et al. [6] presented a two step approach
to train personalized models. This was especially designed for devices that include several different
types of sensors. In the first step, a user-independent model that uses data from all sensors was
trained and implemented on the device. When a new person starts to use this device, the implemented
user-independent model is used to label the personal streaming data. These predicted labels and
gathered streaming data are then used to train a light, energy efficient personal model that uses only a
sub-set of the available sensors. This approach improves the recognition accuracy but the problem of
the approach is that personalization is based on model retraining. Therefore, all the streaming data
and labels needs to be stored to the device’s memory to be able to use them for model training. This
obviously is problematic as it requires a good deal of memory to store the data and a large amount of
calculation capacity to retrain the model. There are also other studies, where recognition models are
personalized in order to improve the model accuracy. Similarly, in [7], model personalization was used
to improve the model accuracy. In this case, the personalization was based on the transfer learning
algorithm. The study also shows the power of personalization: It was shown that the recognition rates
of personalized models are much better than the one’s obtained using non-personalized models.

Incremental learning refers to recognition methods that can learn from streaming data and adapt
to new and changing environments. In the case of human activity recognition, this adaptation would
mean leaning the personal moving style of a new unseen person, and also adapting to changes in
a person’s moving over time, which has been a limitation in many studies, such as [8]. Another
advantage of incremental learning is that this adaptation relies on model updating [9]. Therefore, to
adapt the model to a new environment and to new users, model retraining is not needed, which has
been the requirement in many other activity recognition articles studying model personalization [10].
In fact, incremental learning has already been used in human activity recognition studies [11–13].
However, in these studies the focus was not on personalizing the recognition models, however, they
do show that inertial sensor-based models benefit from incremental learning as the updated models
are more accurate than the original ones. Moreover, [14] used incremental learning-based methods to
train models fully relying on personal data. Also in this case it was noticed that updating the model
incrementally improves the recognition rate significantly.

For the first time, incremental learning was used to personalize activity recognition models in [15].
In the article it was shown that personalization is possible without a separate data gathering session
and without model retraining. Instead, models were continuously updated based on streaming data,
and this way, models were adapted to the user’s personal moving style. Moreover, in the article, all of
this was done without any user-interruption. This was possible due to using predicted labels, instead



Sensors 2019, 19, 5151 3 of 17

of correct ones, in the model updating process. The idea of learning without user-interruption is great
from the user experience point-of-view, however, it can also be highly dangerous, and due to concept
drift. This type of autonomous learning can also lead to an unwanted end-result. One of the most
popular examples of artificial intelligence (AI) learning the wrong things is Microsoft’s Twitter chatbot
Tay. The idea of Tay was to mimic a 19-year-old American girl and learn from interactions. Soon
however, due to the uncontrolled autonomous self-learning, Twitter users taught to Tay how to be a
racist and act like one [16]. This shows the importance of moderating correct learning. It is likely that
Tay would not have behaved in such an unwanted way if the developers of Tay had selected which
interactions to be used to update Tay’s models and which interactions to ignore.

In [17] incremental learning and active learning were combined for the first time. Unlike in our
study, the classification was based on clustering. Moreover, the purpose was more to adapt models
to evolving data streams than to personalize models. Therefore, the study does not concentrate on
personalizing user-independent models, instead, it adapts one person’s model to other person’s moving
style. However, Mannini et al. [18] used an incremental learning based approach to personalize a
user-independent human activity recognition model. In the paper, self-learning was not used. Instead,
active learning was used to avoid drastic concept drift. This means that only user labeled instances
were used in the model updating process. Moreover, users did not have to label all the incoming
streaming data. Instead, the uncertainties of the predictions, were measured and the user was asked
to label only uncertain observations. These were then used in the updating process. The method did
improve the overall accuracy but only a little. The recognition accuracy without personalization was
88.6% and with personalization 89.6%.

This article is an extension to our conference paper [19] where the basic concept for human AI
collaboration was presented. This article extends this conference paper in many ways: It gives more
insights to the methods, studies in more detail on how to select parameters for the semi-supervised
approach, and most importantly, more extensive experiments are made to give a better idea of how
well the presented method generalizes on different datasets.

The article is organized as follows: Section 2 introduces the datasets we used and Section 3
explains the process to personalize recognition models. Section 4 concentrates on studying how to
select appropriate parameters for the process and Section 5 explains the experimental setup. Section 6
contains the results and discussion, and finally our conclusions are in Section 7.

2. Experimental Datasets

The experiments of this study are based on three publicly open data sets. Shoaib et al. [20],
which contains data from seven physical activities (walking, sitting, standing, jogging, biking, walking
upstairs, and downstairs), and equal amounts of data from each activity. Siirtola et al. [21], which
contains data from five physical activities (walking, running, biking, idling, and driving a car).
This dataset is imbalanced, 39% of the data is from idling, 20% walking, 9% running, 19% biking, and
the rest is from driving a car. Anguita et al. [22], containing data from six activities, standing (19% of
the data), sitting (17%), laying down (18%), walking (16%), walking downstairs (14%), and upstairs
(16%).

Shoaib data were collected using a smartphone and from five body locations but in this study
three body positions are used: arm, waist, and wrist. The data were collected from a 3D accelerometer,
3D gyroscope, and 3D magnetometer using sampling rate of 50 Hz. This study uses data from an
accelerometer and gyroscope. The dataset contains measurements from ten study subjects. However,
apparently one of the study subjects had placed sensors in a different orientation than the others,
making the data totally incompatible to the other subjects’ data. Thus, this person’s data were not
used in the experiments, and the final dataset contains nine study subjects. Siirtola data were collected
using a Nokia N8 smartphone but only from one body position: trouser pocket. The dataset contains
3D accelerometer data collected from eight study subjects using a sampling rate of 40 Hz. Anguita data
was collected using a Samsung Galaxy S2 smartphone with a sampling frequency of 50 Hz. The phone
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was positioned at the right side of the belt and 3D accelerometer and 3D gyroscope data were gathered.
This dataset is much bigger than the other two in the terms of number of study subjects, it contains
data from 30 study subjects. However, it is smaller than other two when it comes to the amount of
data per user per activity.

A window size of 4.2 s with a 1.4 second slide was used with the Shoaib and Siirtola datasets.
However, as Anguita contains much less data per user per activity, in this case a shorter window was
used. In fact, with Anguita data a 1.0 s window size with a 1/3 s slide was used. Altogether, Shoaib
data consisted of 8980 windows of data, Anguita, 10,689 windows of data, and Siirtola, 7496 windows
of data.

From these windows, features were extracted. This study uses features that are commonly used in
activity recognition studies including standard deviation, minimum, maximum, median, and different
percentiles (10, 25, 75, and 90). Moreover, the sum of values above or below percentile (10, 25, 75, and
90), square sum of values above or below percentile (10, 25, 75, and 90), and number of crossings above
or below percentile (10, 25, 75, and 90) were extracted and used as features. In addition, features from
frequency domain, for instance sums of small sequences of Fourier-transformed signals, were extracted.
In the case of Shoaib data, the features were extracted from raw accelerometer and gyroscope signals,
magnitude signals and signals where two out of three accelerometer and gyroscope signals were
combined. Anguita and Siirtola datasets were downloaded using OpenHAR [23], which is a Matlab
toolbox providing an easy access to accelerometer data of ten publicly open human activity recognition
datasets. Therefore, these datasets contained only accelerometer data, and thus, the features were in
this case extracted from the raw accelerometer signals, magnitude accelerometer signal, and signals
where two out of three accelerometer signals were combined.

3. Personalizing Recognition Using Incremental Learning

In this article, an incremental learning based method to personalize human activity recognition
models is presented. Ensentially, we studied how much the model updating process benefits from user
inputs and when artificial intelligence needs to be supported by human intelligence.

3.1. Learn++

For incremental learning, in this article, the Learn++ algorithm [24] is used. It is an ensemble
method and the idea of Learn++ is to process incoming streaming data as chunks. For each chunk
a new set of weak base models are trained and added to a set of previously trained base models
through weighted majority voting as an ensemble model [25]. Therefore, the number of base models
continuously increases when more streaming data are obtained and new base models are trained based
on it.

Learn++ is not the only algorithm that can be used for incremental learning. However, it was
chosen to be used in this article as, in [25], it is shown that it is less complex than many other
algorithms but still one of the most accurate. This means that Learn++-based classification models
can be implemented into devices that do not have much memory and calculation capacity such as
wearable sensors. Another advantage of Learn++ is that it can use any classifier as the base classifier.
Thus, for this study, it was possible to select base classifiers that are used also in the previous human
activity recognition studies. For this study, three base classifiers (linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), and classification and regression tree (CART)) were selected
for comparison. Also, these classifiers are very light, therefore, they are also highly suitable for devices
with low memory and calculation capacity.

3.2. From User-Independent to Personalized Recognition Models

The process to personalize a recognition model is presented in Figure 1. Phase 1 of the process is
to gather user-independent data to train one or multiple user-independent base models for human
activity recognition. These are the first models that are added to the Learn++ model. When this
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user-independent model is implemented for instance to a wearable device, and subject X starts to use
the device, personal streaming data from subject x can be obtained.

Figure 1. Three approaches to personalize recognition model are compared. The semi-supervised
approach is novel and proposed in this study.

Phase 2 is to start personalizing the Learn++ ensemble model by extracting features from the
first chunk of subject x’s streaming dataset. Of course, this data does not have labels. There are three
different ways to obtain labels for this data: non-supervised, semi-supervised, and supervised. The
non-supervised approach relies on the results of artificial intelligence and only predicted labels were
used to update the model [15]. The semi-supervised approach uses both predicted labels and true
labels for updating the model, and human intelligence is used to complement artificial intelligence
when posterior values of the predicted are below some pre-defined threshold th. Moreover, the
supervised approach relies solely on human intelligence, and therefore, each observation is labeled by
the user, thus, only true labels are used in the model updating process. Due to this, the supervised
approach provides the highest possible accuracy and by comparing these results to the results of other
approaches, it can be concluded how optimal the results obtained by other methods are. These three
methods are compared in this article.

In phase 2 of the personalization process, after obtaining a chunk of data and labels, features are
extracted from the data and one or multiple personal base models are trained based on these. Personal
base models are then added to the ensemble. As mentioned, in the classification process Learn++ uses
weighted majority voting to combine the results of the base models. These weights are defined for each
base model based on the accuracy estimation of the base model, and the accuracy is measured based
on the training data and its labels. However, normally incremental learning is used for supervised
learning where true labels are available, and thus, the accuracy estimation for base models is easy.
This is not the case in this study, as in this study true labels are not available in semi-supervised and
non-supervised cases. This means that it is not possible to estimate the accuracy of the new base model.
Therefore, in this study, equal weight is given to each base model, also in the supervised case. When
new chunks of personal streaming datasets are available, phase 2 is repeated: Features are extracted
from it, they are labeled and new base models are trained and added to the ensemble. Every time
when a new base model is added to the ensemble, the ensemble model better adapts to the user’s
personal moving style by becoming more personal, and therefore, more accurate.
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4. Selecting the Threshold for the Semi-Supervised Approach

As Figure 1 shows, the labeling of the incoming streaming data can be done with three different
approaches: non-supervised, semi-supervised, and supervised. The semi-supervised approach was
originally introduced in [19]. The idea is that predicted labels with high posterior and data related to
them are used in the model update process as they are, but labels with a posterior confidence below
some threshold, th, are considered as uncertain, and they are labeled by the user before they are used
in the model updating process. Moreover, as the studied activities are of long-term [26] nature, it can
be assumed that also the windows right before and after have the same class label as the window
labeled by the user. In this study, it is assumed that if the label of window w is a, then also windows
w− 2, w− 1, w + 1, and w + 2 belong to class a. This way, one user input gives information to more
than one window, improving the accuracy of the labels used to update models.

When the semi-supervised approach to personalize the recognition process is used, one key
element in a successful personalization process is to define an appropriate threshold th. Too small of a
threshold leads to situation where the system requires human input too often. Moreover, too large of a
threshold should be avoided as well, as then the system does not rely on human intelligence as often as
needed, and there is a danger of using false labels in the model updating process. In [19] two threshold
values (0.95 and 0.90) for posteriors were tested. These values were used because of the experiences
obtained in [27], where user-independent models for human activity were trained, and it was studied
when the prediction of user-independent model is not reliable. When these threshold values were used
in [19], it was noted that using these values, on average, a bit over 10% of the posteriors were below
the threshold. However, when the personalization process was studied in more detail, it was noted
that the initial ensemble classifier, which contains only user-independent base models, produces much
less posterior values below th than an ensemble, which contains at least one personal base model.

In fact, it was noted that this share is highly unevenly distributed between predictions made using
user-independent and slightly personalized models. For instance, when Shoaib data from the arm
position was studied using the LDA classifier, 10.1% of the posterior values were below the threshold
(using th = 0.95). However, in this example during the first update round, when the ensemble
contained only user-independent base models, 1.6% of the posterior were below the threshold, while
during the second update round, when the ensemble contained also personal models, already 18.5% of
the posteriors were below the threshold. This means that user-independent models tend to provide
much higher posteriors than personalized models, as already a small number of personal data can
provide so much extra information to the model that the model can better tell which predictions are
reliable and which are less reliable.

Figure 2c,f show the posterior distribution of the user-independent model and a personalized
model, which contains three user-independent base models as well as three personal base models.
Based on these figures it can be noted that it is not wise to use always the same threshold value th.
Instead, in the first place, when the classification is based on the user-independent model, it is wise to
use a high threshold and when personal streaming data is obtained, and personal base models are
added to ensemble, the used threshold should be lower. Therefore, it was decided that in this article
the threshold value of th = 0.95 is used when the ensemble consists only user-independent models and
the threshold value of th = 0.75 is used when the ensemble includes at least one personal base model.

Using this approach, for instance when Shoaib data from the arm position was studied using the
LDA classifier, during the first update round, when the ensemble contained only user-independent
base model, again 1.6% of the posteriors were below the threshold while during the second update
round, when the ensemble contained also personal models, only 10.6% of the posteriors were below
the threshold (previously 18.5%), see Table 1. Therefore, using this new method the number of required
user inputs on different updating rounds is much more balanced than when always using the same
threshold value.
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(a) Posterior distribution when using
LDA and user-independent classifiers.
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(b) Posterior distribution when using
QDA and user-independent classifiers.

0 50 100 150 200 250 300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Posterior distribution when using
CART and user-independent classifiers.
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(d) Posterior distribution when using
personalized LDA classifiers.
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(e) Posterior distribution when using
personalized QDA classifiers.
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(f) Posterior distribution when using
personalized CART classifiers.

Figure 2. Posterior distributions obtained using user-independent and personalized models are
different. In the case of personalized models there is much more variation in the posterior values.
Posterior value is shown in the y-axis and the x-axis shows the number observations having posteriors
smaller than the corresponding y value. Linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), and classification and regression tree (CART).

Table 1. Average performance of different personalization approaches. The performance of different
approaches is measured using balanced accuracy. Standard deviation between the study subjects
in parentheses.

User-Independent Non-Supervised Semi-Supervised Supervised

Arm/LDA 90.7 (6.8) 92.1 (6.0) 95.0 (4.3) 97.3 (2.0)
Waist/LDA 82.3 (9.7) 90.5 (4.8) 95.5 (4.4) 96.7 (4.8)
Wrist/LDA 86.7 (7.4) 89.7 (8.4) 94.6 (4.5) 96.9 (2.6)
Siirtola/LDA 82.9 (10.9) 87.1 (9.8) 89.0 (9.2) 99.0 (0.7)
Anguita/LDA 86.3 (11.5) 86.8 (12.6) 89.8 (10.6) 91.5 (10.0)
Mean 85.8 (9.4) 89.2 (8.8) 92.8 (7.1) 96.3 (5.2)

Arm/QDA 92.1 (6.2) 92.3 (4.6) 96.1 (5.8) 97.9 (2.3)
Waist/QDA 90.1 (7.8) 90.9 (6.3) 95.4 (5.1) 96.6 (3.5)
Wrist/QDA 89.9 (3.4) 92.5 (4.4) 96.2 (2.6) 97.2 (2.0)
Siirtola/QDA 89.8 (9.5) 91.8 (9.1) 95.3 (5.4) 96.5 (6.9)
Anguita/QDA 85.8 (10.0) 84.3 (11.9) 89.1 (10.2) 91.9 (8.6)
Mean 89.5 (7.8) 90.4 (7.8) 94.4 (6.3) 96.0 (5.4)

Arm/CART 88.9 (6.1) 91.3 (6.8) 95.0 (6.7) 97.9 (2.8)
Waist/CART 81.8 (5.0) 84.3 (4.4) 95.7 (4.6) 98.1 (1.6)
Wrist/CART 88.5 (4.0) 90.1 (5.1) 97.5 (1.8) 97.5 (2.1)
Siirtola/CART 87.5 (8.8) 89.5 (9.2) 94.2 (7.7) 98.8 (1.7)
Anguita/CART 81.3 (11.6) 82.6 (12.8) 91.8 (9.0) 93.0 (9.0)
Mean 85.6 (7.6) 87.6 (8.2) 94.8 (6.5) 97.1 (4.5)

Average 87.0 (8.3) 89.1 (8.3) 94.0 (6.6) 96.5 (5.0)



Sensors 2019, 19, 5151 8 of 17

5. Experimental Setup

The experimental setup used in the experiments is shown in Figure 3. The dataset contains data
from N study subjects. In the experiments the leave-one-out method is used: Model training starts
from user-independent data sets (in the Figure 3, data from subjects 1, 2, . . . , x− 1, x + 1, . . . , N − 1, N,
where N > x), including data from all study subjects except one. Data from one person (subject x in
Figure 3) in turn is used for personalization and testing. Subject x’s data are divided into three totally
separate parts (solid, dashed, and dotted lines) before extracting features, and to avoid over-fitting,
they do not contain any overlapping. Moreover, each part contains the same amount of data from each
activity, and therefore, the size of each part (solid, dashed, and dotted lines) is the same. For instance,
in the example shown in Figure 3, the data of Subject x contains data from two activity classes, and
both of these activity signals are divided into three separate parts. Two parts (solid and dashed) are
used for personalizing the recognition model and one part (dotted) is for testing. Moreover, in should
be noted that due to size of the data sets, it was decided to divide the data to three parts (two for
training and one for testing). However, with bigger data sets, the data set could be divided into more
than three parts.

Step 1 to train the Learn++ based recognition model is to randomly sample data from subjects 1,
2, . . . , x− 1, x + 1, . . . , N − 1, N to build a user-independent base model. The best features for this
are selected using SFS (sequential forward selection). The new base model is then trained based on
those features and it is added to the ensemble of models. the ensemble model is then tested using the
test data set, which is subject x’s data bordered with a dotted line. In these experiments, sampling
with replacement is used as a sampling method, and the number of sampled instances is S, where
S = |S1|+ |Sx−1|+ . . . + |Sx+1|+ |SN | and |Si| is the size of the data set of subject i. Step 1 is repeated
three times.

Step 2 is to start personalizing the ensemble model by extracting features from the first part of
subject x’s data, which is bordered with a solid line. This data is labeled using the non-supervised,
semi-supervised, or supervised approach. In this experiment, a problem with the data chunks used
to personalize the recognition process is that they are rather small. Thus, they do not contain much
variation leading easily to over-fitted base models. To avoid over-fitting, the noise injection method
presented in [28], is applied to the training data sets to increase the size of training data and increase
its variation. After this, a data set used in model training is selected based on random sampling (in
this case, sampling with replacement and the number of sampled instances is |St1 |, where St1 is the
personal training data set 1 from subject x), and SFS is applied to it to select the best features. The
new base model is then trained using the selected features and added to the ensemble model, which
is again tested using subject x’s data bordered with a dotted line. Step 2 is repeated three times to
provide more variability to base model set.

Step 3 is to do the same with subject x’s data, bordered with a dashed line. Also Step 3 is repeated
three times. Each time when a new base model is added to the ensemble, the accuracy of the ensemble
is tested with the same personal test data. In this experiment, the ensemble eventually consists of nine
base models, three user-independent and six personal, so the ensemble accuracy is tested nine times.
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Figure 3. For the experiments, personal data is divided into three parts: The first two are used to
update the ensemble classifier and the third part is used as test dataset.

6. Results and Discussion

Non-supervised, semi-supervised (with threshold values th = 0.95 when the ensemble contains
only user-independent models and th = 0.75 when ensemble contains at least one personal base model),
and supervised approaches to personalize recognition models were tested. These are compared to
the recognition rates of a static non-adaptive user-independent model. Figure 4 shows the error rates
from the balanced accuracies averaged over all nine study subjects using the Shoaib dataset and how
the error rate develops when base models are added to the ensemble. Balanced accuracy was used
instead of accuracy as some of the used datasets are imbalanced, and therefore, accuracy is not a good
performance metric in this case. Figure 5 shows the same information for Siirtola and Anguita datasets.
In addition, average detection rates of different approaches, datasets, and classifiers are compared in
Table 1.

Based on these results, the benefit of using a personalized model is obvious: The average error
rate starts to drop when personal models are added to the ensemble, and eventually, in each case, the
average error rate using a personalized model is lower than using a user-independent model when
semi-supervised and supervised personalization approaches are used, no matter which base classsifier
is used. To show that this improvement is due to personal models that are added to an ensemble, as a
comparison, we tested how the error rate develops if more user-independent models are added to the
ensemble instead of personal models, see Figure 6. The figure shows that adding new user-independent
base models to the ensemble does not have any significant effect on the error rate. Therefore, it can be
concluded that the improvement obtained in Figures 4 and 5 is due to personalization.

Moreover, according to Table 1, the improvement obtained by personalization is in some cases
huge, over 10% of units (see Table 1 for instance, Shoaib data from the waist using LDA and Anguita
data using CART). In addition, already the non-supervised approach reduces the average error rate
(87.0% vs. 89.1%). In fact, the recognition rate of the non-supervised approach is lower than the
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detection rate obtained using the user-independent model in only one case (Anguita dataset with
QDA classifier, Figure 5b). Furthermore, to show that the improvement is not dependent on the used
performance metric, results using the LDA classifier and false negative rate as a performance metric
were calculated for each dataset, see Figure 7. These results are similar to the ones obtained using
balanced accuracy as the performance metric. They show that personalization improves the model
performance in each case compared to the user-independent model, and that the results using the
supervised approach are not much better than the results obtained using the semi-supervised approach.
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(c) Arm/CART
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(d) Waist/LDA
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(e) Waist/QDA
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(f) Waist/CART
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(g) Wrist/LDA
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(h) Wrist/QDA
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(i) Wrist/CART

Figure 4. Results using Shoaib data from three body positions: arm, waist, and wrist. Adding new
base models to Learn++ decreases the error rate (=1-balanced accuracy). The error rate is shown in the
y-axis and the x-axis shows the number of used base models. The first row shows the results when the
sensor position is the arm, the second from the waist position, and the third from the wrist position.
The first column shows results using LDA, the second, QDA, and the third, CART. The results of the
static user-independent model are shown using a horizontal line, the non-supervised using a blue solid
line, the supervised with a green solid line, and the semi-supervised with a red dotted line.



Sensors 2019, 19, 5151 11 of 17

1 2 3 4 5 6 7 8 9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a) Anguita/LDA
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(b) Anguita/QDA
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(c) Anguita/CART
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(d) Siirtola/LDA
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(e) Siirtola/QDA
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(f) Siirtola/CART

Figure 5. Results using the Anguita and Siirtola datasets. Adding new base models to Learn++
decreases the error rate (=1-balanced accuracy). The error rate is shown in the y-axis and the x-axis
shows the number of used base models. The first row shows results using the Anguita dataset, the
second using the Siirtola dataset. The first column shows results using LDA, the second, QDA, and the
third, CART. The results of the static user-independent model are shown using a horizontal line, the
non-supervised using a blue solid line, the supervised with a green solid line, and the semi-supervised
with a red dotted line.

The results show that model update clearly benefits from human–AI collaboration as the error
rates obtained using the semi-supervised approach are much lower than the ones obtained using the
non-supervised approach (on average 89.1% vs. 94.0%), which was presented in our earlier work [15].
There is only one exception, where the difference between the semi- and the non-supervised model
update approaches is not significant (Siirtola dataset using LDA classifier, Figure 5d). The difference
between these approaches is especially large in cases where the user-independent model, originally
used in the recognition process, is not that accurate, see for instance Figures 4e,f, and 5c. In these cases,
the error rate of the semi-supervised approach starts to rapidly drop when personal base classifiers are
added to the ensemble, while in the non-supervised approach, it does not drop that much. The reason
is that, in these cases, a user-independent model cannot detect some of the classes at all. Therefore,
the labels used to update the non-supervised model contain too many errors and the non-supervised
model starts to suffer from drastic concept drift, and eventually, it cannot recognize some of the
activities at all. The problem is much smaller when the semi-supervised model is used, as it can recover
from similar situations thanks to user inputs, and so the number of false labels is much smaller. In
fact, user-inputs can be considered as a safeguard against performance decrease caused by inaccurate
labels provided by AI.

The comparison of semi-supervised and supervised approaches shows that in most of the cases
the results using the semi-supervised approach are almost as good as the ones obtained using the
supervised approach, which relies purely on labels provided by human intelligence (on average 94.0%
vs. 96.5%). What makes this more impressive, is that when the semi-supervised approach is used,
the user needs to label only about every 15th instance (and well over 90% of the labels used in the
model updating process are predicted automatically when classification is based on LDA and QDA
classifiers, and over 80% of the labels are predicted automatically when using the CART classifier), see
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Table 2. This shows that by replacing a small number of instances with correct labels, almost as high
recognition rates can be achieved as by labeling all the instances. Moreover, also the results shown in
Figure 7 using the false negative rate as the performance metric supports this finding.

When the Shoaib dataset is studied in more detail, it can be noted that the proposed method
to personalize the human activity process is not dependent on the sensor position (see Figure 4).
Moreover, it can be clearly seen from Figure 4 how the error rate gradually decreases when more
personal base models are added to the ensemble. This is also the case when the results from Siirtola
dataset are studied (see Figure 5) where especially semi-supervised and supervised approaches benefit
from the new personal base models.

The results obtained with the Anguita dataset are not as convincing as the ones obtained using
the other two datasets used in the experiments. The reason for this is that Anguita dataset is much
smaller than the Siirtola and Shoaib datasets when it comes to the amount of data per subject per
activity. For instance, the Anguita dataset contains only 30 s of walking data per study subject while
the Siirtola and Shoaib dataset have much more walking data per study subject, for instance the Shoaib
dataset has at least 3 min of walking data from each subject. In the case of Anguita data, the small
amount of data means that the model does not have enough information to properly adapt to the new
user’s moving style, and therefore, the error rate of the ensemble does not decrease as rapidly as with
other two datasets. This is the most evident in the case of the non-supervised approach, which does
not provide any advantage to the user-independent model. In fact, in the case of the QDA classifier,
the error rate of the non-supervised approach is even higher than the user-independent model’s error
rate, see Figure 5b. This example shows that incremental learning based on personalization requires
enough data to work as it should, and fast adaptation is not as efficient as slower adaptation. However,
it can be seen that small datasets also benefit from non-supervised and supervised personalization.

1 2 3 4 5 6 7 8 9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
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(b) Wrist
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(c) Waist
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(d) Anguita
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(e) Siirtola

Figure 6. Adding new user-independent base models to the ensemble does not improve the error
rate as adding personal models does. Results using the LDA classifier are shown using green, QDA
classifier results are shown using blue, and CART classifier results are shown using red. Solid lines
show how the error rate develops when more user-independent models are added to the ensemble and
the horizontal dashed lines sho the results of the static user-independent model.
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The main problem in our previous article [19], was that the number of needed user inputs was
not evenly distributed between the update rounds. However, in this article, the threshold for the
semi-supervised approach was defined a bit differently. In the previous article, the threshold for user
inputs was constant while in this article the threshold value is higher when the ensemble contains only
user-independent models and lower when it contains at least one personal base model. According to
Table 2 this new approach improves the situation. With the CART classifier, the user needs to label
18% of the labels with both update rounds, and thus, adding personal base models to the ensemble
does not increase the demand for user defined labels. With LDA and QDA, the user needs to label
6.6% and 7.7% of the labels, respectively. However, it should be noted that it was assumed that also
the instances right before and after the user labeled window have the same class label as the window
labeled by the user. This effectively increases the number of correct labels without disturbing the user
as the total percentage of the labels replaced based on user inputs is much higher than the percentage
of the windows that the user actually labeled, see Table 2, where the percentage of modified labels is
presented in parentheses.
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(b) Waist/LDA
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(c) Wrist/LDA
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(d) Anguita/LDA
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(e) Siirtola/LDA

Figure 7. Results using the LDA classifier and false negative rate as a performance metric. Adding
new base models to Learn++ decreases the false negative rate, which is shown in the y-axis and the
x-axis shows the number of used base models. The results of the static user-independent model are
shown using a horizontal line, the non-supervised using a blue solid line, the supervised with a green
solid line, and the semi-supervised with a red dotted line.

In the cases of the LDA and QDA classifiers, the need for user inputs is low, however it is still
unevenly distributed between the update rounds, though not as heavily as before. Moreover, though
the need for user inputs is still unevenly distributed, the need for user inputs is still much lower when
using LDA (the user needs to label 2.1% of the instances during the first update round, and 11.1%
during the second updating round) or QDA (4.2% during the first round and 11.3% during the second
round) than when using CART (18.6% during the first round and 18.0% during the second round).
However, when using CART much more user inputs are needed than with LDA and QDA, still the
results with the semi-supervised approach obtained using LDA and QDA are almost as high as the
ones obtained using CART (92.8% using LDA, 94.4% using QDA, and 94.8% using CART). Moreover,
as CART requires more user inputs on the first update round, in many cases, using it the error rate
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also starts to drop more rapidly than when using LDA or QDA. This is especially visible with the
Siirtola and Anguita datasets: Figure 5 shows that the error rate using LDA and QDA does not start to
properly drop until the seventh base model is added to the ensemble, while when using CART, the
error rate starts to drop already after fourth base model is added. In addition, while the number of
required user inputs is not significantly huge, already the required number of inputs can be frustrating
to the user. Therefore, it should be studied how this online labeling should be implemented to the
application. One promising solution for this is presented in [29] where a dialogue-based annotation
system for human activity recognition is studied. In fact, in the study it was shown that users felt more
comfortable with voice-inputs than with keyboard-inputs.

Table 2. The percentage of user inputs required by the semi-supervised approach with different
classifiers and datasets. It was assumed that also the windows right before and after the user labeled
window have the same class label as the window labeled by the user. Therefore, the total percentage of
the labels replaced based on user inputs is higher than the percentage of the windows that user actually
labeled. The percentage of actually replaced labels is presented in parentheses.

Mean Round 1 Round 2

Arm/LDA 6.1 (15.3) 1.6 (6.6) 10.6 (24.0)
Waist/LDA 11.2 (25.1) 4.3 (15.3) 18.1 (34.9)
Wrist/LDA 7.8 (18.7) 2.0 (8.1) 13.6 (29.3)
Anguita/LDA 5.5 (13.1) 1.2 (5.0) 9.8 (21.2)
Siirtola/LDA 2.4 (7.4) 1.3 (5.5) 3.6 (9.2)
Mean 6.6 (15.9) 2.1 (8.1) 11.1 (23.7)

Arm/QDA 7.4 (19.5) 3.7 (13.4) 11.2 (25.6)
Waist/QDA 6.9 (18.1) 3.8 (14.0) 10.0 (22.3)
Wrist/QDA 10.5 (24.9) 5.1 (17.8) 16.0 (32.0)
Anguita/QDA 7.7 (18.9) 3.2 (11.5) 12.2 (26.3)
Siirtola/QDA 6.0 (16.2) 5.1 (16.7) 7.0 (15.7)
Mean 7.7 (19.5) 4.2 (14.7) 11.3 (24.4)

Arm/CART 15.4 (37.6) 14.2 (38.3) 16.5 (36.8)
Waist/CART 21.0 (41.3) 21.9 (43.5) 20.2 (39.1)
Wrist/CART 19.6 (39.2) 19.6 (41.4) 19.5 (37.0)
Anguita/CART 24.8 (46.5) 22.7 (46.3) 26.9 (46.8)
Siirtola/CART 10.8 (25.1) 14.6 (33.5) 6.9 (16.8)
Mean 18.3 (37.9) 18.6 (40.6) 18.0 (35.3)

7. Conclusions

In this article, incremental learning was used to personalize human activity recognition models
using streaming data. The used incremental learning method was Learn++, which is an ensemble
method that can use any classifier as a base classifier. In this study three base classifiers were compared:
LDA, QDA, and CART. In the first phase, the proposed approach relies on user-independent recognition
models, but when the user starts to use the application, the obtained personal streaming data is used
to update and personalize the model. Three different approaches to personalize recognition models
were compared: non-supervised, semi-supervised, and supervised. The non-supervised approach
relies purely on predicted labels, the supervised approach uses human intelligence to label the data,
and the proposed method for semi-supervised learning is a combination of these two, as it is based on
human–AI collaboration: It uses artificial intelligence in most cases to label the data but in uncertain
cases it relies on human intelligence.

Experiments were done using three datasets, and it was noted that personalized models are
much more accurate than user-independent models. In fact, they beat the user-independent model
on each dataset and with each classifier. Moreover, the error rate of models starts to rapidly decrease
when models are updated using personal data showing the importance of the personal training
data. On average, the recognition rate using the user-independent model is 87.0%, 89.1% using the
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non-supervised personalization approach, 94.0% using the semi-supervised personalization approach,
and 96.5% using the supervised personalization approach. The result of the semi-supervised approach
is especially impressive as it relies mostly on predicted labels and only a small number of the labels
were given by the user (6.6% of the observation when using LDA as a base classifier, 7.7% when using
QDA, and 18.3% using CART), and still it performed almost as well as the supervised approach where
user needs to label 100% of the data.

Moreover, unlike the non-supervised approach, the semi-supervised approach does not suffer
from drastic concept drift in a similar way as the non-supervised approach does, and due to relying
partly on human intelligence the semi-supervised approach can also recover from it. Due to this,
the recognition rate of the semi-supervised approach is almost 5%-units higher than when using
the non-supervised approach. Additionally, the results obtained using the false negative rate as a
performance metric support these findings. They show that personalization reduces the false negative
rate and that the results obtained using supervised approach are not much better than the ones obtained
using the semi-supervised approach.

Future work includes experimenting with more extensive data sets to show the true potential
of the proposed method. How to avoid uncontrolled growth of the ensemble size should be studied,
for instance, how suitable the method presented in [30] is for this. In addition, one limitation of the
proposed method is that it does not work body-independently. This means that the position of the
sensor must be the same in the training and testing sets. Therefore, it should be studied how to extend
this work to make it body-position independent. In addition, one part of the future work is to make
experiments using a combination of discriminative and generative models in a hybrid way, as it was
done in [31].
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