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Abstract: Low-power wide-area networks (LPWANs) are emerging rapidly as a fundamental Internet
of Things (IoT) technology because of their low-power consumption, long-range connectivity, and
ability to support massive numbers of users. With its high growth rate, Long-Range (LoRa) is
becoming the most adopted LPWAN technology. This research work contributes to the problem
of LoRa spreading factor (SF) allocation by proposing an algorithm on the basis of K-means
clustering. We assess the network performance considering the outage probabilities of a large-scale
unconfirmed-mode class-A LoRa Wide Area Network (LoRaWAN) model, without retransmissions.
The proposed algorithm allows for different user distribution over SFs, thus rendering SF allocation
flexible. Such distribution translates into network parameters that are application dependent.
Simulation results consider different network scenarios and realistic parameters to illustrate how
the distance from the gateway and the number of nodes in each SF affects transmission reliability.
Theoretical and simulation results show that our SF allocation approach improves the network’s
average coverage probability up to 5 percentage points when compared to the baseline model.
Moreover, our results show a fairer network operation where the performance difference between
the best- and worst-case nodes is significantly reduced. This happens because our method seeks to
equalize the usage of each SF. We show that the worst-case performance in one deployment scenario
can be enhanced by 1.53 times.

Keywords: stochastic geometry; resource allocation; Internet of Things

1. Introduction

The Internet of Things (IoT) is the integration of modern electronic devices, smart sensors, internet
protocols, and wireless communications technologies. IoT applications are rapidly gaining popularity
in many domains such as industrial operations, smart parking, augmented maps, healthcare, smart
cars, and smart homes [1–5]. According to a Gartner Inc. report, there will be around 26 billion IoT
devices deployed worldwide by 2020 [6]. In the Statista report, it is predicted that there will be over
75 billion IoT devices worldwide by 2025 [7].

In the modern era, the spectacular growth and transformation of wireless connectivity are driven
by the IoT paradigm, with technologies having attributes of large-scale network infrastructure with
low-cost sensors connected to the Internet. In this context, low-power wide-area networks (LPWANs)
are quite popular in terms of prototypes, standards, and on the commercial level because of their
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significance with respect to power efficiency along with long range [8,9]. Within this context, LoRA,
SigFox, NB-IoT, Weightless, RPMA and DASH7 [10,11] are the most distinguished technologies.

This paper focuses on LoRa, which provides good performance in terms of reliability and energy
consumption. The network architecture contains end-devices, gateways, and a network server (NS),
forming a star topology. It operates at unlicensed frequency ISM (Industrial, Scientific, Medical) bands
of 863–870 MHz and 915 MHz in Europe and the U.S., respectively [12,13]. In Europe, the duty cycle
limitations range from 0.1% to 10%, following European Telecommunications Standards Institute
(ETSI) standards. In addition, LoRa works on variable and adaptive data rates by using different
spreading factors. This is achieved by the NS controlling the spreading factors (SFs) and bandwidth
(BW) of the end-devices. Higher SFs allow larger coverage areas; however, as a drawback, they reduce
the data rate and increase the time-on-air (ToA) of LoRa packets [14].

Notably, the gateway has the ability to receive data from multiple nodes at the same time because
of the orthogonality of sub-bands and the quasi-orthogonality of different SFs. The LoRa MAC layer,
known as LoRaWAN [15], is a type of ALOHA protocol controlled by the NS. LoRaWAN defines three
classes of devices depending upon the application. Class A devices may wait for acknowledgments
(ACK) only in their receiving windows during downlink transmission and consume the least power.
Class B devices are able to open extra receiving windows at scheduled times, thus reducing downlink
latency. Class C nodes consume the most energy because they leave the receiver enabled all the time,
allowing for the lowest latency time [16].

For instance, extensive measurement campaigns show that the communication range of LoRa
reaches up to 30 km over the water and more than 15 km on the ground [11]. LoRa is suitable for a wide
range of telemetry applications (e.g., sensing and monitoring), which can be used in several industry
verticals, such as smart grids and cities, and smart agriculture up to industrial IoT applications [17,18].
During the past few years, many studies have contributed by proposing new algorithms, systems
models, analyses, and by designing new approaches for performance enhancement of LoRa networks.
However, only a few considered resource allocation.

The major contribution of this work is the modeling of an approach for SF allocation for a large
scale LoRa network based on K-means clustering and the analysis of connection, capture, and coverage
probabilities. Instead of using constant steps of distance from the gateway to define SF areas [19,20],
the proposed algorithm assigns a maximum range of individual SF regions, which allows for distinct
user distribution. Then, we evaluate the performance of the proposed algorithm over the uplink of a
large-scale LoRa network with a single gateway based on the model introduced in [19].

The remainder of this article is structured as follows. Section 2 discusses related work and a short
overview of LPWAN technologies. Section 3 introduces the system model, and Section 3.1 details the
outage probabilities of the baseline model, used to examine the performance of proposed SF allocation
approach. The proposed algorithm is presented in Section 4. Simulation results are discussed in
Section 5. Finally, Section 6 concludes the paper and proposes future work.

2. Related Work

Overviews of LoRa and LPWAN technologies are provided in [21,22]. Usually, LoRa operates with
a bandwidth of 125 kHz, but it also allows for bandwidths of 250 kHz and 500 kHz. The wider bands
promote resistance to fading, channel noise, Doppler effects, and long-term relative frequency [23].
Chirp spread spectrum (CSS) modulation, which enables high receiver sensitivity, makes LoRa more
robust against the interference when compared to Sigfox, which employs ultra-narrowband (UNB)
communication [24]. As a tradeoff, the use of wider bands for the transmission of narrowband signals
makes less efficient use of the spectrum. A realistic SigFox communication model is implemented
and tested in [25]; it evaluates the performance of a high-density large-scale wireless sensor network
(WSN). From the obtained results, one can observe that the performance of the SigFox network
significantly degrades by increasing the number of sensors, and some solutions are presented to
improve the performance.
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Unlike Sigfox, LoRa can be deployed locally, i.e., without the need for a cellular infrastructure,
and has higher bit rates. By contrast, NB-IoT is an expensive technology having the pros of low latency
and high quality of service (QoS) [26]. In [27], the authors compare different LPWAN technologies
(Bluetooth, ZigBee, SigFox, and LoRa) and discuss LoRa with respect to code rate (CR), bandwidth
(BW), and SF but without considering the influence of Rayleigh fading and path loss attenuation.
Theoretical and simulation results show that SF, BW, and CR influence the ToA of a packet. Larger SFs
and CRs result in higher ToA of LoRa packets. Conversely, ToA reduces with larger bandwidths.

The work in [28] proposes two different algorithms named EXPLoRa-SF and EXPLoRa-AT and
shows in simulation results that these algorithms perform considerably better than the LoRaWAN
adaptive rate strategy (ADR). EXPLoRa-AT delivers higher bit rates in the event of higher traffic loads,
while EXPLoRa-SF allocates SFs at the different subgroups of end-devices depending on the received
signal strength indicator (RSSI). The results demonstrate that the data extraction rate (DER) drops
dramatically for higher SFs and larger numbers of end-devices. The authors, however, assume a short
range and dense network in their analysis.

The EXPLoRa approach is further extended in [29], K-means is applied to identify the non-circular
crowded region, and all the nodes inside that area are assumed to have same SF. On the other hand,
in the proposed work the geometry of network is circular, with six annuluses representing the range
of individual SFs. We have analyzed the scalability and the performance of the uplink LoRa model
considering Rayleigh fading, connection H1, capture Q1, and coverage probabilities H1Q1 in the
presence of interfering signals using the same SF. The considerations of H1 and H1Q1 are missing
in [28,29]. Moreover, in our model, we consider a dense and wide network (radius of several kilometers)
and analyze the performance by considering the maximum distance of individual SF boundaries from
the gateway.

Another scientific study used K-means for the classification of end-devices into three groups
based on traffic characteristics with different priorities. The grouping of end-devices was computed in
terms of priority-based transmission instead of SF allocation [30].

In [31,32], SF distribution is mainly based on the power level of the signals that the gateway
receives from the end-devices and gateway sensitivity, without considering the location of end-devices.
As a drawback, SF allocation was disturbed because of high-density buildings, and 53.2% of the
end-devices were forced to use SF12. Furthermore, in [28–31], only network-level simulators such
as ns-3 and LoRaSim are used, which abstracts some characteristics of the physical layer that are
incorporated in our analysis. Conversely, our study evaluated the performance of the proposed SF
allocation algorithm considering the analytical model, realistic parameters, and averaging over 105

random deployment of the Poisson point process (PPP) by Monte Carlo computer simulations, which
match with the theoretical results.

The tree-based spreading factor clustering algorithm (TSCA) for SF allocation in multihop LoRA
networks is introduced in [33]. This approach offloads the data traffic in many sub-networks, which
are linked to a sink node assigning a specific SF according to network clustering, thus enabling parallel
frame transmission with multiple SFs. The authors show that TSCA increases the network performance
in a network with rectangular geometry.

A single gateway uplink model considering path loss attenuation and Rayleigh fading is designed
in [19], utilizing stochastic geometry to model network interference and then disconnection and
collision probabilities. Such a model is further extended in [20], in which the authors propose a
scheme that considers message replication and gateways with multiple receive antennas/decoders
to attain time and spatial diversity. They demonstrate that the number of users and traffic density
directly affects the performance of the LoRa network and that sending multiple message copies is
beneficial for low-density networks. Both of these studies adopt equal radius SF allocation approaches.
Unlike [19,20], our work considers K-means-based fair SF allocation of nodes in LoRa networks.

Recently, several studies have addressed the problems associated with automatic repeat request
(ARQ) and contributed to downlink reliability in LoRaWAN applications. The sequential transmission
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of downlink frames, saturation of duty cycle, and half-duplex nature of LoRa gateway radios are
marked as the major shortcomings for the downlink transmission [34,35]. Furthermore, these works
also highlight the significance of gateway selection algorithm to prevent traffic losses due to sequential
transmission of downlink frames and duty cycle limitations.

One experimental study evaluates the performance of a LoRa network at a 125 kHz bandwidth
and SF7 for a sailing monitoring model, and the measurements show a 60.49% packet loss at the
maximum distance of 3284 m [36]. Another LoRaWAN-based indoor environment monitoring system
composed of 331 sensor nodes is deployed at the University of Oulu, where the gateway is installed at
a distance of ∼180 m and 24 m above the ground [37]. The measurements performed at SF7 show a
maximum 11.33% packet error rate (PER), which can be due to co-spreading factor interference because
all 331 end-devices use the same SF. As illustrated in [19], nodes using the same SF face co-spreading
factor interference. The motivation behind our work is to propose a suitable SF allocation algorithm
for a large-scale LoRa network to efficiently utilize the different data rates. To enhance SF allocation,
we propose a novel algorithm, based on the machine learning technique called K-means clustering,
for effectively allocating the SFs.

3. System Model

We consider N̄ uniformly distributed smart devices inside an uplink class-A LoRaWAN network
without retransmissions, utilizing a single channel within radio range of R km and a circular area of
V = πR2 around a single gateway. Figure 1 illustrates a deployment with N̄ = 500 and R = 3 km.
The gateway is at the origin, and nodes are distributed uniformly in V = 28.26 km2. Note that such
model captures the characteristics of telemetry applications such as those in smart cities and smart
buildings. For instance, the University of Oulu Smart Campus has a LoRaWAN network constantly
monitoring several sensors such as temperature, luminosity, and CO2 [37].

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Nodes

Gateway

Figure 1. Uniform distribution of N̄ = 500 nodes in a circular network area of radius R = 3 km,
with the gateway (GW) at the origin.
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The LoRa modulation bit rate is defined as [14]

Rb =
4

4 + CR
BW
2SF , (1)

where 4
4+CR is the effective coding rate, ranging from 4

5 to 4
8 , while CR denotes the LoRa coding rate

configuration, varying from 1 to 4. In our work, we assume CR = 1, and the LoRa uplink channel
aggregated bit rate is expressed as bitrateU = ∑12

i=7 Rbi = 12.17 kbps. For instance, Table 1 shows the
characteristics of 9 byte LoRa packets with explicit header and CRC modes enabled and BW = 125 kHz.

Table 1. Characteristics of the LoRa uplink model containing packets of 9 bytes at BW = 125 kHz.

SF Bit Rate Receiver Sensitivity SNR Range
(i) kbps (Rbi) dBm dB (qSF ) km

7 5.47 −123 −6 l0 − l1
8 3.13 −126 −9 l1 − l2
9 1.76 −129 −12 l2 − l3

10 0.98 −132 −15 l3 − l4
11 0.54 −134.5 −17.5 l4 − l5
12 0.29 −137 −20 >l5

3.1. Uplink Outage Probability

The uplink transmission of nodes is based on the ALOHA protocol, and the probability of collision
in ALOHA networks is high when many stations are connected [38]. In LoRa, simultaneous signals
of different SFs are quasi-orthogonal because the inter-SF rejection gain varies from 16 to 36 dB [39].
Therefore, for the sake of simplicity, our work does not inspect inter-SF interference and focuses on
co-SF interference only, which is stronger.

In this paper, the uplink model includes the influence of Rayleigh fading and path loss attenuation
as the baseline model [19] for performance analysis, where g

(
dk
)
= λ(

4πdk

)η is the path loss attenuation

function, η ≥ 2 is the path loss exponent, λ is the wavelength, and hk is the fading in the link between
the k-th node and the gateway. Let us consider the transmitted signal of a single LoRa node s1

(
t
)

to
examine the impact of co-SF interference originated due to simultaneous transmission of nodes with
same SF. The mathematical expression of the received signal at the gateway can be expressed as

r1
(
t
)
= g

(
d1
)
h1 ∗ s1

(
t
)
+

N

∑
k=2

χSF
k
(
t
)

g
(
dk
)
hk ∗ sk

(
t
)
+ n

(
t
)
, (2)

where n
(
t
)

is additive white Gaussian noise with zero mean and variance N = −174 + NF +

10log10(BW) dBm, NF is the noise figure of the receiver, and −174 dBm/Hz is the thermal noise
spectral density constant.

We consider that an outage of the received signal in an uplink channel can take place in the two
scenarios [19]. First, if the signal-to-noise ratio (SNR) of the received packet is less than the SF specific
threshold qSF, then the node is considered disconnected. Second, if the signal-to-interference ratio (SIR)
between the target-received packet and any other concurrent signals of the same SF and frequency
channel is less than 6 dB, then it is considered as a collision.

3.1.1. Outage Condition I

The distance of the end-device to the gateway in a wireless transmission domain is crucial.

The instantaneous SNR can be expressed as SNR = P1|h1|2g(di)
N , where P1 is the transmit power of

end-device 1 in mW and |h1|2 is the squared envelop of the channel coefficient. Communication is
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only possible when the SNR of the received signal at the gateway is less than the reception threshold
qSF. Thus, the first outage condition, the connection probability, is defined as [19]

H1 = exp
(
N qSF
P1g(d1)

)
, (3)

where d1 (in meters) is the distance of the desired end-device from the gateway.

3.1.2. Outage Condition II

A collision in LoRa end-device transmission takes place if the SIR of the desired signal with
respect to interference from the same SF and frequency channel is less than 6 dB, i.e., if the desired
signal is at least four times stronger than the interference. We model this outage condition based
on [19], where interference is approached by considering the strongest interfering device. According
to [19], the highest interference comes from the end-device k∗.

The probability that no collision occurs or that the strongest interfering signal is at least 6 dB
below the desired one, termed the capture probability, is

Q1 = P
[
|h1|2g(d1)

|hk∗ |2g(dk∗)
≥ 4

∣∣∣∣ d1

]
= E|h1|2

[
P
[

Xk∗ <
|h1|2g(d1)

4

∣∣∣∣ |h1|2, d1

] ]
. (4)

The probability above depends on the distribution of Xk∗ = |hk∗ |2g(dk∗). The cumulative distribution
function (CDF) of Xk∗ is derived in [19] and is denoted as FXk∗ . Thus,

Q1 = E|h1|2

[
FXk∗

(
|h1|2g(d1)

4

)]
=
∫ ∞

0
e−zFXk∗

(
zg(d1)

4

)
dz. (5)

Moreover, in [19] the authors present an approximation for (5) that is only accurate at the edges of each
annulus. This paper considers only the exact probability in (5).

3.1.3. Coverage Probability

The probability that defines whether a selected end-device is in coverage and can successfully
communicate with the gateway is termed the coverage probability. It is the product of H1 and Q1.
The average coverage probability ℘c can be achieved by deconditioning the location of the individual
node by averaging over the network coverage area V = πR2, i.e., [19]

℘c =
2

R2

∫ R

0
H1(d1)Q1(d1)d1 dd1. (6)

The average coverage probability of a individual SF annulus is also inspected. It indicates the
probability of an end-device at distance d1 in the annulus i by considering the connection and capture
probabilities and is defined as [20]

℘c,i =
2

(li+1 − li)2

∫ li+1

li
H1(d1)Q1(d1)(d1 − li) dd1, (7)

where li+1 is the radius of the outer circle and li is the radius of the inner circle of the ith annulus.

4. Proposed SF Allocation Algorithm

In this paper, we propose an SF allocation algorithm, i.e., an algorithm to define the range
of each SF annulus. Our solution uses the K-means machine learning algorithm [40], used in the
process of vector quantization in data mining by clustering. It is a non-deterministic, numerical, and
iterative approach. The main objective of the K-means algorithm is to find the minimum cost function,
defined as the distance between each point in the data set and its nearest centroid. The distance
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between the cluster centers and data elements typically assumes the Euclidean distance. K-means
clustering method can efficiently achieve robust clustering results when dealing with large data sets.
The K-means algorithm first arbitrarily chooses K points from the data set, which indicate the initial
centroids. The remaining points are then clustered to the closest centroid, and the coordinates of
centroids are recalculated, iteratively, until the cost function converges.

Consequently, it is important to choose the appropriate number of centroids during the
initialization procedure because the area of each annulus π(l2

i+1 − l2
i ) increases towards the higher

SFs in a strategy based on equal distance steps per SF, which results in the growth of node density
due to uniform distribution. That is why it is essential to select the sequences for K-means iterations
that can provide larger values of K clusters for higher SFs. In order to avoid an extensive number of
nodes in an individual SF, there should be a fair difference between the inner (li) and outer (li+1) radii
of annulus. In the proposed work, the annulus area is directly dependent on the difference between
the K clusters for two consecutive iterations.

In our approach, we use five iterations of K-means. We start by computing the boundaries of
the outermost SF ring, SF12, and then proceed to define the inner boundaries for lower SFs. For each
iteration, K clusters are selected to develop the centroids of end-devices in the LoRa network covered
by a single gateway. Four different mathematical sequences listed in Table 2—a Fibonacci series, square
numbers, Wythoff array, and arithmetic series—are used to assign the values of K for each iteration.

Table 2. K Cluster Values for K-Means Iterations.

Iteration 1st 2nd 3rd 4th 5th
Series SF12 SF11 SF10 SF9 SF8

Fibonacci series 34 21 13 8 5
Square number 49 36 25 16 9

Arithmetic series 34 28 22 16 10
Wythoff array 37 32 24 16 11

In our work, K-means operates iteratively. Each iteration defines the set of nodes at the outer SF
ring. In each iteration, the algorithm seeks the set of K centroids C that minimizes the average of the
distances between any node and its closest centroid, i.e.,

C = arg min
Ck∈C

1
|EDk| ∑

Xi∈EDk

dist(Ck, Xi)
2, (8)

where EDk is the set of devices at the k-th iteration, Xi is a device in EDk, and Ck is the closest centroid
of Xi. The function dist(x1, x2) computes the Euclidean distance between x1 and x2. This procedure
returns the collection of K centroids of network nodes, whereas C = {C1, . . . CK}. After computing
the centroids, the algorithm determines the boundary of C, so that [Cx, Cy] = boundary(C), which
determines the 2-D vector of border points around the Cartesian coordinates of the centroids. Then,
it separates the nodes that are inside of the centroid boundary, forming the set I = [Ix, Iy], where
Ix and Iy are vectors storing the coordinates of the inner nodes in each of the Cartesian dimensions.
In the next step, the maximum absolute value of each dimension of I is calculated to set the radius as

li =
max|Ix |+max|Iy |

2 , which defines the limit of the SF ring i. The procedure repeats to determine the
boundaries of the remaining SF rings (l5, . . . l1).

The steps involved in the proposed SF allocation technique are described in Algorithm 1. It repeats
the process five times to allocate nodes for SF12–SF8.At the end, the remaining nodes use SF7. Initially,
the SF12 outer limit is set to the network radius. In each iteration, the number of clusters is assigned
to K depending on the chosen mathematical series (as mentioned in Table 2). For the first iteration,
the algorithm considers all of the N̄ nodes inside the set ED. In line 4, it computes the K-means of ED,
which returns the centroids C = {C1, . . . CK} by (8). Since nodes in the set I are inside the boundary of
centroids, line 7 computes the inner limit of SF ring li. This process is repeated iteratively until l1 is
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calculated for the allocation of SF8 and the remaining nodes are assigned to SF7 (line 11). Note that
the set of nodes ED is updated at the end of each iteration by removing the nodes that were already
allocated to an SF (line 9).

Algorithm 1 K-Means-based SF Allocation
Input: ED := N̄ uniformly deployed nodes

Output: L := {l0, l1, . . . , l6}

1: l6 := R
2: for i in {5, . . . , 1} do . For each SF ring, starting from the outermost ring
3: K := GetKfromSeries(i) . Set number of centroids for this iteration
4: C := Kmeans(ED, K) . Compute the centroids
5: B := boundary(C) . Compute the boundary of C
6: I := {x ∈ ED | x ∈ convB} . Select nodes that are inside the boundary B
7: li := max(|Ix |)+max(|Iy |)

2 . Compute the new SF ring limit
8: SFi+7 := {x ∈ ED | x /∈ Ball[(0, 0), li]} . Allocate SFi+7 to nodes outside the circle of radius li
9: ED := {x ∈ ED | x ∈ Ball[(0, 0), li]} . Remove nodes outside the circle of radius li

10: l0 := 0
11: SF7 := ED . Allocate SF7 to remaining nodes
12: return L

All of the iterations of the proposed algorithm for an example network are demonstrated in
Figure 2. The radius of the network circular area is R = 3 km, and therefore, the outer limit of SF12 is
l6 = R = 3 km. The first iteration of the algorithm defines the inner boundary of SF12, l5, as shown in
Figure 2. After excluding the devices inside the SF12 ring from EDk, the algorithm runs a new iteration
and defines l4, i.e., the inner boundary of the SF11 ring. The iterations continue until l1 is defined and
the complete network geometry is obtained.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

 R

 l
5

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

 l
5

 l
4

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

 l
4

 l
3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

 l
3

 l
2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

 l
2

 l
1

-2 0 2

-3

-2

-1

0

1

2

3  l
1

 l
0

Figure 2. K-means iterations for SF allocation based on Fibonacci series and 500 nodes, where li and
li+1 are the inner and outer radii of ith annulus, respectively.
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Figure 3 depicts the clusters of nodes, centroids, and gateway at the origin for the last K-means
iteration. The nodes outside l1 are allocated to SF8, and the remaining nodes are assigned to SF7.
The SF distribution of N̄ = 500 nodes based on the proposed approach considering the Fibonacci series
for clustering is shown in Figure 4. The number of nodes in SF rings depends on the chosen series
because of the distinct number of clusters for each sequence.

-1500 -1000 -500 0 500 1000 1500
-1500

-1000

-500

0

500

1000

1500

Gateway

Cluster 1

Cluster 2
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1

Figure 3. 5th iteration with Fibonacci series. Nodes outside l1 use SF8, those inside use SF7.
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Figure 4. SF allocation of 500 nodes with Fibonacci series.
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The area of each annulus also varies according to the mathematical series, which also affects the
network performance. An important aspect to take into consideration is the selection of the number
of clusters (K); if the difference between the clusters of two consecutive iterations is too big, that will
result in a large number of end-devices in that specific region and, as a consequence, the probability of
collisions and of co-SF interference will be high. In the same way, SF7 will have a larger coverage area
and more nodes if K is high for the last iteration.

5. Numerical Results and Discussion

In this section, we evaluate the scalability and performance of the proposed methodology by
means of computer simulations. The results are based on a p0 = 1% duty cycle, BW = 125 kHz, η = 2.75
path loss exponent, 868 MHz European frequency band, and network radius of R = 3 km. Table 3
summarizes the parameters considered for the results.

Table 3. System Parameters.

Parameter Symbol Value

Nodes N̄ 300–700
Spreading Factor SF 7–12

Bandwidth BW 125 kHz
Carrier frequency f 868 MHz

Noise figure NF 6 dBm
Transmit power P1, 14 dBm

Duty cycle p0 1%
Path loss exponent η 2.75

5.1. SF Allocation and Scalability Analysis

As discussed in Section 4, we used mathematical series to assign the numbers of clusters for
K-means iterations. The Fibonacci series has the shortest ranges for SF7, 715 m for N̄ = 500. The distance
between the SFs and the distribution of nodes can be changed by modifying the number of clusters (K).
On the other hand, for the same number of nodes, the Square series has a longer range for SF7, which
is 1201 m, and it contains more end-devices. This type of configuration is due to the higher value
of K clusters for iterations (see Table 2). While in the case of Fibonacci and equal-distance-based SF
allocation in [19,20], the network has fewer nodes in SF7, and the number of nodes in each SF region
increases considerably towards the higher SFs, as shown in Table 4. The average SF ranges for the
Fibonacci series, square series, Wythoff array and arithmetic series are shown in Table 5.

Table 4. Comparison of the proposed approach with the reference method, based on the number
of nodes.

Series N̄ SF7 SF8 SF9 SF10 SF11 SF12

300 18 19 48 66 75 77
Fibonacci series 500 29 35 79 107 124 129

700 40 51 110 148 173 180

300 44 24 43 52 63 77
Arithmetic series 500 69 42 70 87 107 129

700 94 61 98 121 149 180

300 53 33 55 44 58 61
Square numbers 500 81 57 87 75 99 105

700 111 81 121 105 137 148

300 49 24 45 52 60 73
Wythoff array 500 77 42 75 87 100 123

700 103 62 103 121 140 173

300 9 25 42 59 76 92
Reference model 500 14 42 70 98 126 152

700 20 59 97 137 176 214
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Table 5. Comparison of proposed approach with the reference method based on the distance of
individual SF outer boundaries from the gateway (values in meters).

Series N̄ SF7 SF8 SF9 SF10 SF11 SF12

300 735 1049 1586 2112 2588 3000
Fibonacci series 500 715 1060 1591 2112 2586 3000

700 707 1071 1601 2112 2587 3000

300 1144 1412 1806 2194 2590 3000
Arithmetic series 500 1110 1403 1795 2183 2584 3000

700 1099 1409 1801 2188 2588 3000

300 1248 1591 2037 2336 2680 3000
Square numbers 500 1201 1568 2004 2316 2670 3000

700 1190 1568 2002 2313 2667 3000

300 1209 1469 1872 2246 2613 3000
Wythoff array 500 1168 1453 1857 2237 2607 3000

700 1150 1450 1851 2231 2604 3000

300 500 1000 1500 2000 2500 3000
Reference model 500 500 1000 1500 2000 2500 3000

700 500 1000 1500 2000 2500 3000

The boxplot is a standard process to quantify the variability of data on the basis of five parameters,
i.e., the minimum, first quartile (25%), median, third quartile (75%), and maximum. Th distance
of the SFs boundary from the gateway for N̄ = 500 is demonstrated in Figure 5 for each of the
considered series.

SF7 SF8 SF9 SF10 SF11 SF12

500

1000

1500

2000

2500

3000

SF7 SF8 SF9 SF10 SF11 SF12

1000

1500
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1000
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2500

3000
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1000

1500
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2500

3000

Figure 5. Boxplots representing the distance of SFs from the gateway. The red “+” signs indicate
outliers. SF12 has a constant distance of 3 km for all of the series.

The median of every SF is identical to distances provided in Table 5. As depicted in the graphical
results, SF7 and SF8 have a large disparity in range and number of nodes for different scenarios, while
SF11 and SF12 have nearly close coverage areas for all scenarios. Furthermore, we can also clearly
observe that variation in K clusters selection has a direct effect on SF allocation based on the proposed
methodology. The number of nodes in each SF are illustrated in Table 4. Square-series-based networks
demonstrate five times more nodes in SF7 as compared to the reference model.
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The large values of K clusters for the last iterations result in longer radii that directly increase
the region of SF7 and keep SF8 further away from the gateway. These different scenarios can be used
according to different situations and requirements of LoRa applications. An approach based on the
Fibonacci series is beneficial for applications where fewer nodes in lower SFs are required, while the
Wythoff array, square series, and arithmetic series have wider regions for SF7, and thus can be used in
setups where more nodes are required in SF7 inside the radio range of nearly 1200 m to provide highest
data rate (Rb = 5.47 kbps, see Table 1). Several studies examined the performance of LoRa networks and
show that the success probability of data packets decreases for higher SFs. In our work, we consider
the effect of changing the coverage range and varying the number of devices for individual SFs.

5.2. Performance Analysis

After the application of the proposed SF allocation algorithm, we investigated the performance
of the resulting LoRa network. The theoretical results were verified by Monte Carlo simulations.
In the figures, each marker represents the average over 105 random deployments of the Poisson point
process (PPP) for a single gateway LoRa uplink model, considering an end-device at d1 meters from
the gateway. In Figure 6, the solid lines demonstrate the theoretical results, while marker points of
the same color illustrate the simulation outputs. The simulated results align with the theoretical ones.
Within the context of the previously discussed mathematical sequences, we considered and examine
the impact of different SF allocation scenarios on connection probability H1, capture probability Q1,
and coverage probability H1Q1 against the distance from the gateway.
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Figure 6. LoRa uplink performance with the proposed SF allocation algorithm for different series
and N̄ = 500 nodes. (a) Square series with K = {49, 36, 25, 16, 9}. (b) Fibonacci series with
K = {34, 21, 13, 8, 5}. (c) Wythoff with K = {37, 32, 24, 16, 11}. (d) Arithmetic series with K =

{34, 28, 22, 16, 10}.

As expected, the distance of the end-device from the gateway has considerable influence on
connection probability H1. In the case of the Fibonacci series, the model has a better success probability
for lower SFs as compared to the square series, arithmetic series, and Wythoff array. This fact is
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due to the difference in a range of individual SF boundaries for said SF allocation schemes and the
distance-dependent SNR threshold qSF. Furthermore, in the scenario of the square series, SF7 has large
coverage areas of 1201 m (see Table 5), which affects path loss attenuation and the instantaneous SNR.
The SNR threshold qSF, however, remains the same at−6 dB (see Table 1). As a consequence, the outage
condition in (3) slightly degrades the network connection probability. Although a performance boost
is illustrated during transitions of end-devices into the next SF because of the lower value of qSF,
the performance of the previous SF has a direct consequence on the next SF.

Moving towards the capture probability Q1, unlike H1, it considers co-SF interference. Q1 declines
gradually with increasing SF, as illustrated in Figure 6. This trend is because of two major factors
including ToA and the number of nodes in each annulus. ToA grows exponentially with SF, thus for
the higher SFs, the wireless channel remains occupied for a long time slot, which increases the risk
of collisions between simultaneously transmitted LoRa packets. In the same way, the number of
end-devices in an individual annulus increases for higher SFs due to the uniform distribution of nodes
in the circular coverage area, as demonstrated in Table 4. As a result, the network experiences co-SF
interference that degrades the quality of transmission. For the cases with the square series, arithmetic
series, and Wythoff array (Figure 6a,c,d), the model has a larger coverage area and more nodes in
SF7, resulting in higher co-spreading factor interference, which is the major reason behind the lower
performance of the network for these specific scenarios. Although we are sacrificing network quality
for lower SFs with fewer nodes and high success probabilities, as presented in Figure 7, we improved
the performance of the network for the higher SFs and regions with more nodes, where the network
performance was weak in the baseline model from [19], which considers fixed distance steps from the
gateway to define the SF allocation. Moreover, SF allocation based on the square series (Figure 6a)
has better network performance, which happens because of improved gain in Q1 for higher SFs as
compared to the Fibonacci series, arithmetic series, and Wythoff array.
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Figure 7. Comparison of performance gain of different series with respect to the baseline model for
N̄ = 500, network size of R = 3 km with p0 = 1%, and path loss exponent η = 2.75.
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In Figure 8, we present the performance of the square series based on the proposed SF allocation
algorithm in comparison with the baseline model. First, we observe that the capture probability Q1

and coverage probability H1Q1 of the baseline model outperform the proposed algorithm in the region
of radius R > 1000 m from the gateway. Here, it is worth mentioning that there are fewer nodes in
this region as compared to the remaining area of the network. The proposed algorithm surpasses the
baseline model with a gain in capture probability Q1 (up to 53% for SF12 in Figure 8b). In addition, the
nodes closer to the gateway always have better behavior in contrast with nodes far away, so that the
network can tolerate a lower success probability with a boost in performance of farther end-devices.
As expected, there was more change in success probability in the higher SFs region as compared to
baseline model because of the fair distribution of SF by the proposed algorithm. Figure 8b shows the
difference between the baseline model and the square series in terms of outage probabilities through
the course of distance. The zero level on the y-axis (success probability) shows no difference, while
there is a positive/negative gain either on the upper or lower side of that level. There is up to 16.73%
growth in Q1 demonstrated by the end-devices present in higher SFs.
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Figure 8. (a) Performance comparison of square series with the reference model for N̄ = 500.
(b) Performance gain (success probability of proposed model − success probability of reference
model). The proposed SF allocation approach sacrifices Q1, H1Q1 for the lower SFs but achieves
greater performance for the higher SFs.

Moreover, we also consider the evaluation of the average coverage probability of the networks
for different numbers of nodes (N̄) ranging from 300 to 700, and results demonstrate that ℘c drops
exponentially towards higher N̄. Figure 9 depicts the average coverage probability of different numbers
of end-devices. The SF allocation schemes deployed using the square series demonstrated a better
performance gain than all other scenarios, including the reference model. It was followed by the
Wythoff array, arithmetic series, and Fibonacci series, in that order. The proposed SF allocation
scheme overcomes the performance of the baseline model by an overall growth of around 5% in its ℘c.
For instance, taking the square series into account, at N̄ = 500 there is a boost in the average coverage
probability (6) from ℘c = 41.9% to 46.81% compared with the reference model. On the other hand, SF
allocation schemes deployed using the Fibonacci series showed the least-improved network coverage
probability compared to all other user distribution series.
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Figure 9. Comparison of the coverage probabilities of the LoRa uplink as a function of the number of
nodes ranging from N̄ = 300 to 700 nodes for the network size of R = 3 km with p0 = 1% and path loss
exponent η = 2.75.

We also investigated the performance of the proposed model taking into account the variation of
different parameters on Fibonacci series. As seen in Figure 10a,b, H1 is agnostic to the number of nodes
and duty cycle. It is assessed at 0.1% and 1%, which is within the duty cycle range specified by ETSI
for LoRa applications [34,35]. Furthermore, node density and the duty cycle demonstrate a negative
impact on Q1 because of co-SF interference caused by increasing medium usage from N̄ = 501 nodes
to N̄ = 1005 nodes. Likewise, in Figure 10c, the path loss exponent η illustrates network connection
degradation at 2.65 from 2.5 because H1 depends on the distance, while the the capture probability
(Q1) is not dependent on the path loss exponent. In the case of one frequency channel, the transmit
power Pk of nodes can be up to 20 dBm (100 mW) [11,41]. In order to evaluate the effect of different
transmit powers, in Figure 10d we raised the transmit power from 14 dBm to 19 dBm. The results
demonstrate that the transmit power of 19 dBm causes a better connection probability as compared
to 14 dBm. Nevertheless, variations of the path loss exponent and transmit power do not affect Q1

considerably because it is much more dependent on the number of nodes.
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Figure 10. Performance LoRa uplink considering Fibonacci series K-means clustering, and the impact
of different parameters on success probabilities. (a) Density of users increased from N̄ = 501 to N̄ = 1005.
(b) Duty cycle increased from p0 = 0.1% to p0 = 1%. (c) Path loss exponent from η = 2.5 to η = 2.65.
(d) Transmit power from (Ptx = 14) dBm to Ptx = 19 dBm.

5.3. Discussion

The architecture of LoRaWAN consists of end-devices, a gateway, network server (NetServer),
and application server [15]. The NetServer is mainly responsible for the overall management of the
network. The dynamic configuration of the SF by the NetServer is already possible in LoRaWAN
during the network join procedure or through specific MAC commands. In fact, these features are
used in LoRaWAN when the adaptive data rate (ADR) mechanism is active. For our approach to be
implemented in practice, the NetServer could run our algorithm periodically or when the number of
connected devices changes significantly, and then issue the required MAC commands to reconfigure
the devices that need to change their SF. Therefore, as the current LoRaWAN specification is already
able to dynamically allocate SFs, our proposal only changes the way the proper allocation is calculated
at the NetServer, and is therefore feasible in practice.

6. Conclusions

This paper has presented a novel SF allocation technique for a large-scale LoRa network using the
K-means clustering machine learning algorithm. The authors also analyzed the impact of the distance
of end-devices from the gateway and the number of nodes in each SF on network performance. In this
work, four different scenarios are considered, which have different distances for the SF boundaries
and variations in the number of nodes in an individual SF. Such fair distribution results in a better
average coverage probability in the higher SFs, while dealing with the maximum number of nodes.
Numerical findings show that our SF allocation algorithm outperforms the reference model not
only in terms of success probability but also in regards to fair resource distribution. The evaluated
theoretical and simulation results are useful for an in-depth understanding of large and dense LoRa
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networks. Our resource allocation method can handle dense and large circular coverage areas for LoRa
sensors using distinct numbers of clusters instead of equal-radius-based SF allocation [19,20], while
the techniques in [28,29,33] are designed for short-range networks. The studies [19,20,28,29,33] only
highlighted the performance of networks for fixed parameters. In contrast to them, our work inspects
different scenarios by obeying the restrictions of ETSI standards.
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