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Abstract: The increasing number of flood events combined with coastal urbanization has contributed
to significant economic losses and damage to buildings and infrastructure. Development of higher
resolution SAR flood mapping that accurately identifies flood features at all scales can be incorporated
into operational flood forecasting tools, improving response and resilience to large flood events. Here,
we present a comparison of several methods for characterizing flood inundation using a combination
of synthetic aperture radar (SAR) remote sensing data and machine learning methods. We implement
two applications with SAR GRD data, an amplitude thresholding technique applied, for the first
time, to Sentinel-1A/B SAR data, and a machine learning technique, DeepLabv3+. We also apply
DeepLabv3+ to a false color RGB characterization of dual polarization SAR data. Analyses at 10
m pixel spacing are performed for the major flood event associated with Hurricane Harvey and
associated inundation in Houston, TX in August of 2017. We compare these results with high-
resolution aerial optical images over this time period, acquired by the NOAA Remote Sensing
Division. We compare the results with NDWI produced from Sentinel-2 images, also at 10 m pixel
spacing, and statistical testing suggests that the amplitude thresholding technique is the most effective,
although the machine learning analysis is successful at reproducing the inundation shape and extent.
These results demonstrate the effectiveness of flood inundation mapping at unprecedented resolutions
and its potential for use in operational emergency hazard response to large flood events.

Keywords: synthetic aperture radar; flood characterization; machine learning; geospatial data fusion

1. Introduction

Flooding is one of the most frequent hydro-meteorological hazards, with annual losses
totaling approximately $10 billion (USD) [1], and average losses are expected to increase to
more than $1 trillion annually by 2050 [2]. In 2004, it was estimated that more than half a
billion people are impacted every year worldwide. That number could double by 2050 [3].
It is anticipated that increasing populations, regional subsidence, and climate change
will exacerbate both annual flooding and extreme events, particularly in large coastal
cities [4]. Improved remote sensing instrumentation and analysis will be critical tools in the
assessment of flood risk through improved characterization of flood inundation, providing
insights into the dynamics of coastal and riverine water bodies, their incorporation into
flood models, and improved flood risk mapping, impact assessments, forecasting, alerting,
and emergency response systems.

Accurate information about impending and ongoing hazards is critical to aid effective
preparation and subsequent response to reduce the impact of large flood events [5–7].
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Technological advancements have enabled rapid dissemination of hazard information via
mobile communication and social networking [8,9]. DisasterAWARE®, a platform operated
by the Pacific Disaster Centre (PDC), provides warning and situational awareness informa-
tion support through mobile apps and web-based platforms to millions of users worldwide
for multiple hazards. DisasterAWARE® is developing a component that will integrate
high-resolution SAR images of flood extent and inundation depth into hydrological models
of flood forecasting and impact assessment.

Due to the extensive cloud cover during large precipitation events, flood mapping
offers particular challenges for many types of remote sensing. For example, while op-
tical satellite imagery such as that from Landsat or the Moderate Resolution Imaging
Spectroradiometer (MODIS) has been successfully employed to derive flood inundation
maps [10–13], their operational effectiveness can be limited by extended periods of precipi-
tation and cloud cover. However, because SAR is an all-weather collection system that sees
through clouds, it is extremely useful for real-time, or near real-time, flood mapping [14].
For the purposes of flood mapping, real-time flood mapping would produce images as
flood water rose, approximately daily or even hourly. Because SAR satellites that produce
freely available images today operate with repeat times of 6-to-12 days, SAR near real-time
flood mapping often is limited to a few days into the flood event.

A variety of satellite SAR images have been used for water surface detection [15–20],
including X-band (COSMO-SkyMed, TerraSAR-X), L-band (ALOS PALSAR), and C-band
(RADARSAT-1/2, ENVISAT ASAR, Sentinel-1A/B) sensors. Additional applications in-
clude flood depth estimation [21–23] and flooding beneath vegetation [24–27]. SAR-based
flood extent mapping algorithms broadly include visual interpretation [28,29], supervised
classification and image texture methods [14,30–32], active contour modeling [33,34], multi-
temporal change detection methods [35,36], and histogram thresholding [37,38]. Histogram
thresholding relies on the ability to separate inundated from non-flooded areas over large
areas based the specular backscattering of active radar pulses on smooth water surfaces
and the resultant low intensity of the signal return. Here, we present research aimed at
improving the resolution and accuracy of those SAR images of flood extent.

In this work, we compare advanced methods for discriminating between land and
water pixels at spatial resolutions of 10 m, using ground range detected (GRD) data imagery
from the European Space Agency (ESA) Sentinel-1A/B C-band SAR satellite. We apply
an amplitude thresholding algorithm to identify inundation using SAR data to flooding
associated with Hurricane Harvey (Harvey). Harvey, a slow-moving Category 4 event,
struck the Houston, TX, region on 26 August 2017. We also implemented a machine learning
(ML) algorithm, DeepLabv3+, to increase image quality and improve identification of water
pixels. We present the results from applying DeepLabv3+ to both the original SAR GRD
data and to the results of applying a false RGB classification scheme using the different
SAR polarizations.

2. Materials and Methods

In this work, we apply two different methods to SAR GRD data with a pixel spacing
of 10 m, to produce flood inundation maps at 10 m resolution. The first is a thresholding
technique [37,38], while the second is based on an RGB classification scheme [31]. We
also apply a machine learning technique, DeepLabv3+, to the same GRD data and to the
classification outputs. All analyses are applied to SAR GRD data with 10 m pixel spacing,
and the results are decimated to 10 m spacing. We use both the Normalized Difference
Water Index (NDWI) estimated from ESA’s Sentinel-2 optical images and the NOAA data
to validate the results.

2.1. Data

For this study, we downloaded high-resolution ground range detected (GRD) images
from ESA’s Sentinel-1A/B satellite (C-band SAR, IW mode) with a 6–12 day repeat time.
Images were downloaded from the National Aeronautics and Space Administration’s
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(NASA) Alaska Satellite Facility Distributed Active Archive Center (ASFDAAC) (https:
//search.asf.alaska.edu/ (accessed on 9 June 2021)). Here, we downloaded GRD images
at 10 m resolution for 29 August 2017. Figure 1 shows the Houston, TX, study area and
the footprints of the Sentinel-1 and Sentinel-2 scenes used in this study. The northern SAR
image is from Path 34, Frame 95, and the southern SAR scene is from Path 34, Frame 90.
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is Path 34, Frame 90. The Sentinel-2 scenes are outlined in green; the large swath was acquired on
30 August 2017, and the smaller scene on 1 September 2017.

Additionally, we preprocess the GRD product into a σ0 (sigma nought) product
using the Sentinel-1 Toolbox Command Line Tool [39]. σ0 is the backscatter coefficient,
the normalized measure of the radar return from a distributed target per unit area on
the ground.

This preprocessing consists of the following algorithms attached to the Sentinel-1
Toolbox: Apply Orbit File, Remove GRD Border Noise, Calibration, Speckle Filter, and
Terrain Correction. In the Calibration step, we derive the σ0 band [40]. Thus, we call the
final, preprocessed product the σ0 SAR image.

The National Oceanic and Atmospheric Administration (NOAA) acquired aerial
optical imagery of the region to support emergency response activities after the hurricane.
The NOAA Remote Sensing Division acquired airborne digital optical imagery of the
Houston area between 27 August and 3 September 2017, in response to Hurricane Harvey.
The images were acquired from an altitude between 2500 to 5000 feet using a Trimble

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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Digital Sensor System (DSS). Individual images were combined into a mosaic and tiled
for distribution (Figure 2). Approximate ground sample distance (GSD) for each pixel is
between 35 and 50 cm (https://storms.ngs.noaa.gov/storms/harvey/download/metadata.
html (accessed on 1 February 2021)). These data were used to identify flooded polygons for
ground truthing of our results.
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Figure 2. NOAA Remote Sensing Division airborne digital optical imagery of the Houston area
acquired between 27 August and 3 September 2017, in response to Hurricane Harvey. Approximate
GSD for each pixel ranges between 35 and 50 cm (https://storms.ngs.noaa.gov/storms/harvey/
download/metadata.html (accessed on 1 February 2021)). Red squares outline three areas selected
for comparison with results of flood detection and DeepLabv3+ analysis.

The Dartmouth Flood Observatory (DFO) provides detailed information on flood
inundation for global event in recent decades, largely derived from satellite data, and
includes an “Active Archive of Large Flood Events, 1985–present”. Collection of these data
has been carried out by G. R. Brakenridge and co-workers, first at Dartmouth College and
then at the University of Colorado Boulder [41]; http://floodobservatory.colorado.edu
(accessed on 22 February 2021). For this event, DFO flood estimates are derived from NASA
MODIS, ESA Sentinel-1, Cosmo SkyMed, and Radarsat2 satellite data. Here, we use the
DFO MODIS data, at 250 m pixel spacing.

Figure 3a shows the global water mask (GWM), derived from the Global Surface Water
map [42], where blue is permanent water. Figure 3b shows the MODIS-derived DFO water map
for flooding from Hurricane Harvey at pixel spacing of 250 m, 28 August–4 September 2017 [41].

https://storms.ngs.noaa.gov/storms/harvey/download/metadata.html
https://storms.ngs.noaa.gov/storms/harvey/download/metadata.html
https://storms.ngs.noaa.gov/storms/harvey/download/metadata.html
https://storms.ngs.noaa.gov/storms/harvey/download/metadata.html
http://floodobservatory.colorado.edu
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Figure 3. (a) GWM (water pixels in blue) [https://global-surface-water.appspot.com/download
(accessed on 17 May 2021)]; (b) MODIS-derived flood inundation, 250 m pixel spacing, for 28 August–
4 September 2017, courtesy of DFO (water in blue) [41], with the GWM removed to characterize
temporary water only.

For our analysis of the NDWI of this time, we acquired two Sentinel-2 scenes. We
selected the two best Sentinel-2 scenes that are the closest in time to our SAR scene (foot-
prints shown in Figure 1). The first scene is a large swath from 30 August 2017, and the
second scene is a smaller swath from 1 September 2017, as shown in Figure 1. Since our
SAR data were acquired on 29 August 2017, this gives a time difference of 1 and 3 days
respectively between the Sentinel-2 images and the Sentinel-1 images from 29 August 2017.
We obtained 37 Sentinel-2 images from the GEE platform [43], 31 acquired on 30 August
2017, and 6 acquired on 1 September 2017.

2.2. Methods

Methods most commonly applied to the detection of inundation include automatic
histogram thresholding-based methods [37,38], multitemporal change detection-based
methods [44,45], and machine learning and neural network methods [46–48]. Here, we
implement both a thresholding technique and a false RGB classification scheme [31].

2.2.1. NDWI Analysis

For additional comparison with our results, we estimated the Normalized Difference
Water Index (NDWI) on multispectral Sentinel-2 imagery over Houston [49]. Using Google
Earth Engine [43], we extracted the B03 band and B08 band only from the Sentinel-2 MSI
Level-1C products, 10 m pixel spacing. These bands correspond to the wavelength of green
and near-infrared (NIR) light, respectively.

The majority of the Sentinel-1 area is covered by the large Sentinel-2 swath, as it
encompasses a larger area. Unfortunately, a large cloud inhabits the northeast corner of
this image. To combat this, we use the smaller Sentinel-2 swath to fill in some of the area
in the northeast. Both images have smaller clouds present, but the calculation of NDWI
should mask out these clouds sufficiently for accurate comparison.

https://global-surface-water.appspot.com/download
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The NDWI equation is given by

(GREEN − NIR)/(GREEN + NIR). (1)

The result is an image with values in the range [−1, 1]. To achieve a ground truth
binary classification of water pixels and non-water pixels, we must select a threshold value
to make this distinction. According to [49], positive values are determined to be open
water, although others have suggested that manually choosing a threshold leads to higher
accuracy in classifying water [50]. However, we opted for the threshold of 0, as in [49], for
simplicity and to avoid any potential bias incurred in a manual decision.

We then stitch the two resulting NDWI images together and crop and resample to
match the resolution and bounds of the SAR data. The resulting NDWI map is shown in
Figure 4.
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2.2.2. SAR Water Detection
Thresholding

The first method applied to SAR images in this study of Hurricane Harvey flood-
ing was a thresholding technique applied to map inundated regions based on the low
backscatter coefficient of the GRD SAR data. The distribution of SAR amplitudes, with the
appropriate power transform, is a bimodal Gaussian distribution that can be used to sepa-
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rate water and non-water pixels [37]. This characteristic can be exploited to automatically
identify a threshold of the pixel values to classify inundated areas.

The SAR image is subdivided into tiles, due to the wide SAR swath. The maximum
normalized between-class variance (BCV) is used to identify those pixels within each tile
that have a bimodal distribution [37,51]. From simulations, a distribution can be assumed
bimodal for a maximum value of BCV greater than 0.65 [37,38]. Each tile is further split into
an array of s x s pixels, where the value of s is varied to determine an optimal threshold for
each tile. Bimodal pixels are identified, and an automatic threshold is selected from either
the local minimum (LM) separating the peaks in the bimodal distribution or the mode of
the distribution itself. Finally, the threshold for the entire tile is equal to the mean of all the
thresholds for every subset of s x s pixels. We repeat this process for every tile to generate
a binary output that identifies the pixels classified as water. Note that this method also
classifies permanent water bodies, in addition to transient flooded pixels, so that, for flood
hazard characterization, it is necessary to take into account the common classifications
in all images using an earlier set of images, assuming sufficient temporal coverage, or
the Global Surface Water map [42]; https://global-surface-water.appspot.com/download
(accessed on 17 May 2021). This method also can be applied to VV (vertical-vertical) and
VH (vertical-horizontal) SAR polarizations, separately or jointly, to improve accuracy.

RGB Classification

We also implemented an RGB classification scheme, providing an additional data
set for input into the machine learning algorithm using the same SAR images. In this
application, dual-polarization SAR images, VV and VH, are used to construct a false color
RGB image [44]. We leverage the dual-polarization of Sentinel-1 GRD products to construct
a similar 3-channel image using the σ0 SAR images from the SNAP pre-processing above.
We designate the channels as colors (red, green, and blue), but it is important to note that
colors do not represent the same physical features as that of an optical image. In the RGB
composite here, the VH band is assigned to the red channel, the VV band is assigned to the
green channel, and the ratio of VH to VV (VH/VV) is assigned to the blue channel.

The following steps are necessary to transform the data before constructing the RGB
composite. First, pixel values are converted from a linear scale to a decibel scale, as in [44]:

σ0
dB = 10· log10 σ0 (2)

Here, σ0 denotes the σ0 SAR image. Then, the ratio of the VH polarization to the
VV polarization is computed. To prevent numerical instability, VH/VV = 0 when VV = 0.
We then perform quantile clipping to diminish the effect of outliers or extremely bright
scatterers. To accomplish this, we find the 99th percentile of each band and set all values
above the 99th percentile equal to the value at 99th percentile. Use of the 99th percentile
was chosen empirically because it reduced the outliers enough with minimal change in the
pixel distribution. Finally, all three bands are mapped to the interval [0, 1]

f
(

σ0
dB

)
=

σ0
dB − min(S)

max(S)− min(S)
(3)

Figure 5a shows the original σ0 SAR image, while Figure 4b is the false color RGB
image derived from the image in Figure 4a, where VH is blue, VV is green, and VH/VV
is blue.

2.2.3. Machine Learning and DeepLabV3+

The goal of this phase of the project is to train a machine learning model to detect
differences between pixels in our SAR scenes and attribute these changes to inundation,
which is captured in the machine learning model after the model has been well trained.
We first identified a training data set by identifying flooded pixels on the SAR GRD image
from 29 August 2017, as shown in Figure 6 [52,53]. Here, we apply DeepLabv3+ [54], an

https://global-surface-water.appspot.com/download


Remote Sens. 2022, 14, 2261 8 of 21

encoder–decoder structure used in deep neural networks for semantic segmentation tasks,
to the SAR GRD image shown in Figure 6.
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We chose a training region (Figure 6a) and manually delineated all flooded areas
within it by the guidance of grids (Figure 6b,c) and obtained 535 training polygons. We
converted the training polygons and the SAR GRD image into image and label tiles with
a buffer size of 1000 m and an adjacent overlap of 160 pixels, as detailed in [52]. These
tiles had sizes range from around 200 by 200 pixels to 480 by 480 pixels and were ready for
training DeepLabv3+. While there is no fixed rule for the ratio of training to validation data,
it typically ranges from 70%/30% to 90%/10%, with a larger dataset allowing for a larger
ratio. Here, we have 10,000 tiles, so we chose 90% of those tiles for training data and the
remaining as validation data, as in [55]. To increase the volume and diversity of training
data, we used a Python package named “imgaug” (imgaug.readthedocs.io) to augment the
tiles by flipping, rotating, blurring, cropping, and scaling them. We trained a DeepLabv3+
model with up to 30,000 iterations with a batch size of eight and learning rate of 0.007. We
adopted Xception65 [56] as network architecture and the corresponding pre-trained model
based on ImageNet [57]. We used the trained model to identify flooded pixels in the entire
SAR GRD images by following steps including titling, predicting, and mosaicking [53]. We
used the same training polygons and trained different models for the false RGB data by
following the same procedures described above.

3. Results

Figure 7 shows the results of applying the thresholding technique, as detailed in
Thresholding, above, to the SAR GRD image from 29 August 2017. Note that a greater
number of flooded water pixels are identified here than in the NDWI image of Figure 4,
although a direct comparison is difficult because the images used to construct them were
acquired on different dates. Hurricane Harvey made landfall on 26 August 2017, the
Sentinel-1 SAR GRD date used in the thresholding analysis was acquired on 29 August
2017, and the Sentinel-2 data from the NDWI analysis was acquired on 30 August and
1 September 2017.

Figure 8 shows the results from applying DeepLavv3+ ML analysis to the SAR GRD
data, 29 August 2017, shown in Figure 6a. We also applied the ML analysis, DeepLabv3+,
separately, to the RGB data from Figure 5b. The results are shown in Figure 9. The
DeepLavb3+ analysis of the SAR GRD data, Figure 8, identifies more, smaller scale features
in the data, while the DeepLavb3+ analysis of the false color RGB data identifies the most
water pixels, particularly in the southern half of the image closest to the coast.

Figure 10 presents enlargements of the results from Figures 7–9 that approximately
correspond to the region overflown by NOAA, as shown in Figure 2. For comparison,
we also provide enlargements for the DFO and NDWI results for the same region. Note
that we again have removed the GWM from the results of Figure 10c–e. The same pattern
emerges as observed in the larger images. The higher resolution analyses (10 m pixel
spacing), whether the NDWI from the Sentinel-2 optical or the various Sentinel-1 SAR
methods, all provide more detail than the DFO MODIS data at 250 m pixel spacing. Again,
the thresholding analysis provides more detail than the NDWI analysis, based on images
acquired closer in time to the hurricane landfall, while the water pixels in DeepLabv3+ ML
analysis are denser, particularly closer to the coast.

While the enlargements of Figure 10 provide additional detail on the differences in
extent and coverage between these analyses, they are obtained over significantly different
time intervals and spatial scales. To evaluate the effectiveness of each method at identifying
actual water pixels, we compare the different results for three subregions of the NOAA
optical images, as defined in Figure 2. The NOAA data were acquired between 27 August
and 3 September 2017, covering this entire time period, and at a higher resolution than the
NDWI or SAR analyses, with a GSD between 35 and 50 cm. Again, for comparison, we
provide the original NOAA optical data, the DFO MODIS data, and the NDWI analysis from
Sentinel-2, as described above. Note that we do not remove the GWM from our analysis, as
the optical data contain both permanent and temporary water, although permanent water
is masked out of the DFO MODIS data.
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Figure 11 shows a comparison between subregion 1 of Figure 2 for the original optical
data (Figure 11a), the DFO MODIS data (Figure 11b), Sentinel-2 NDWI analysis (Figure 11c),
the DeepLabv3+ ML analysis of the SAR GRD data, 29 August 2017 (Figure 11d), the thresh-
olding analysis of the SAR GRD data, 29 August 2017 (Figure 11e), and the DeepLabv3+ ML
analysis of the RGB classification data (Figure 11f). Note that all the results identify the
flood waters, with the DFO and NDWI effectively the same, with different resolutions,
while the SAR analyses, at higher resolutions, present only minor differences.

Figure 12 shows a comparison between subregion 2 of Figure 2 for the original optical
data (Figure 12a), the DFO MODIS data (Figure 12b), Sentinel-2 NDWI analysis (Figure 12c),
the DeepLabv3+ ML analysis of the SAR GRD data, 29 August 2017 (Figure 12d), the thresh-
olding analysis of the SAR GRD data, 29 August 2017 (Figure 12e), and the DeepLabv3+ ML
analysis of the RGB classification data (Figure 12f). Here the results for the DFO and NDWI
again fail to identify the bulk of the floodwaters. The SAR analyses succeed in identifying
the permanent and flooded water pixels, capturing the sinuosity of the local channel, al-
though the DeepLabv3+ analysis of the SAR GRD data (Figure 12d) identifies fewer of the
flood pixels and the false color RGB analysis even fewer. The Sentinel-2 images employed
in this analysis were collected on 30 August and 1 September 2017, while the SAR data were
collected on 29 August 2017, and Hurricane Harvey made landfall on 26 August 2017. As
noted above, flood inundation extent certainly varied over the time period, and it is likely
that the flood waters had receded some between the time of the Sentinel-1 and Sentinel-2
acquisitions, accounting for the inability of the NDWI analysis to properly classify water
pixels in Figure 12c.



Remote Sens. 2022, 14, 2261 12 of 21Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 10. (a) Water pixels identified by MODIS data, courtesy of the DFO [41] 250 m pixel spacing; 
(b) water pixels identified from NDWI analysis of Sentinel-2 data, 10 m pixel spacing; (c) water 
pixels identified by the DeepLabv3+ analysis of SAR GRD data, 29 August 2017, 10 m pixel spacing; 
(d) water pixels identified from thresholding analysis of the same SAR GRD data, 10 m pixel spac-
ing; and (e) water pixels identified by the ML analysis of the RGB classification of the SAR GRD 
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Figure 10. (a) Water pixels identified by MODIS data, courtesy of the DFO [41] 250 m pixel spacing;
(b) water pixels identified from NDWI analysis of Sentinel-2 data, 10 m pixel spacing; (c) water
pixels identified by the DeepLabv3+ analysis of SAR GRD data, 29 August 2017, 10 m pixel spacing;
(d) water pixels identified from thresholding analysis of the same SAR GRD data, 10 m pixel spacing;
and (e) water pixels identified by the ML analysis of the RGB classification of the SAR GRD data, 10
m pixel spacing. The GWM is removed from all results except the NDWI (b). Water pixels are shown
in blue in all subfigures.
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acquired between 27 August and 3 September 2017, subregion 1, as shown in Figure 2; (b) water 
pixels identified by DFO MODIS data, 250 m pixel spacing, courtesy of the DFO [41]; (c) water pixels 
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Figure 11. (a) NOAA Remote Sensing Division airborne digital optical imagery of the Houston area
acquired between 27 August and 3 September 2017, subregion 1, as shown in Figure 2; (b) water
pixels identified by DFO MODIS data, 250 m pixel spacing, courtesy of the DFO [41]; (c) water pixels
identified from NDWI analysis of Sentinel-2 data, 10 m pixel spacing; (d) water pixels identified
by the DeepLabv3+ analysis of SAR GRD data, 29 August 2017, 10 pixel spacing; (e) water pixels
identified from thresholding analysis of the same SAR GRD data, 10 m pixel spacing; and (f) water
pixels identified by the classification analysis of the SAR GRD data, 10 m pixel spacing. The GWM is
not removed from the analyses of (b) through (f). Water pixels are shown in orange.

Figure 13 shows a comparison between subregion 3 of Figure 2 for the original optical
data (Figure 13a), the DFO MODIS data (Figure 13b), Sentinel-2 NDWI analysis (Figure 13c),
the DeepLabv3+ ML analysis of the SAR GRD data, 29 August 2017 (Figure 13d), the thresh-
olding analysis of the SAR GRD data, 29 August 2017 (Figure 13e), and the DeepLabv3+
ML analysis of the RGB classification data (Figure 13f). Here, flood waters are much nar-
rower and the DFO analysis can only identify 250 m pixels at what appears to be random
locations. The NDWI analysis (10 m pixel spacing) identifies permanent water pixels in
the channels and adjacent ponding. The thresholding SAR analysis (Figure 13e) identifies
the permanent water pixels and small ponding areas but also misidentifies large roadways
as flooded pixels, probably because they are wet, with similar backscatter properties to a
flat water surface (Figure 13e). The DeepLabv3+, however, captures the larger flood areas
(Figure 13d), although the ML analysis of the RGB classification data shows large false
positive areas associated with sinusoidal shapes (Figure 13f).
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Figure 12. (a) NOAA Remote Sensing Division airborne digital optical imagery of the Houston area
acquired between 27 August and 3 September 2017, subregion 2, as shown in Figure 2; (b) water
pixels identified by MODIS data, 250 m pixel spacing, courtesy of the DFO [41]; (c) water pixels
identified from NDWI analysis of Sentinel-2 data, 10 m pixel spacing; (d) water pixels identified by
the DeepLabv3+ analysis of SAR GRD data, 29 August 2017, 10 m pixel spacing; (e) water pixels
identified from thresholding analysis of the same SAR GRD data, 10 m pixel spacing; and (f) water
pixels identified by the classification analysis of the SAR GRD data, 10 m pixel spacing. The GWM is
not removed from the analyses of (b) through (f). Water pixels are shown in orange.
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Figure 13. (a) NOAA Remote Sensing Division airborne digital optical imagery of the Houston area
acquired between 27 August and 3 September 2017, subregion 3, as shown in Figure 2; (b) water
pixels identified by MODIS data, 250 m pixel spacing, courtesy of the DFO [41]; (c) water pixels rest
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identified from NDWI analysis of Sentinel-2 data, 10 m pixel spacing; (d) water pixels identified by
the DeepLabv3+ analysis of SAR GRD data, 29 August 2017, 10 m pixel spacing; (e) water pixels
identified from thresholding analysis of the same SAR GRD data, 10 m pixel spacing; and (f) water
pixels identified by the classification analysis of the SAR GRD data, 10 m pixel spacing. The GWM is
not removed from the analyses of (b) through (f). Water pixels are shown in orange.

4. Discussion

Characterization of flood inundation poses a unique problem at the intersection of
remote sensing and hazard estimation, as evidenced by this study. Because Landsat and
Sentinel-2 images are only usable under cloud-free conditions, their data are not always
viable. Sentinel-1 data are only available every 12 days, which does not always match with
maximum inundation, making it difficult to incorporate into real-time hazard analysis.
While large amounts of remote sensing data exist for Hurricane Harvey, the temporal
coverage does not overlap. In addition, variable spatial scales add to the difficulty of
comparing the various analyses. However, the collection of high-resolution optical data by
the NOAA Remote Sensing Division presents a unique opportunity to assess the qualitative
advantages of the analyses shown here.

The high-resolution SAR GRD thresholding analysis, at 10 m pixel spacing, identifies
water surfaces, both narrow and broader flooded areas, with good reliability. In all three
comparisons with the NOAA data (Figures 11e, 12e and 13e), this method is successful in
identifying not only larger flood areas, but small, narrow ponding areas. However, it also
identifies a number of false positives in Figure 13e, associated with wet road surfaces.

The DeepLabv3+ ML analysis of the SAR GRD images, again at 10 m pixel spacing, is
also very effective at identifying inundated water surfaces in all three test cases (Figures
11d, 12d and 13d). While the thresholding analysis may do better at identifying small
features, the ML analysis has fewer false positives, and better characterizes the shape and
nature of the significant flood areas.

The DeepLabv3+ ML analysis of the false color RGB data, also at 10 m pixel spacing,
does well in large, flooded areas (Figure 11f), but does not do as well as the other methods
in areas with more sinuous or smaller flood regions (Figures 12f and 13f). This is despite
the fact that the analysis is performed on three times the data as the ML analysis of the SAR
GRD data—VH, VV, and VH/VV. Additional studies should investigate comparisons of
analysis of the three channels separately, to better understand the factors affecting their
results and ability to appropriately characterize flooding.

A visual comparison of all three high-resolution analyses, at 10 m pixel spacing,
suggests that they all do a better job of characterizing flood inundation than either the DFO
MODIS data (250 m pixel scaling) and NDWI (10 m pixel scaling) for smaller scale flood
features and that the SAR data have a unique ability to better characterize flood inundation,
a function of both its ability to identify water surfaces and to see through cloud coverage
associated with large storms. However, a direct comparison is difficult because none of the
images are acquired on the same dates.

To better evaluate the performance of the three classification methods—DeepLabv3+,
thresholding, and DeepLabv3+ ML analysis of the false color RGB data—we performed
a predictive analysis using confusion matrices (Figure 14). We compared each method to
a subset of the data for the Sentinel-2 NDWI analysis of Figure 4. The test region ranges
from −96.25◦ to −95.20◦ E longitude and 29.25◦ to 30.25◦ N latitude, which encompasses
most of the area overflown by NOAA (Figure 2) without including the Gulf of Mexico
to the south. This is not a perfect comparison because the Sentinel-2 images employed
in that analysis were collected on 30 August and 1 September 2017, while the SAR data
were collected on 29 August 2017, and Hurricane Harvey made landfall on 26 August 2017.
As noted above, flood inundation extent certainly varied over the time period, and it is
likely that the flood waters had receded some between the time of the Sentinel-2 and SAR
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acquisitions. However, the Sentinel-2 NDWI is produced at the same 10 m pixel spacing as
the SAR GRD results, providing for a direct comparison without rescaling.
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Thresholding Predicted
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Figure 14. Confusion matrices for DeepLabv3+ analysis compared with Sentinel-2 NDWI analysis;
thresholding analysis compared with Sentinel-2 NDWI analysis; and false color RGB ML analysis
compared with Sentinel-2 NDWI analysis. In each, the top left box shows true positives (tp), the top
right shows false positives (fp), bottom left shows false negatives (fn) and bottom right shows true
negatives (tn) for each comparison.

Table 1 shows the results of computing the precision, p [p = (tp)/(tp + fp)], recall,
r [r = (tp)/(tp + fn)], and F1-score [f 1 = 2·p·r)/(p + r)]. The precision of the classification
model identifies how many, out of all instances that were predicted to be water, actually
were water. The recall identifies how many instances of water were predicted correctly.
Finally, the F1-score compares multiple classes by combining the precision and the recall
into a single metric by taking their harmonic mean. The F1-score can be used to compare
the performance of two or more classifiers. The higher the F1-score, the better the classifier.

Table 1. Precision, p, recall, r, and F1-score for results from the DeepLabv3+, thresholding and false
RGB ML analysis.

Precision, p Recall, r F1-score

DeepLabv3+ 0.38 0.27 0.31
Thresholding 0.79 0.55 0.65

RGB ML 0.40 0.42 0.41

The results from Table 1 suggest that the thresholding technique provides a better
result than either the DeepLabv3+ analysis of the SAR GRD data or the false color RGB
data. This may be because of the lower number of false positives associated with the
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thresholding method or, inversely, the larger number associated with the ML analysis.
The higher number of false positives associated with the ML analysis is likely because the
training data largely rely on the shape of coherent pixels. Additional training data over a
wider variety of regions and sizes should be investigated in the future.

5. Conclusions

Disaster resilience is a widely used concept that focuses on increasing the ability of a
community or a set of infrastructure to recover after disasters by responding, recovering,
and adapting with minimal loss within a short period of time [58–62]. Resilience is impacted
by societal, political, and cultural variables, but it also is advanced through technological
innovations [63,64]. Being a multi-dimensional concept, its operationalization requires
achieving four properties robustness, resourcefulness, rapidity, and redundancy [59,65]. In
particular, improved risk assessment and risk communication are critical factors in increas-
ing resilience through better preparedness, mitigation, and response [66,67]. For example,
today technological advances enable the rapid dissemination of disaster information via
mobile communication and social media [8,9].

Large flood events, combined with coastal urbanization, present a unique challenge to
coastal cities and megacities, contribute to significant economic losses, and damage build-
ings and infrastructure. Detailed and accurate characterization of impending and ongoing
flood hazards is critical to aid effective preparation and subsequent response to reduce
the impact of large flood events. However, no communication platform currently exists
that delivers rapid flood assessment and impact analysis worldwide. DisasterAWARE®, a
platform operated by the Pacific Disaster Centre (PDC) that provides warning and situa-
tional awareness information through mobile apps and web-based platforms to millions
of users worldwide, is developing a component that will provide flood forecasting and
impact assessment [68].

DisasterAWARE® implements an integrated modelling approach that consists of (i) a
Model of Models (MoM) to integrate hydrological models for flood forecasting and risk
assessment, (ii) flood extent and depth modelling using SAR imagery at a granular level
for high severity floods identified in (i), and (iii) infrastructure impact assessment using
high-resolution optical imagery and geospatial data sets. Specifically, the MoM generates
flood extent output at the watershed level at regular time intervals (currently 6 h) during
a flood event using outputs from established hydrologic models (e.g., GloFAS (Global
Flood Awareness System) and GFMS (Global Flood Monitoring System) [68,69]. The MoM
output then identifies SAR imagery for high flood severity locations so that flood extent
could be generated at high resolution, such as the 10 m pixel spacing presented here, along
with optical imagery and geospatial datasets to assess impacts. Integration of the SAR
flood mapping data from the research presented here will allow for the generation of
alerts about imminent flood hazard, flooding locations and severity, and flood impacts
to infrastructure. For Sentinel-1A data, these will be limited by the repeat time of the
acquisitions, currently at 12 days with the malfunction of Sentinel-1B. However, integration
of additional data sets, such as C-band SAR from the Radarsat Constellation Mission (RCM)
or the upcoming L-band NISAR satellite, could lower the repeat times to 4-to-6 days, The
addition of commercial data sets from small satellite constellations such as ICEYE could
provide updates with repeat times of less than one day.

Here, we present a comparison of several methods for identifying flood inundation
using a combination of SAR remote sensing data and ML methods that can be incorporated
into operational flood forecasting systems such as DisasterAWARE® and provide a compar-
ison of their effectiveness relative to a NDWI analysis of Sentinel-2 data. These employ SAR
data to characterize flooding at unprecedented resolutions of 10 m pixel spacing, for Hurri-
cane Harvey, which struck Houston, TX, on 26 August 2017. We present two applications
applied, for the first time, to Sentinel-1 GRD data, an amplitude thresholding technique
and a machine learning technique, DeepLabv3+. We also apply DeepLabv3+ to a false color
RGB characterization of dual polarization SAR data. We compare these 10 m pixel spacing
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results with high-resolution aerial optical images over this time period, acquired by NOAA
Remote Sensing Division, DFO MODIS data [15], and an NDWI estimation using Sentinel-2
images, also at 10 m pixel spacing.

Although the thresholding method is most effective at identifying small scale flood
features in terms of precision, recall, and F1-score, results show more false positives,
associated with flat, wet surfaces such as roadways (Figure 13e). The DeepLabv3+ ML
analysis also is very effective, although it does produce fewer true positives, as well as
more false negatives (Figure 14). Future studies should investigate potential improvements
using expanded training data sets. Both methods (applied to the SAR GRD data) are more
effective at identifying both large- and small-scale flood inundation over this time period
than the DFO data. Although it is difficult to quantify, given that the acquisition dates are
different for all data sources, visual comparison with NOAA optical imagery suggests that
they can successfully identify both small and large ponding areas, as well as permanent
water bodies (Figure 13).

Future work should investigate improvements in these SAR methods, including
investigations into both longer time series from historical archives, such as Radarsat1/2,
ALOS, and ERS/ENVISAT, incorporating DEM data (height and slope) into both the
thresholding and ML analyses, quantitative comparison, and improved quantity and
quality of training data for the ML method. Detailed studies of the false color RGB data
may provide insights into their ability to characterize water and other land cover types.
In addition, while the Sentinel-1/2 constellation and the recent Landsat-8 and upcoming
Landsat-9 missions have significantly improved the temporal and spatial mapping of large
flood extents, additional satellite data can be used, both pre- and post-flood, to improve that
temporal resolution in the future. Accuracy and sensitivity testing of other SAR frequency
bands will provide important information on the potential for incorporating data from the
upcoming NISAR (NASA-ISRO SAR) mission, which will have both L- and S-band SAR
sensors, into operational flood forecasting.

Current SAR flood products are produced at 30 m resolution [70]. In this work, we
have demonstrated the efficacy of high-resolution SAR analyses, at 10 m pixel spacing,
for improved characterization of flood features at all scales and can be incorporated into
operational flood forecasting tools, improving response and resilience to large flood events.
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