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Abstract: Traditional radar-based rainfall estimation is typically done by known functional relation-
ships between the rainfall intensity (R) and radar measurables, such as R–Zh, R–(Zh, ZDR), etc. One of
the biggest advantages of machine learning algorithms is the applicability to a non-linear relationship
between a dependent variable and independent variables without any predefined relationships. We
explored the potential use of two supervised machine learning methods (regression tree and random
forest) in rainfall estimation using dual-polarization radar variables. The regression tree does not
require normalization and scaling of data; however, this method is quite unstable since each split
depends on the parent split. Since the random forest is an ensemble method of regression trees, it has
less variability in prediction compared with regression trees, but consumes more computer resources.
We considered several different configurations for machine learning algorithms with different sets of
dependent and independent variables. The random forest model was appropriately tuned. In the test
of variable importance, the specific differential phase (differential reflectivity) was the most important
variable to predict the rainfall rate (residual that is the difference between the true rainfall rate and
the one estimated from the R–Z relationship). The models were evaluated by 10-fold cross-validation.
The best model was the random forest model using a residual with the non-classified training set.
The results indicated that the machine learning algorithms outperformed the traditional R–Z relation-
ship. Then, we applied the best machine learning model to an S-band dual-polarization radar (Mt.
Myeonbong) and validated the result with ground rain gauges. The results of the application to radar
data showed that the estimates of the residuals had spatial variability. The stratiform and weak rain
areas had positive residuals while convective areas had negative residuals, indicating that the spatial
error structure driven by the R–Z relationship was well captured by the model. The rainfall rates of
all pixels over the study area were adjusted with the estimated residuals. The rainfall rates adjusted
by residual showed excellent agreement with the rain gauge, especially at high rainfall rates.

Keywords: machine learning; rainfall estimation; polarimetric radar; R–Z relationship

1. Introduction

Quantitative precipitation estimates (QPE) are a major area of interest within the
field of dual-polarization radar. With the advent of polarimetric radar, QPE algorithms
using dual-polarization radar variables have been developed in recent decades [1–5]. The
dual-polarization radar observes the differential reflectivity (ZDR, dB), specific differential
phase (KDP, ◦ km−1), and cross coefficient (ρHV), as well as the reflectivity (Z, mm6 m−3 or
dBZ). Polarimetric variables help to overcome several issues in QPE, such as miscalibration
of the radar transmitter or receiver, attenuation in precipitation, and partial beam blockage.
The use of these polarimetric variables can provide improved QPE [6]. In addition, since
various microphysical information, such as the shape, size, and number concentration of
raindrops, is provided using the horizontal and vertical polarization information, QPE
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using dual-polarization variables provides higher accuracy than using the reflectivity factor
in horizontal polarization [7–9].

A simple form of radar-based QPE can be performed by an empirical relation between
Z and the rainfall rate (R). Marshall and Parmer [10] introduced the R–Z relationship
(Z = 200 R1.6), which explains the empirical relationship between Z and R; however, the R–Z
relationship is sensitive to the variability of the drop size distribution (DSD, N(D) in m−3

mm−1), which causes the uncertainty of the QPE using the R–Z relationship [11,12]. To deal
with the uncertainty in the R–Z relationship, rainfall estimation based on dual-polarization
radar variables that provide various information on raindrops was proposed [13–15].

ZDR is a good measurement of the median volume diameter, and KDP is linearly
related to the rainfall rate as it has a lower moment than Z. As a result, rainfall estimation
using these variables is more robust with respect to the variability of N(D) [13,16]. It is
possible to significantly improve the over/underestimation in rainfall estimation using
the R–Z relationship in a strong rainfall rate of 10 mm h−1 or more [17]. These empirical
relationships have limitations in explaining the complex nonlinearity between R and radar
variables, which leads to errors in rainfall estimation.

Recently, researchers have shown an increased interest in QPE based on machine
learning using remote sensing data [18–20]. Machine learning (ML) methods, such as deci-
sion tree (DT), random forest (RF), and artificial neural networks (ANNs), are techniques
for discovering the relationship between independent variables and a dependent variable
based on sample data without any preliminary assumptions, including linearity. DT is
divided into classification tree (CT) for a discrete dependent variable and regression tree
(RT) for a continuous dependent variable [21]. DT can take into account interactions and
nonlinearity between variables.

RF is an ensemble method that consists of a number of DTs and shows more accurate
prediction performance than a single DT [22]. RF can reduce the variance by lowering the
correlation between DTs with randomly selected independent variables. RF can be fitted
in parallel, as several DTs are independently generated. Ouallouche et al. [20] performed
rainfall estimation based on RF using data retrieved from the satellite, such as the cloud
top height, cloud top temperature, cloud phase, and textural features.

As a result, the rain rates estimated by RF greatly agreed with those measured by rain
gauges. Kusiak et al. [23] applied five data-mining approaches, including RF and DT, to
estimate the rainfall using rain gauge data and Z measured from the Doppler WSR-88D
radar of the National Weather Service’s Next-Generation Radar (NEXRAD) system. They
compared the statistics over the methods, but did not compare them with the empirical
relationships. The neural network model showed good performance with the lowest mean
absolute error (MAE), and the results were lower in order of support vector machine (0.19),
k-nearest neighbor (0.22), CT and RT (0.26), and RF (0.27).

ANNs are ML algorithms that have been inspired by the human neuron-synaptic
neural network structure. ANNs are actively applied to atmospheric remote sensing data,
as this is effective in extracting characteristics and trends of complex data structures and
is suitable for modeling non-linear relationships [24]. Chiang et al. [25] estimated rainfall
with a recurrent neural network (RNN) using Z measured from the C-band radar for
typhoon periods. The RNN produced better hourly rainfall estimates than those from R–Z
relationships in terms of the root mean square error (RMSE).

As a result of the comparison of 48-h rainfall accumulations, the rainfall estimates ob-
tained from the R–Z relationship were underestimated with a relative bias larger than –45%,
while those from the RNN had a relative bias within ±5%. Chen et al. [26] proposed a deep
neural network (DNN) approach in rainfall estimation using simulated dual-polarization
radar variables based on the N(D) measured from disdrometers. The rainfall rates based
on the DNNs model were almost consistent with the rainfall rates computed directly from
the N(D).

They compared the hourly rainfall estimates based on the proposed algorithm using
Colorado State University-Chicago Illinois (CSU-CHILL) radar data with 11 rain gauges
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and showed excellent agreement between the estimates and the measurements from the
gauges. Although ANNs have been popularly used in a variety of applications due to
the advantage of describing nonlinearity between variables, the main shortcoming we
encounter with these methods is the black box problem, which makes interpretation
of the process difficult. For instance, these methods provide little insight into how the
independent variables influence the learning and prediction processes. On the other hand,
tree-based ML methods (DT and RF) provide ease of interpretation with determination of
the variable importance.

Little research has been done on ML-based rainfall estimation using dual-polarization
radar. Using the dual-polarization variables allows us to incorporate microphysics infor-
mation, such as the shape and the number concentration of raindrops into the rainfall
estimation. The objective of this study is to improve the accuracy of rainfall estimation
based on polarimetric radar parameters using machine learning methods—specifically,
tree-based methods (DT and RF).

We used observed drop size distributions, N(D), measured using a two-dimensional
video disdrometer (2DVD) to simulate rainfall intensity and radar variables. The ML mod-
els were trained with these simulated R and radar variables and cross-validated to check
the degree of fitting. The best ML model was independently applied into Mt. Myeonbong
(MYN) S-band dual-polarization radar data for rainfall estimation. The estimated rainfall
rate was verified using the rain gauge data of automatic weather stations (AWSs) within
the radar observation range.

2. Data
2.1. Training Dataset: 2DVD Data

In this study, 2DVD data were used to train ML models. The 2DVD is an optical
instrument that detects precipitation particles and uses two orthogonal cameras to detect
the shadow of particles falling into the observation area. Microphysics information, such
as the diameter of particles (D, mm), fall velocity (Vf, m s−1), and the axis ratios can be
obtained by measuring the shadow of precipitation particles [27]. This information can be
contaminated by observing particles that fall into the observation area after being hit by a
disdrometer and broken, or by the mismatching of particles in the image processing.

These outliers are removed by comparison with the empirical relationship between
D and Vf [28]. In addition, an N(D) that has one or more channels with a zero number
concentration is considered as discontinuous N(D) and eliminated [29]. A total of 41
diameter channels of N(D) from 0 mm to 10.25 mm at 0.25 intervals were used. A 1-min rain
rate (R, mm h−1) was calculated from quality-controlled 1-min N(D) using Equation (1):

R2DVD =
π

6

∫ Dmax

0
N(D) Vf (D) D3 dD (1)

where dD is the diameter interval at each diameter bin.
Table 1 shows the observation locations, observation periods, the number of 1-min N(D),

and the maximum 1-min rain rate from the 2DVD data. The total number of training data
was 51,302, measured in Oklahoma (OKL, USA), Daegu (DAE, ROK), Boseong (BOS, ROK),
and Jincheon (JIN, ROK) to secure the diversity of microphysical processes. We used data
observed in spring (April 2019) and autumn (October 2018) as well as summer data (May to
September) for seasonal variety. The 2DVD data in Oklahoma were obtained by the National
Severe Storms Laboratory (NSSL), National Oceanic and Atmospheric Administration
(NOAA), and the data in Jincheon were provided by the Weather Radar Center (WRC),
Korea Meteorological Administration (KMA). The other data were collected by the Center
for Atmospheric REmote sensing (CARE), Kyungpook National University (KNU).
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Table 1. The two-dimensional video disdrometer (2DVD) data used in this study.

Area Period [Year] Number of
1-min Data

Median of 1-min
Rain Rate [mm h−1]

Median of 1-min
Reflectivity [dBZ]

Maximum of
1-min Rain Rate

[mm h−1]

Maximum of
1-min Reflectivity

[dBZ]

Oklahoma,
USA (OKL)

1996–2006
(May to September) 7944 1.78 27.72 133.39 54.88

Daegu (DAE) 2011–2012
(May to September) 7516 1.36 25.09 99.24 52.50

Boseong (BOS)

2013–2015, 2018
(May to September) 12,083

0.99 22.92 93.39 53.95
2018

(October) 713

Jincheon (JIN)

2013–2015, 2018
(May to September) 22,731

1.06 23.55 76.46 54.112018
(October) 315

2019
(April) 545

Total 51,302 -

We discarded the time if the radar reflectivity was greater than 55 dBZ in order to
exclude hail particles in the analysis [6]. We also removed the time if the rainfall rate
was less than 0.1 mm h−1 because the disdrometer typically underestimates the rainfall
rate when small drops (diameter < 0.7 mm) are dominant [30]. The maximum rainfall
rate was larger in OKL than the sites in ROK. The median rainfall rate (radar reflectivity)
varied from 0.99 mm h−1 (22.92 dBZ) to 1.78 mm h−1 (27.72 dBZ). Table 1 shows the clearly
different statistical characteristics of rainfall in different climates (OKL vs. ROK, different
regions in ROK) [29]. Unlike the maximum rainfall rate, the maximum reflectivity showed
less discrepancy. These characteristics certainly have impact on the ML models and will be
discussed later.

Dual-polarization radar variables are obtained by T-matrix scattering simulation [31],
and 5-min time average values of Zh, ZDR, and KDP were additionally used to consider
the movement of the precipitation system (Zh 5min, ZDR 5min, and KDP 5min). The T-matrix
method used to calculate the polarimetric radar variables is one of the most widely used
tools for computing light scattering by non-spherical particles based on directly solving
Maxwell’s equations. This approach can simulate theoretical radar measurements for
homogeneous and rotationally symmetric non-spherical particles. Backward scattered
fields yield ZH, ZDR, and ρHV, while forward scattered fields produce KDP [17]. The control
conditions and the values used in this study are shown in Table 2. The radar wavelength
was 11.01 cm (S-band), and the elevation angle of the radar was set at 0◦. The raindrop
shape formula suggested by Thurai et al. [32] was used.

Table 2. The control conditions and their corresponding values used in the T-matrix scattering simulation.

Characteristics Values

Radar wavelength 11.01 cm (S-band)
Radar elevation angle 0◦

Environment temperature 23 ◦C
Drop shape formula Taken from Thurai et al. (2007)

2.2. Operational MYN S-Band Dual-Polarization Radar Data

The weather radar used in this study was the MYN S-band dual-polarization radar
operated by the Korea Meteorological Administration (KMA). Table 3 shows the detailed
specifications of the MYN radar. A volume scan of nine elevation angles (0◦, 0.39◦, 0.83◦,
2◦, 2.88◦, 4.06◦, 5.67◦, 7.88◦, and 10.94◦) was performed every 10 min with a beam width of
0.92◦. The measured parameters were ZH, ZDR, KDP, ρHV, etc. ZH and ZDR were calibrated
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through post-processing. The averaged ZH calibration bias was calculated by the self-
consistency principle of ZH and KDP, and the averaged ZDR calibration bias was conducted
by comparing the ZDR and ZH radar measurements with the theoretical relationship
between the same parameters simulated by the 2DVD [33,34]. The averaged calibration
bias of ZH was −5.0 dBZ, and the averaged calibration bias of ZDR was 0.03 dB.

Table 3. Specifications of the Mt. Myeongbong (MYN) S-band dual-polarization radar.

Parameter Value

Frequency
(wavelength)

2272 MHZ
(10 cm, S-band)

Location 36◦10’45”N, 128◦59’50”E
Height 1136 m

Beam width 0.92◦

Elevation angles 0◦, 0.39◦, 0.83◦, 2◦, 2.88◦, 4.06◦, 5.67◦, 7.88◦, and 10.94◦

Maximum range 285 km

Rain gauge data from a total of 192 rain gauges in KMA AWSs within the MYN
radar observation range (150 km) were used to verify the radar QPE (Figure 1). Each
AWS was equipped with two sizes of tipping-bucket rain gauge, 0.1 and 0.5 mm, which
measure the 1-min R. In this study, the 10-min average rain rate was used to match the
time resolution with the radar data observed at 10-min intervals, and missing values were
excluded when calculating the 10-min average rain rate. We analyzed six rainfall cases for
QPE and verification. The rainfall events included stratiform rain (Cases 1, 2, 3, and 6) and
convective rain (Cases 4 and 5) from 2017 to 2018 (Table 4).
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Figure 1. The locations of 192 automatic weather stations (dots) within the radar observation range
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Table 4. List of precipitation period and rain types of rainfall events.

Case No. Period (LST) Rain Type

1 0000–1200 14 August 2017 Stratiform
2 0200–1100 11 September 2017 Stratiform
3 0200–0700 1 July 2018 Stratiform
4 1700 27 August–0600 28 August 2018 Convective
5 1000–1600 3 September 2018 Convective
6 0500–1000 7 September 2018 Stratiform

3. Methods
3.1. Machine Learning

In this study, RT and RF were used for rainfall estimation. Figure 2 shows a schematic
diagram of the RT. We defined N to be the number of RTs, and M to be the number of
independent variables. A node was divided into sub-nodes with the lowest variance [21].
A recursive binary partition was conducted for each node until a stop condition was met.
The most important independent variable was placed at the top of the tree as a root node.
The node divided from the root node is called the intermediate node, and the node that
reaches the last is called the terminal node.
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Figure 2. Schematic diagram of the regression tree. Xi is an independent variable, and ci denotes an
optimal splitting criterion value for the corresponding independent variables. The Yj denotes the
average value of the data belonging to the jth terminal node.

The RF was based on N RTs with N bootstrap samples (see Figure 3). The bootstrap
samples were generated by sampling with replacement. Each RT was grown with the split-
ting rules using the different independent variables selected randomly. The final prediction
was given by the average of the predictions from all RTs. In the RF, the importance of inde-
pendent variables was measured through the increase of the node purity. The independent
variable with the highest increase of node purity played a major role in the prediction.

RF can be optimized by tuning two parameters when generating RTs. One is the
number of RTs (ntree = N), and the other is the number of independent variables that are
randomly sampled (mtry < M). Liaw and Wiener [35] suggested that ntree was 500, and mtry

was
√

M for classification, as opposed to a third of M for regression. Kühnlein et al. [19]
compared out-of-bag (OOB) errors by changing the ntree and mtry to improve the pre-
dictability of RF, which was used to select important independent variables and to compute
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the error of the unbiased estimate [22]. To determine the optimal values with the lowest
OOB error in this study, we considered the range of values for each tuning parameter, from
400 to 700 for ntree and from 1 to the number of independent variables for mtry. The optimal
ntree and mtry were applied to each model.
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3.2. Rainfall Estimation
3.2.1. R–Z Relationship

For validation of the ML models used in this study, we derived the empirical rain-
fall estimation relationships based on dual-polarization radar variables. Several R–Z
relationships were considered with different thresholds of KDP and ZDR. The R–Z re-
lationship calculated using all training data is shown as Equation (2), and Equation (3)
was retrieved with the data below the threshold of KDP and ZDR (KDP < 0.04◦ km−1 and
ZDR < 0.3 dB). Equation (4) was constructed with the data above the thresholds of KDP and
ZDR (KDP ≥ 0.04◦ km−1 or ZDR ≥ 0.3 dB). The equations are assumed to have a power-law
(Y = aXb), and the parameters a and b were estimated using the weighted total least squares
method [36].

R(Zh) = 0.030 Zh
0.667 (Zh = 197 R1.50) (2)

R(Zh) = 0.017 Zh
0.806 (Zh = 151 R1.24) when KDP < 0.04◦ km−1 and ZDR < 0.3 dB (3)

R(Zh) = 0.012 Zh
0.769 (Zh = 318 R1.30) when KDP ≥ 0.04◦ km−1 or ZDR ≥ 0.3 dB (4)

R(KDP) = 42.6 KDP
0.720 (5)

R(Zh, ZDR) = 0.003 Zh
0.913 ZDR

-0.647 (6)

3.2.2. ML-Based Estimation

The 2DVD data above the thresholds of KDP and ZDR (KDP ≥ 0.04◦ km−1 or ZDR ≥ 0.3 dB)
were used as training data. The dual-polarization radar parameters simulated by the
T-matrix and the 5-min time average values of parameters were used as the independent
variables. In this study, we investigated the impacts of three factors on the estimation
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accuracy. First, three types of dependent variable are considered: R2DVD calculated by N(D)
(M1), the residual, ε = R(Zh) − R2DVD, between R2DVD and R—which was computed
from Equation (4) (M2)—and the normalized residual, ε = ε/R(Zh), (M3).

Second, two different groups of the independent variables were used, and the dif-
ference between the two groups included KDP. We denote the two groups by KY for the
group with KDP and KN for the group without KDP. Lastly, data binning was implemented
to group individual observations into specific bins determined by reflectivity (Table 5),
allowing us to train the models locally. The local training with the binned training data
and global training with the entire training data are denoted by CY and CN, respectively.
In the local training (CY) with RF, ntree and mtry with the lowest OBB error for each model
were utilized.

Table 5. The reflectivity (ZH) interval and the number of training data.

Class No. Interval [dBZ] Number of Observations

1 0 ≤ ZH < 20 599
2 20 ≤ ZH < 30 11,023
3 30 ≤ ZH < 40 9369
4 40 ≤ ZH 1639

KDP and ZDR provide more accurate rainfall estimation than R(Zh) for heavier rainfall,
whereas the improvement is not often significant for lighter rainfall due to the noises of
KDP and ZDR [13,37–39]. Silvestro et al. [40] proposed a rainfall estimation algorithm that
makes use of the best empirical relationships depending on the thresholds of KDP and ZDR,
which outperformed R(Zh) for real-time applications. In this study, the rainfall estimation
based on this algorithm with different thresholds of KDP and ZDR was performed, which is
shown in Figure 4. When KDP was greater than 0.04◦ km−1, KY was utilized for rainfall
estimation, KN was used if KDP was less than 0.04◦ km−1, and ZDR was 0.3 dB or more.
The rainfall was estimated by the R–Z relationship (Equation (3)) when both KDP and ZDR
were less than the thresholds. The models used in this study are summarized in Table 6.
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Table 6. Summary of the models used in this study.

Independent Variables Training Set Dependent Variables

Rain rate
(R2DVD)

(M1)

Residual
(ε = R(Zh) − R2DVD)

(M2)

Normalized residual
(ε = ε/R(Zh))

(M3)

Zh, ZDR, KDP, ρHV, Zh 5min,
ZDR 5min, KDP 5min

(KY)

Not classified training set
(CN) M1KYCN M2KYCN M3KYCN

Classified by
reflectivity interval

(CY)
M1KYCY M2KYCY M3KYCY
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Table 6. Cont.

Independent Variables Training Set Dependent Variables

Zh, ZDR, ρHV, Zh 5min,
ZDR 5min

(KN)

Not classified training set
(CN) M1KNCN M2KNCN M3KNCN

Classified by
reflectivity interval

(CY)
M1KNCY M2KNCY M3KNCY

3.2.3. Validation

The trained models were verified by 10-fold cross-validation. Six statistics were
used to assess the performance of the ML models: The root mean square error (RMSE),
mean absolute error (MAE), bias, correlation coefficient (CORR), coefficient of efficiency
(COE) [41], and normalized error (1-NE),

RMSE =

√√√√ 1
N

N

∑
i=1

(Resti − Robsi)
2 (7)

MAE =
1
N

N

∑
i=1

∣∣Resti − Robsi

∣∣ (8)

Bias =
1
N

N

∑
i=1

(
Resti

Robsi

) (9)

CORR =
∑N

i=1(Resti − Rest)(Robsi
− Robs)√

∑N
i=1 (Resti − Rest)

2
∑N

i=1 (Robsi
− Robs)

2
(10)

COE = 1− ∑N
i=1
(

Robsi
− Resti

)2

∑N
i=1
(

Robsi
− Robs

)2 (11)

1− NE = 1−

(
1
N ∑N

i=1
∣∣Resti − Robsi

∣∣)
Robs

(12)

where N is the number of observations in test data, Rest represents the estimated rainfall
rate, and Robs is the observed rainfall rate.

3.3. Application to Operational Radar Data

The ML model with the highest accuracy in the 10-fold cross-validation using 2DVD
was applied to the rainfall estimation using the operational dual-polarization radar data.
The operational radar data used were conducted using the Hybrid Surface Rainfall method
(HSR) of the MYN S-band dual-polarization radar data. The HSR is a technique of gen-
erating a rainfall field using the data of the lowest elevation angle that is not affected by
ground clutter, beam blockage, and non-meteorological echoes. It is applied to the radar
data in polar coordinates, and we selected the rain field using the threshold and calibrated
for the radar bias (ZH and ZDR).

When determining the rain field, that is, eliminating non-meteorological echoes or re-
moving artifacts, the threshold values of the following texture were used as follows [42,43]:
0.95 for ρHV, 0.1 for δ(ρHV), 4.0 dB for δ(ZH), 4.0 dB for δ(ZDR), and 15.0◦ for δ(ΦDP). Here,
δ(x) is the radial texture of variable x with a window size of 10. The HSR data at polar
coordinates are converted to Cartesian coordinates [42].

The ML-based rainfall estimation was performed for each grid point in the Cartesian
coordinates. Similar to the training data, the 5 × 5 km spatial average of Zh, ZDR, and KDP
were considered as the independent variables by taking into account the movement of the
precipitation system. The estimated rainfall rate was verified by the rain gauges in the
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AWSs within the radar observation range (150 km). The rainfall rate estimated from the
radar grid point closest to the AWS was compared with the average rainfall rate measured
by the rain gauges.

4. Results
4.1. Rainfall Estimation from Simulated Dual-Polarization Variables

Figure 5 shows the fitted tree models for M1KYCN and M1KNCN (with and without
KDP). See Table 6 for the symbols such as M1, KY, CN, etc. We found that KDP plays an
important role in rainfall estimation with M1KYCN because it is used as a splitting criterion
at the root node. On the other hand, KDP is not shown in the tree based on M1KNCN,
while Zh is the most crucial for the model.
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The increase of node purity in RF for CN is shown in Table 7. To account for potential
overfitting in the random forest, we optimized the tuning parameters, the number of RT
(ntree), and the number of independent variables randomly sampled (mtry). The values
were expressed according to the inclusion of KDP for each model. For M1KY, the node
purity rose the most (713,059) when KDP was used as the criterion for split. Then, in the
order of Zh (426,349) KDP 5min (311,490), and Zh 5min (147,971), the increase of node purity
was higher. In the case of M1KN, the node purity increased the most when the node was
divided by Zh. This indicates that Zh played the most major role in the estimation of the
rainfall rate.

Table 7. Increase of the node purity in RFs for CN. The highest increases of node purity are high-
lighted in bold.

M1 M2 M3

KY

Zh 426,349 75,422 2734
ZDR 36,434 207,260 7153
KDP 713,053 29,997 1019
ρHV 3883 22,859 641

Zh 5min 147,971 19,286 635
ZDR 5min 36,618 87,982 2993
KDP 5min 311,490 11,326 385

KN

Zh 832,321 101,335 3347
ZDR 106,485 200,627 6948
ρHV 10,998 22,430 712

Zh 5min 565,867 32,965 1192
ZDR 5min 147,220 97,432 3308
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Unlike M1KY, the increase in the node purity of ZDR was the highest in the M2KY.
This indicates that the errors, which cannot be explained by the R–Z relationship, were
most closely related to ZDR. The second most important variable in M2KY is ZDR 5min.
Similar to KY, ZDR was the most important variable in M2KN, and the importance was the
highest in the order of Zh and ZDR 5min. The tendency of increasing node purity of M3 was
similar to that of M2 regardless of whether KDP was included or not. As expected, ρHV was
mostly shown to be less important, as it has a very small fluctuation in rainfall cases.

Table 8 presents the increase in the node purity of CY. In M1KY, KDP is shown as the
most important variable in all reflectivity intervals as in CN (Table 6), and Zh is indicated
as the second most important variable. Similar to CN, M2KY and M2KN always show ZDR
as the most important variable. The result of M3 is omitted since it appears with the same
tendency as that of M2.

Table 8. Increase of the node purity in RFs for CY. The highest increases of node purity are highlighted in bold.

M1 M2

0≤ZH<20 20≤ZH<30 30≤ZH<40 40≤ZH 0≤ZH<20 20≤ZH<30 30≤ZH<40 40≤ZH

KY

Zh 0.803 1351 21,850 97,115 0.080 103 3064 51,941
ZDR 0.240 357 10,560 24,184 0.355 484 16,522 166,202
KDP 1.197 1861 35,962 255,737 0.112 155 4303 17,446
ρHV 0.041 30 2625 2413 0.035 62 4856 26,171

Zh 5min 0.202 579 7727 29,802 0.081 77 1225 8406
ZDR 5min 0.192 265 8624 15,266 0.194 257 11,103 58,468
KDP 5min 0.273 875 15,248 88,529 0.089 130 2167 6925

KN

Zh 1.771 2987 51,455 261,552 0.107 224 62,096 62,096
ZDR 0.363 490 15,227 46,510 0.418 545 153,789 153,789
ρHV 0.0616 34 3188 9538 0.051 55 33,457 33,457

Zh 5min 0.443 1443 20,805 148,684 0.130 181 14,208 14,208
ZDR 5min 0.296 350 11,760 43,250 0.230 261 67,743 67,743

The scatterplots of the 10-fold cross-validation for the RT are displayed in Figure 6.
The discontinuity of the estimated value is a prominent problem of RT. For the weak R2DVD
(R2DVD < 20 mm h−1), there is a continuity of data because rainfall is often estimated
using the R–Z relationship when the R2DVD is weak and the ZDR and KDP are small. In
M1CY (Figure 6b), since the training data are divided by the reflectivity interval, the
discontinuity problem is rectified, and the 1-NE value increased 7.08% compared to M1CN.
M2 (Figure 6c,d) and M3 (Figure 6e,f) demonstrate similar results and showed a more
continuous value than M1, with a higher positive CORR value (CORR > 0.98). Additionally,
CY appears lower in the RMSE, MAE, and bias values compared with those of CN, and the
CORR, COE, and 1-NE values are higher.

Figure 7 presents the results of the 10-fold cross-validation of RF. Overall, RF-based
models show improved accuracy compared to the RT-based models in Figure 6. In M1CN
(Figure 7a), the CORR value and the COE value are higher than 0.98, even though it pre-
sented the worst statistics among the RF models. Compared to M1CN, the underestimation
in the strong R2DVD (R2DVD > 80 mm h−1) was corrected in M2CN and M3CN (Figure 7c,e),
and the RMSE reduced by 4.93%. The RMSE, MAE, and bias decreased in M1CY (Figure 7b)
compared with in M1CN, whereas the RMSE, MAE, and bias increased in M2CY and M3CY
(Figure 7d,f).

M2CN outperformed the other models with an RMSE value of 0.598, MAE value
of 0.255, CORR value of 0.995, and 1-NE value of 90.99%. The M3CN shows a similar
performance with M2CN. There was no significant improvement between CN (left panels)
and CY (right panels). Therefore, the ensemble effect by CY was less affected in the RF-
based models compared with in the RT-based model. This is because RF itself is based on
the ensemble. The interesting thing is that CN in RF even showed a slightly better score
than CY. This could be explained by the fact that CN uses more training data and is free
from possible local features in CY.
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The scatterplots of R estimated by the empirical R–Z relationship are shown in Figure 8.
The rainfall rate estimated by R(Zh) calculated from the entire training data (Figure 8a)
presents a large dispersion overall and a tendency to underestimate at a rainfall rate of
60 mm h−1 or higher. When the rainfall rate was estimated based on Equations (3) and (4)
according to the threshold of KDP and ZDR (Figure 8b), the RMSE and MAE increased
compared to the case of using one R(Zh) due to overestimating at 40–100 mm h−1; however,
the underestimation of the high rainfall rate (R > 100 mm h−1) was resolved.
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Estimation using KDP (Figure 8c) had the lowest RMSE value (1.509) and the highest
CORR value (0.974) and COE value (0.939) among the estimations using empirical relation-
ships; however, there was still underestimation overall. On the other hand, in the case of
the relationship using Zh and ZDR (Figure 8d), the highest 1-NE value (85.24%) and the
lowest MAE value (0.418) are presented, but most of the R2DVD values were overestimated.
Among the ML models, the model that showed the lowest performance was M1CN-RT,
with an RMSE value of 1.700 and CORR value of 0.961 (see Figure 6). This indicates that all
ML-based models outperformed these empirical relationship-based approaches.
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4.2. Rainfall Estimation from Operational Radar

In the results of the 10-fold cross-validation of the ML models, the M2CN-RF and
M3CN-RF showed the best and similar performance in terms of the RMSE and CORR. In
this section, we chose M2CN-RF for rainfall estimation with MYN S-band dual-polarization
radar data. The HSR images of the rainfall rate of Case 1 and Case 2 are displayed
in Figures 9 and 10. R(Zh) was estimated by Equation (3) when KDP and ZDR were be-
low the threshold value and by Equation (4) when they were above the threshold value
(Figures 9a and 10a).

The M2CN-RF (Figures 9c and 10c) adjusted the rainfall rate from R(Zh) by applying
the residuals. In the HSR rainfall image, the gray region (ε = 0) in Figures 9c and 10c
correspond to the area in which R(Zh) was replaced due to the threshold values of KDP and
ZDR. A positive ε value indicates that R(Zh) was overestimated, while a negative ε value
indicates that R(Zh) was underestimated. For reference, the HSR of the radar observed
variables is shown in Figures 9d–f and 10d–f.

In Case 1 (1000 LST on 14 August 2017), which is a stratiform case, the area of ε = 0 is
wider due to lower values of KDP and ZDR. Although the R(Zh) field is highly correlated
with the Zh field, the ε field is less correlated with the Zh field. The large (smaller) value of
ZDR is related to the larger positive (negative) ε. The ε is less correlated with KDP in this
stratiform case since most of the KDP value is smaller. In Case 2 (0730 LST on 11 September
2017), which is a stratiform rain event with embedded convection, the area of ε = 0 is
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smaller than that in Case 1. Similar to Case 1, the positive ε area is highly correlated with
the higher value of ZDR. Interestingly, the region of higher KDP with Zh > 50 dBZ in the
south direction had the largest negative values of ε.

1 
 

 

  
Figure 9. Hybrid Surface Rainfall method (HSR) images of the (a) estimated rain rate by Z–R relationship (R(Zh)),
(b) adjusted rain rate (R(Zh)−εRF), (c) estimated residual by RF (εRF), (d) ZH, (e) ZDR, and (f) KDP at Case 1 (1000 LST on 14
August 2017).

 

2 

 Figure 10. HSR images of the (a) estimated rain rate by Z–R relationship (R(Zh)), (b) adjusted rain rate (R(Zh)−εRF),
(c) estimated residual by RF (εRF), (d) ZH, (e) ZDR, and (f) KDP at Case 2 (0730 LST on 11 September 2017).
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In both cases, it can be seen that ε appeared in space with significant structure,
indicating that the error generated from the R–Z relationship had a spatial structure. This
result is not surprising because inhomogeneous microphysical processes cause the natural
spatial DSD variation and result to the spatial structure of residual from R(Z) [11,12]. The
ML model (M2CN-RF) uses the simulated dual-polarization variables, which do not have
instrumental noises of the radar, such as sampling error, beam broadening, beam blockage,
and miscalibration of the radar [12].

As a result, we can expect the spatial structure of residual will be masked if the order
of the magnitude of instrumental noises is comparable to that of natural variation of DSDs.
The random variability of instrumental noise can be reduced by averaging the samples.
Since the M2CN-RF is an ensemble-based model, the spatial structure of residual can be
clearer as the instrumental noises are diminished by averaging the prediction of each RT.

Figures 11 and 12 show the verification of the period average rainfall rate (12 h for
Case 1, and 11 h for Case 2) for estimation with the empirical relationships and ML. In
Case 1, the RMSE value of ML (R(Zh)− εRF) is 1.207 and the CORR is 0.773 (Figure 11a),
which shows improved performance compared to those estimated by the empirical re-
lationships. When calculated by Equation (2) (Figure 11b), there is a tendency to under-
estimate when R > 5 mm h−1. This underestimation is slightly improved by applying
Equations (3) and (4) based on the threshold values of KDP and ZDR, and the CORR value
increases (Figure 11c).

Figure 11. Scatter plots of (a) R(Zh)−εRF, (b) R(Zh), (c) adjusted R(Zh), (d) R(KDP), and (e) R(Zh, ZDR) for Case 1 (14 August
2017). RAWS is the rainfall rate from the ground rain gauge. Values in the parentheses (in (a)) represent the improvement
percentages from the best performance of the empirical relationship.



Remote Sens. 2021, 13, 694 17 of 21

Figure 12. Scatter plots of (a) R(Zh)−εRF, (b) R(Zh), (c) adjusted R(Zh), (d) R(KDP), and (e) R(Zh, ZDR) for Case 2 (11
September 2017). Values in parentheses (in (a)) represent the improvement percentage from the best performance of the
empirical relationship.

Underestimation still appears with the heavier rainfall rate. This underestimation of
the rainfall rate estimated by R(Zh) is improved by ML in Figure 11a, adjusting the rainfall
rate with εRF. The estimation based on Equation (5) results in substantial underestimation
with a low CORR value and the worst performance (Figure 11d). The results estimated by
Equation (6) show a severe overestimation of strong RAWS (RAWS > 5 mm h−1) (Figure 11e).

In Case 2, a similar trend as seen in Case 1 appears. R(Zh)− εRF also outperforms the
empirical relationships in all statistics. The underestimations of R(Zh) that appear in RAWS
stronger than 15 mm h−1 (Figure 12b,c) are corrected by εRF (Figure 12a), leading to the
decreases of RMSE from 2.59 and 1.89 to 1.74, respectively. Analogous to Case 1, Figure 12d
presents an overall underestimation, and the RMSE value also shows the largest value.
R(Zh, ZDR) overestimated the strong rainfall rate (RAWS > 25 mm h−1) (Figure 12e).

A total of six rainfall events from 2017 to 2018 were used to verify the five different
models (Figure 13 and Table 9). The scatter plots of the event averaged rainfall rate are dis-
played, and the same color indicates the same event (Figure 6). The statistics are shown for
rainfall types and models (Table 1). In general, the ML model (R(Zh) − εRF) outperformed
all the empirical relationships, with an RMSE value of 1.039, MAE value of 0.593, CORR
value of 0.959, COE value of 0.912, and 1-NE value of 75.24%. The estimation of the ML
model showed the most consistency with the one-to-one line.

On the other hand, R(KDP) tended to underestimate (Figure 13d), and R(Zh, ZDR)
overestimated in weak rain with RAWS < 17.5 mm h−1. According to the rainfall types,
R(Zh)− εRF had a higher CORR (0.956), COE (0.905), and 1-NE (77.18%) in the stratiform
rain, whereas it had a lower RMSE (0.612), MAE (0.330), and bias (1.041) in the convective
rain. The 1-NE of the stratiform (convective) rain varied from 60% (10%) to 77% (56%). The
poor performance of the convective rain was due to the smaller size of rain cells. Most of
the convective rain showed smaller areas of precipitation and short-lived cells.
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Table 9. Accuracy of the rainfall estimation with the different models for stratiform, convective,
and all cases. The highest values of statistics are highlighted in bold, and the values in parentheses
represent the improvement percentage from the best performance of the empirical relationship.
Root mean square error (RMSE), mean absolute error (MAE), bias, correlation coefficient (CORR),
coefficient of efficiency (COE) [41], and normalized error (1-NE).

Type Method RMSE MAE Bias CORR COE 1-NE [%]

Stratiform

R(Zh) − εRF
1.237
(8.37)

0.770
(8.66) 1.294 0.956

(0.52)
0.905
(2.03)

77.18
(2.88)

R(Zh) 1.676 0.843 1.190 0.936 0.825 70.79
Adjusted R(Zh) 1.350 0.985 1.210 0.951 0.887 75.02

R(KDP) 2.217 1.346 1.129 0.896 0.695 60.09
R(Zh, ZDR) 1.469 0.916 1.307 0.941 0.866 72.83

Convective

R(Zh) − εRF
0.612
(3.92)

0.330
(5.98) 1.041 0.873

(2.22)
0.731
(3.10)

55.79
(5.36)

R(Zh) 0.716 0.382 0.971 0.833 0.632 48.82
Adjusted R(Zh) 0.637 0.351 1.040 0.854 0.709 52.95

R(KDP) 1.204 0.671 1.539 0.463 −0.040 10.07
R(Zh, ZDR) 0.803 0.418 0.762 0.763 0.537 40.98

Total

R(Zh) − εRF
1.039
(8.05)

0.593
(8.63) 1.209 0.959

(0.52)
0.912
(1.90)

75.24
(3.21)

R(Zh) 1.389 0.752 1.136 0.939 0.842 68.60
Adjusted R(Zh) 1.130 0.649 1.159 0.954 0.895 72.90

R(KDP) 1.883 1.072 1.261 0.884 0.709 55.23
R(Zh, ZDR) 1.252 0.716 1.138 0.943 0.871 70.12
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5. Conclusions

The ML-based rainfall estimation using dual-polarization radar variables was explored
with simulated and observed variables. The ML methods, RT and RF, used in this study
allowed us to model the nonlinear relationship between the dependent and the independent
variables and to identify important independent variables. The ML methods were first
trained with the DSDs observed from 2DVD. In this study, we also considered three types
of dependent variables (R: M1, the residual ε = R(Zh) − R2DVD: M2, and the normalized
residual ε = ε/R(Zh): M3), two groups of independent variables (with KDP: KY and
without KDP: KN), and two types of training data (categorized with intervals of Zh: CY,
and overall data without categorization: CN).

In the CY models of RF, the number of RTs and independent variables used was
optimized. As a result of ML using DSDs from 2DVD, the KDP was identified as the most
important variable for rainfall estimation in both the M1KY-RT and M1KY-RF, while Zh
served as the most significant variable in the M1KN. This is an outcome of the fact that the
KDP can be approximated with the closest moment of DSDs to R, that is 4.2–5.6th moment
and the Zh with the sixth moment of DSDs [12,14]. In M2 and M3, ZDR was the most crucial
to explain the error (or residual) occurring in the R–Z relationships.

The ML methods were compared with the empirical relationships through 10-fold
cross-validation. In the cross-validation, R(Zh), KN, and KY were first determined with the
threshold values of KDP and ZDR due to the noises of KDP and ZDR for light rain (Figure 4),
and the other models were then subsequently applied. Since the estimation in RT took
the average of the terminal nodes, discontinuity in the estimation and underestimation
(overestimation) at the strong (weak) rainfall rate within the node was often shown; how-
ever, residual ε corrects these problems. Similarly, CY is also improved with a lower value
of RMSE. Since RF takes an ensemble of RT, the discontinuity problem in RT disappears;
however, underestimation was still found above 100 mm h−1 in the M1CN-RF. Adjusting
the rainfall rate with the estimated ε resolved the underestimation issue, and the estimation
was close to the true value.

Compared to the empirical relationships, all the ML models showed improved evalua-
tion statistics compared with the R–Z relationships. Even the worst ML model (M1CN-RT)
showed meaningful improvement of the RMSE value (1.700) compared with the R–Z
relationships (RMSE of 2.125 and 3.009). The M2CN-RF outperformed all the empirical
relationships and presented a higher CORR value and lower RMSE value. The M2CN-RF,
the model with the best performance among the ML models trained with 2DVD data, was
applied to the MYN S-band dual-polarization radar data.

In the stratiform case (Case 1), most of the ε values were zero in the weak rainfall rate
region, while the ε values were positive in the region of larger ZDR. The negative ε values
were large in the convection region, in particular, in the region of larger KDP values in
CASE 2. In addition, when estimated by the R–Z relationship, a significant underestimation
was shown in heavier rainfall regions and was corrected by ε that was estimated by the
ML models. In addition, the significant spatial structure of ε appeared and was highly
correlated with ZDR positively, and KDP negatively. The evaluation with six rainfall events
indicated that the ML model outperformed the empirical relationships regardless of the
rainfall type (i.e., stratiform or convective). The statistics according to the rainfall type
show that the ML-based QPE for stratiform cases had a higher CORR, COE, and 1-NE
compared with the convective cases.

There was a dependency of the estimation accuracy on the trained data set. When we
trained the RF model with DSD data from the DAE that was nearest to the MYN radar, the
higher rainfall rate was systematically underestimated, likely due to the limited range of
rainfall intensity. A recent study showed a significant discrepancy of DSD characteristics
due to different climate and main forcings [29]. The addition of the OKL data significantly
extended the rainfall prediction range, particularly in higher ranges, and resolved the
underestimation of higher rainfall. As a result, we added additional DSDs data from OKL,
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BOS, and JIN in the training data set to broaden the variability of DSDs. This improved the
accuracy in the overall statistics.

Through this study, we investigated the potential application of rainfall estimation
based on ML using polarimetric radar data. We envision that more accurate rainfall
estimation can be achieved by applying the RF model considering ε trained with 2DVD
data to a large number of operational radars. In particular, the ML model improved the
estimates in the heavy rain region, which were underestimated in the empirical relationship.
This approach would be useful in the analysis and forecasting of severe weather. Future
studies could include extending ML models to various radars and rainfall cases in different
weather conditions.
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