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Abstract: The water vapor content in the atmosphere can be reconstructed using the all-weather
condition troposphere tomography technique. In common troposphere tomography, the water vapor
of each voxel is represented by an unknown parameter. This means that when the desired spatial
resolution is high or study area is large, there will be a huge number of unknown parameters in the
problem that need to be solved. This defect can reduce the accuracy of troposphere tomography
results. In order to overcome this problem, an optimal voxel-based troposphere tomography using
the Weather Research and Forecasting (WRF) model is proposed. The new approach reduces the
number of unknown parameters, the number of empty voxels and the role of constraints required to
enhance the spatial resolution of tomography results in required areas. Furthermore, the effect of
considering the topography of the study area in the tomography model is examined. The obtained
water vapor is validated by radiosonde observations and Global Positioning System (GPS) positioning
results. Comparison of the results with the radiosonde observations shows that using the WRF
model outputs and topography of the area can reduce the Root Mean Square Error (RMSE) by
0.803 gr/m3. Validation using positioning shows that in wet weather conditions, the WRF model
outputs and topography reduce the RMSE of the east, north and up components by about 17.42, 10.46
and 20.03 mm, which are equivalent to 46.01%, 35.78% and 53.93%, respectively.
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1. Introduction

The accurate reconstruction of water vapor is very important for weather forecasting and other
applications, such as the early warning of weather disasters. There are many instruments all over the world
for measuring water vapor, such as meteorological sensors on in space, air and ground -based platforms,
but they all have provide low spatiotemporal resolution and have high costs [1,2]. The troposphere
tomography technique is nowadays known as one of the most powerful and accurate methods for the
three-dimensional (3D) reconstruction of water vapor. The troposphere tomography technique has been
investigated for the first time by Flores et al. (2000) and Hirahara (2000) [3,4]. Tomography is a powerful
technique for the reconstruction of atmospheric layers, especially the troposphere and the ionosphere [5].
Tropospheric tomography is generally performed using the voxel-based method. Many researchers have
tried to improve the accuracy of the results by optimizing different aspects of the voxel-based troposphere
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tomography: (1) improving the inversion process [6,7], (2) reformatting the model geometry [8–12],
(3) applying advance optimization techniques [13], (4) using the signals penetrating into the side face of
the tomography model and using the data from Global Navigation Satellites System (GNSS) observations
outside the study region [8,10,14–16]. An important overview of the benefits and deficiencies of current
tomography models could be found in [17]. Water vapor reconstruction using voxel-based troposphere
tomography is an inverse problem. According to previous articles, the most common way to solve this
problem is to use regularization methods [12]. In most of the currently used models [17] this method
uses only one unknown parameter to represent the water vapor in each voxel and cannot compute the
water vapor distribution within a voxel. Another issue related to model geometry is topography, which is
usually not present in the voxel parametrization [7]. Therefore, the number of voxels or number of
unknown parameters increases when there is a need for high spatial resolution water vapor reconstruction,
which is of interest in complex terrains. Increasing the number of unknown parameters decreases the
degree of freedom of the problem, decreases the accuracy of the results and may also increase the need to
use constraints to solve the problem.

In this paper, to overcome the complex model geometry problem, two ideas are introduced:
(1) an optimal voxel-based troposphere tomography based on the WRF model outputs, (2) precise
representation of the model topography. These new ideas can increase the spatial resolution of the
tomography results in required areas. This method also reduces the number of unknown parameters
and the number of required constraints. The proposed method was tested using a Global Positioning
System (GPS) network in North America in different weather conditions. The Global Forecast System
analysis (GFS) and ERA5 data were used as inputs to the WRF model and to perform the 3D ray
tracing technique, respectively. Finally, the obtained results were validated with the radiosonde
measurements; also, the GPS precise point positioning technique was adopted to verify the impact
of accurate troposphere tomography modelling. In the following, the basics of the voxel-based
troposphere tomography and the new method are provided (Section 2). Then, the study area and data
set are presented (Section 3). The obtained results and validation are presented in the last section.

2. The Principle of the Voxel-Based Troposphere Tomography

2.1. General Approach

The slant water vapor (SWV) is one of the most important indicators that can be used as an input
for the troposphere tomography problem and is expressed as follows [18]:

SWV =

Sat.∫
Rec.

ρ(s)ds , (1)

where s represents the path of the ray and ρ is the water vapor density (WVD). It can be estimated
using following equation [18]:

SWV =
10

Rw[(k3/Tm) + k′2]
SWD, (2)

where k′2 = 16.48 Khpa−1, k3 = 3.776× 105 K2hpa−1 and Rw = 461 JKg−1K−1 are specific gas constants,
Tm is the weighted mean tropospheric temperature and SWD is the slant wet delay of the ray. The SWD
can be estimated using [3]:

SWD = (m fwet ×ZWD) + (m fwet × cot(α) × ((GW
NS × cosϕ) + (GW

EW × sinϕ))) + R, (3)

where mfwet is the non-hydrostatic mapping function, α is the satellite elevation,ϕ is the azimuth,
R is the modeled residual and GNS

W and GEW
W are non-hydrostatic delay gradients in N-S and E-W

directions. ZWD is the zenith wet delay, which can be estimated by subtracting the zenith hydrostatic



Remote Sens. 2020, 12, 1442 3 of 14

delay (ZHD) from the zenith total delay (ZTD). ZTD and ZHD can be computed accurately using the
Global Navigation Satellites System (GNSS) processing and empirical models, respectively [19].

In the voxel-based troposphere tomography method, the tomography area is divided into a
number of voxels in which the WVD is considered as a constant during the specified period of time.
Therefore, the equation between the SWV and the WVD of Equation (1) can be discretized as follows [20]:

SWVP =
m∑
i

dP
i ρi, (4)

where m is the number of voxels in the tomography model, P is the counter of rays, dP
i is the distance

travelled by the ray P in the voxel i and ρi is the WVD in the voxel i. Equation (4) can be written in the
matrix form:

L
r×1

= A
r×m

X
m×1

, (5)

where r is the number of GNSS rays, A is the coefficient matrix and X is the vector of the unknown WVD
in each voxel. In order to form the coefficients matrix, it is necessary to calculate the distance traveled
by the rays is each voxel. In this paper, the 3D ray tracing technique based on eikonal equations
is used to calculate the distance [11,12]. The model resolution matrix is used to select the optimal
resolution and geometry for the tomography model [11]. In the troposphere tomography problem,
the coefficient matrix has a rank deficiency, for example because some voxels may not be passed by
any ray or due to large distances between stations. To overcome this problem, the most common
method is to impose constraint information. In this study, the horizontal constraint was performed
based on the assumption that the WVD in a voxel is a mean value of its horizontally near neighbors [8].
In order to form the vertical constraints, the negative exponential function is used [3]. The troposphere
tomography is a large and ill-conditioned inverse problem due to the high number of observations,
wide area of modelling, number of intersections and the unavailability of observations from the sides
of the model. Therefore, the use of regularization methods is necessary to solve the problem. In this
paper, the least-squares QR (LSQR) iterative regularization method is used [11,12].

The RMSE and Pearson product-moment correlation coefficient (PCC) have been used for statistical
analysis of the obtained results. The PCC is commonly used to measure the correlation between two
data series [21]:

PCC =

N∑
i=1

(Xi −Xi) (Yi −Yi)√
N∑

i=1
(Xi −Xi) 2

√
N∑

i=1
(Yi −Yi) 2

. (6)

2.2. Optimal Approach Based on the WRF Model and Topography of the Area

The purpose of this new idea was to increase the spatial resolution of the tomography model
in required areas in addition to reducing the number of unknown parameters. For this purpose,
a high-resolution model for the tomography problem was considered. It was clear that in this case,
due to the large number of unknown parameters, the use of a huge number of constraints was inevitable.
Therefore, in the next step, before solving the problem, neighboring voxels with small differences in
water vapor are merged to each other. Using this idea, the tomography results could be obtained with a
high spatial resolution in areas with large water vapor variations. In order to implement this approach,
the use of weather forecasting models such as WRF was inevitable. Based on the WRF model outputs
at any epoch, it could be concluded which voxels could be merged before solving the tomography
problem. In the following, the criteria for merging voxels is discussed. It was necessary to know how
much of the water vapor variations did not have a significant effect on the GPS tropospheric wet delay
and positioning results. For this aim, a sensitivity analysis was performed using meteorological data
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under different weather conditions and in different locations of the area. The ZWD could be obtained
using following formula [18]:

ZWD = 10−6

∞∫
h

(k′2
e
T
+ k3

e
T2 ) dh = 10−6

∑
i

(k′2
ei
Ti

+ k3
ei

Ti2
)∆h, (7)

where e is the water vapor pressure (hPa), T is the temperature (K), ∆h is the thickness of the vertical
layers and i is the number of layers. Based on the Equation (7), a sensitivity analysis was performed
using ERA5 data. The ZWD was computed from the surface to the height of 10 km, which is a normal
height for troposphere tomography models. An example of this analysis is visible in Figure 1. Based on
this analysis, it can be said that one unit increase in water vapor pressure in each vertical layer causes
an average increase of 12 mm in ZWD. After this step, in order to complete the sensitivity analysis,
it was necessary to evaluate the effect of ZWD offsets on the positioning. This effect was investigated
in three different positioning modes, including epoch-wise, kinematic and static. To investigate the
impacts of the ZWD offsets on the positioning solution, a simulation was set up to verify the tolerance
of the variable tropospheric delay for the positioning solution. A tightly constrained process noise was
given to the tropospheric delay parameter, since both the simulation and the following real data test
were in a normal weather condition. Figure 2 shows the 3D positioning bias due to the ZWD offsets
(∆ZWD), position dilution of precision (PDOP) and number of satellites.
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Figure 1. An example of the sensitivity analysis of the zenith wet delay (ZWD) to changes in water
vapor pressure e [hPa]. The green line shows the computed ZWD using the actual e. The blue and red
lines indicate the computed ZWD using changed e in all layers.

Based on the Figure 2, it can be said that the ZWD offset has a direct relationship with the
positioning bias. In static mode, a 10-meter offset in the tropospheric wet delay generates a bias of less
than one millimeter in position. It can be concluded that the effect of the ZWD offset on the position in
the kinematic mode is greater than in the other modes. According to the results presented in Figures 1
and 2, a 0.8-unit change in water vapor pressure, which is a value between 0.5 and 1, is considered as a
permissible limit for voxel integration. On the basis of the above mentioned, the following algorithm
can be considered for this new idea (Figure 3).

As can be seen, the number of voxels that are free of radiation will be reduced if the voxels near
the edge of the tomography model can be merged. Therefore, this method has three advantages.
First, it reduces the number of unknown parameters. Second, the spatial resolution of the tomography
results is increased in the required areas where water vapor variations are large. Third, the need to use
external constraints is reduced.

In this paper, the impact of considering the topography of the area is investigated in addition to
examining the effect of using the WRF model outputs. It is expected that the use of topography also
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reduces the number of empty voxels and required constraints and increases the accuracy of the results,
similar to applying the WRF model.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 15 
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3. Study Area and Data Set

In order to implement the new idea, a region in North America was selected (Figure 4).
Observations of 17 GPS stations located in this area under different weather conditions were used for
this study. The distribution of the GPS stations and the topography of the study area can be seen in
Figure 5. In order to obtain reliable and representative results, 10 Days of Year (DOYs) with different
weather conditions were selected.
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Figure 5. Topography of the study area and the distribution of the Global Positioning System (GPS)
stations. The blue square represents the radiosonde station and the red triangle shows the position of
the station used to evaluate the results.

In this research, the ERA5 reanalysis data published by the European Centre for Medium-Range
Weather Forecasts (ECMWF) were used to perform the 3D ray tracing technique. Previous studies have
shown that this data is very useful in a variety of fields, including geodynamics and geodesy [22,23].
The ERA5 is a climate reanalysis dataset, covering the period from 1950 to the present. The ERA5
contains most parameters available in its predecessor, ERA-Interim, and ERA5 has some additional
parameters. This model presented values of meteorological data on 37 pressure levels. The spatial
resolution of this data was about 31 km [24].

The Global Forecast System analysis (GFS) data were used to run the WRF model and predict
meteorological data. The GFS is a numerical weather forecast model presented by the National Centers
for Environmental Prediction (NCEP). Many of the atmospheric and land-soil variables are available
through this dataset. The WRF model is a useful mesoscale numerical weather prediction system that
is used for both atmospheric research and operational weather forecasting. This model is equipped
with a data assimilation system and software with a parallel processing system. The WRF model
is used in a wide range of meteorological applications in different resolutions, from tens of meters
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to thousands of kilometers. The WRF model can produce simulations based on actual atmospheric
conditions or idealized conditions [25].

The obtained results were validated using available radiosonde stations in the area. Radiosonde
measurements can present accurate WVD profiles. Therefore, the use of these data is one of the most
common approaches to evaluate the results of troposphere tomography. Radiosonde balloons are
usually launched daily at 00:00 and 12:00 UTC.

In order to comprehensively compare the results, the positioning technique was also used to
evaluate the obtained water vapor.

4. Configuration and Processing

4.1. GPS Processing

The GPS observations were processed using Bernese 5.2 software to determine the tropospheric
delay [26]. First, the cycle slip and outliers were detected using the RNXSMT program and the RINEX
(Receiver Independent Exchange) American Standard Code for Information Interchange (ASCII)
format observation files. The format was converted to the Bernese format using the RXOBV3 program.
The PRETAB and ORBGEN programs were used to create the standard orbits. The CODSPP and
MAUPRP programs were run for clock synchronization and to resolve multipath and cycle slip,
respectively. Finally, the GPSEST program was used for parameter estimation [26]. The ionosphere-free
linear combination equation and ZTD interval (1 hr) were considered for this processing. The RESRMS
program could be used to screen the post–fit residuals produced in a GPSEST run to identify outliers.

4.2. Design of Tomography Model

According to previous studies, the resolution of the tomography model should be selected based on
the resolution matrix [11,27]. The model resolution matrix is one of the characteristics of the coefficient
matrix and reflects the geometry and optimal resolution of the tomography model [11,27]. If any of the
diagonal elements of the resolution matrix are trivial, the relevant parameters will be resolved poorly.
The resolution matrix reflects the geometry and can be calculated during processing to access the optimal
resolution for the tomography model. An optimal design of the tomography model results in a resolution
matrix which is close to identity [11]. According to the resolution matrix, a horizontal resolution of
0.2 degrees was chosen for the basic tomography model (Figure 6). In this study, it was necessary to
have a high resolution at the lower part of the tomography model in order to more accurately compare
the variations. Therefore, the thickness of the vertical layers of the tomography model increases with
the height (Figure 6). To analyze the effect of the topography, the processes were done in two different
schemes. First, the tomography model was built without considering the topography of the study area.
Second, the tomography model was built considering the topography of the area (Figure 6).Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 15 
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4.3. WRF Model Configuration

According to the above mentioned, the idea of this paper was to merge voxels based on the
WRF model outputs. For this purpose, the WRF model should have been run at each epoch and
before the tomography processing. In this paper, The WRF model version 3.8 was used with a set of
parameters [28]. To run the WRF model, two nested domains (D02 and D03) were considered inside
a parent outer domain (D01). The configuration of the domains and their resolution can be seen in
Figure 7.
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The list of physics schemes used in this model can be seen in Table 1. In the domain 03, the cumulus
parameterization was turned off. In the larger domains, the Kain–Fritsch cumulus parameterization
was used [29].

Table 1. The physics schemes used in the WRF configuration.

Category Scheme Reference

Longwave radiation WRF single-moment 6 class [30]

Shortwave radiation Rapid Radiative Transfer Model [31]

Land surface Goddard [32]

Planetary boundary layer Noah-MP (multi physics) [33]

microphysics Yonsei University [34]

Figure 8 shows examples of the extracted WVD from the WRF model outputs.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 15 
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5. Results and Discussion

In order to study the effect of using the WRF model and the topography of the area, the process
was performed in four ways:

• Scheme 1: using the topography and WRF model outputs.
• Scheme 2: considering the topography of the area without using the WRF model.
• Scheme 3: by applying the WRF model without using the topography.
• Scheme 4: without the use of the topography and WRF model outputs.

Figure 9 shows the role of using the WRF model to reduce the number of unknown parameters of
the troposphere tomography problem.
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In order to validate the WVD from the four schemes, the results for the location of the radiosonde
station wee compared with the radiosonde data for the experimental period. The examples of this
comparison for four different epochs are visible in Figures 11 and 12.
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Table 2 shows the statistical parameters of the results obtained with the four troposphere
tomography schemes and radiosonde measurements over the tested period. A scatter plot was used to
better compare the obtained WVD (Figure 13).

Table 2. Statistical comparison between the obtained WVD and radiosonde data.

Scheme RMSE
(gr/m3)

Bias
(gr/m3)

Min-Diff
(gr/m3)

Max-Diff
(gr/m3) PCC

Topography–WRF 0.612 0.009 0.061 0.961 0.981

Topography–No WRF 0.971 0.014 0.082 1.378 0.972

No Topography–WRF 1.234 0.021 0.123 2.618 0.944

No Topography–No WRF 1.415 0.024 0.137 2.96 0.931Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 15 
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The statistical results in Table 2 and the slope of the fitted lines in Figure 13 show that the water
vapor obtained from the first scheme (Topography–WRF) is more consistent with the radiosonde
observations. The worst results are related to the schemes that did not consider the topography of the
area. This conclusion indicates the importance of using topography in the troposphere tomography
problem. It can also be stated that using the WRF model outputs has a significant impact on improving
the accuracy of the results. In order to compare these schemes more precisely, it is necessary to evaluate
the results in another area of the tomography model. Therefore, the precise point positioning (PPP)
technique was used for this purpose. Observations from one of the GPS stations in the tomography
area were used for this validation.

First, the position time series of this station on the considered days was extracted from the Plate
Boundary Observatory (PBO) GPS network (http://unavco.org).

The GPS tropospheric delay was computed using the obtained WVD from the four tomography
schemes. Then, the code and phase observations of this GPS station were corrected using these
four types of corrections. After this step, point positioning was performed using the PPP technique.
Previous research has proved that the difference between tropospheric delay correction methods is
more significant in wet weather conditions.

Therefore, the comparison was performed in two different weather conditions. The first category
included days with an average humidity of more than 60% and the second group included days with
an average humidity of less than 60%. Finally, the RMSE between the positions obtained using the four
tomography schemes and the position obtained from the PBO GPS network was calculated (Figure 14,
Table 3).

On days with less than 60% humidity, the difference between the RMSE computed from the first
scheme and the other schemes is significant. The difference between the RMSE of the first two schemes
in computing the up component is about 8 mm. This demonstrates the importance of using the WRF
model outputs to improve the accuracy of the tomography results. The RMSEs obtained from the third

http://unavco.org
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and fourth schemes are close to each other. The importance of using the topography of the area is also
clear in this comparison.
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Table 3. Comparison of the obtained RMSE.

RMSE in Days with Humidity
Less than 60% (mm)

RMSE in Days with Humidity
More than 60% (mm)

East North Up East North Up

Topography–WRF 12.92 10.13 14.01 20.44 18.77 17.11

Topography–No WRF 19.81 16.63 21.19 27.91 25.53 30.67

No Topography–WRF 23.84 28.14 30.15 36.45 29.48 38.65

No Topography–No WRF 29.05 21.59 31.87 37.86 29.23 37.14

On days with more than 60% humidity, the difference between the RMSE of the two first schemes
in the east, north and up components is about 8, 7 and 14 mm, respectively. Considering the accuracy
of the PPP technique, these differences are significant and cannot be ignored. The highest and lowest
differences between these two schemes are observed in the up and north components. Similar to the
previous comparison, the role of topography in improving the accuracy is remarkable.

Based on all these validations, it can be concluded that the use of the WRF model outputs to
eliminate redundant unknown parameters and to reduce the number of required constraints can
significantly increase the accuracy of the troposphere tomography results. In addition, the topography
of the area is one of the most important parameters that have a decisive role in the tomography results
and should not be ignored.

6. Conclusions

In this article, an applicable idea based on the WRF model outputs was presented to optimize the
troposphere tomography technique by merging voxels. In addition, the role and importance of using
the topography of the area to improve the accuracy of the results was investigated. In conventional
tomography, increasing the spatial resolution of the tomography model leads to an increase in the
number of the unknown parameters of the problem and an increase in the required constraints.
Based on the idea proposed in this paper, a high spatial resolution basic tomography model can be
considered, but it is necessary to integrate the neighboring voxels with small differences in water vapor.
This method can model water vapor with a higher accuracy wherever variations in this parameter are
high. It also reduces the number of unknown parameters of the troposphere tomography problem.
The WRF model outputs were used to merge the voxels before solving the tomography problem.
The voxel integration criteria were determined based on a sensitivity analysis. In this paper, in addition
to validating the ability of the new idea, the role and importance of using the topography of the
area were also evaluated. The troposphere tomography was performed in four different schemes
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and then the obtained results were evaluated using radiosonde observations and the PPP technique.
The four schemes were: Topography–WRF, Topography–No WRF, No Topography–WRF and No
Topography–No WRF. Validation using the radiosonde data showed that the first scheme method had
more power in reconstructing the WVD. Next, the PPP technique was used to evaluate the results in
another area of the tomography model in different weather conditions. The results of this evaluation
showed that considering the topography of the area and applying the WRF model outputs can lead to
more accurate results in the troposphere tomography technique.
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