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Abstract: Few studies have explored the immobilization of organic macromolecules within the
geopolymer matrix, and some have found their chemical instability in the highly alkaline geopoly-
merization media. The present work reports on the feasibility of encapsulating the potentially toxic
acridine orange (AO) dye in a metakaolin based geopolymer while maintaining its structural integrity.
The proper structural, chemical, and mechanical stabilities of the final products were ascertained
using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray
diffraction (XRD), thermogravimetric (TGA/DTG), and mechanical analyses, whereas the dye in-
tegrity and its stability inside the geopolymer were investigated by the UV-Vis analysis. In addition,
the antimicrobial activity was investigated. The FT-IR and XRD analyses confirmed the geopoly-
merization occurrence, whereas the TGA/DTG and mechanical (compressive and flexural) strength
revealed that the addition of 0.31% (AO mg/ sodium silicate L) of AO to the fresh paste did not affect
the thermal stability and the mechanical properties (above 6 MPa in flexural strength and above
20 MPa for compressive strength) of the hardened product. UV-Vis spectroscopy revealed that the
dye did not undergo chemical degradation nor was it released from the geopolymer matrix. The
results reported herein provide a useful approach for the safe removal of toxic macromolecules by
means of encapsulation within the geopolymer matrix.

Keywords: geopolymers; acridine orange; UV-Vis; FT-IR; flexural and compressive strength

1. Introduction

Metakaolin, MK (Al2Si2O7), the product of thermal dehydroxylation of kaolinite
(Al2Si2O5(OH)4), has been widely used as a model aluminosilicate precursor in the evo-
lution of alkali-activated solids [1–3]. The extremely fine grain size of such a mineral
assures an extended dissolution of Al3+ and Si4+ ions in strong alkaline media where
they generate hydrated moieties, Al(OH)4

−1 and Si(OH)4 [4]. Once these OH-rich species
condense in a gel, the expulsion of water molecules can occur at room temperature soon
after or concurrently with dissolution. Over time, the more thermodynamically stable
structure of the aluminosilicate 3D network takes over, leading to a solid material that
retains the crystalline species that were not dissolved, typically alpha-quartz traces present
in the pristine kaolinite [5]. The final solidified materials, also known as geopolymers [6],
have exceptional chemical, thermal, and mechanical properties if compared with room
temperature solidified binders based on lime, gypsum, and clinker.

One of the peculiar chemical properties of these geopolymers is the capability to encap-
sulate additional cations and anions through the stabilization/solidification process [7,8]
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and even macromolecules [9–12] remaining entrapped during the aluminosilicate 3D net-
work, which presents crypto-zeolite local organization [13]. Because of the presence of
zeolite A in the formulations of geopolymers based on Brazilian metakaolins [14], the con-
solidated geopolymers displayed high adsorption capacity within short times (between one
and five minutes) for different cationic dyes, i.e., methylene blue, safranin, and malachite
green from aqueous solutions. From the observation of such an encapsulating capability,
the number of studies dedicated to different cations [15–19], anions [20,21], and larger
molecular assemblages [22] has increased over the last few years.

Recent years have witnessed a particular interest in the encapsulation of organic dyes
within geopolymer pastes. Typically, organic dyes possess insufficient chemical stability at
pH = 14, at which the first step of geopolymerization (i.e., the dissolution) occurs. In fact,
most of organic dyes undergo decomposition at such a high pH. However, pH indicator
molecules represent an exception in which they retain their structure and color in high
alkaline media [22] allowing their encapsulation within the geopolymer framework. In this
context, the incorporation of various dyes such as methylene blue, crystal violet, acid blue,
and Congo red in an MK-based geopolymer has recently been shown to be viable [23].

In this study, we report on the encapsulation of the potentially toxic acridine orange
(AO) dye into a freshly prepared geopolymer paste. Acridine orange is a synthetic organic
dye with a planar heterocyclic structure, and it is used in several fields such as printing,
dyeing textiles and leather, and lithography [24]. The AO is also used as a probe for the
investigation of the cellular cycle. Indeed, it changes its fluorescent emission properties
with biological polymers such as DNA or RNA [25]. Because of its ability to interact with
DNA and RNA, it has potential mutagenic and carcinogenic effects [26]. As with other toxic
industrial dyes, their removal from the environment is of great interest [27–29]. Hence, its
disposal can be substituted by a cleaner encapsulation process.

The main objective of this paper is to investigate the feasibility of entrapping acridine
orange in the three-dimensional structure of the geopolymer without the degradation of
the molecule nor its release from the geopolymer matrix, thus obtaining materials with
possible applications for waste removal as well as for restoration. In particular, in this
preliminary study, acridine orange powder was previously dissolved in ethanol (because of
its high solubility in this solvent) and then added to the fresh geopolymer paste during the
mixing procedure. The inertization process via alkaline activation of metakaolin with soda
and sodium silicate solutions was ascertained by microstructural analyses (FT-IR, SEM,
TG/DTA, and XRD) and by leaching tests in water. Moreover, the mechanical behavior of
the synthesized geopolymers has also been investigated to confirm the structural stability
of the 3D aluminosilicate network of the consolidated products.

2. Materials and Methods
2.1. Materials

The used aluminosilicate source was a commercial white metakaolin purchased from
IMCD Deutschland GmbH & Co. (Köln, Germany) (d50 = 3.6 µm, surface area via B.E.T.
method 12 m2/g), whose chemical composition is presented in Table 1.

Table 1. Chemical composition of the materials.

Compound (wt%) SiO2 Al2O3 TiO2 Na2O Other
Oxides H2O

White metakaolin 53 1 40.5 1 5 1 - 1.5 1 -
Sodium silicate solution 27.1 - - 8.85 - 64.05

1 Average value adapted from [22].

The metakaolin was activated by using sodium hydroxide (Sigma-Aldrich, Darmstadt,
Germany) and sodium silicate (Prochin Italia Prodotti Chimici Industriali Srl, Marcianise,
Italy) (chemical composition is presented in Table 1), whereas acridine orange base, 3,6-
bis(dimethylamino)acridine supplied by Sigma-Aldrich, Darmstadt, Germany, was added
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in the form of powder dissolved in ethanol. All the reagents used for the analyses were of
analytical grade.

2.2. Geopolymer Synthesis

The comparative study of geopolymers with and without the addition of 0.31 wt%
dye on a wet paste basis was carried out by keeping all the parameters of the mixtures
constant, i.e., liquid/solid ratio, mixing sequence, curing, and hardening procedure.

The mixing sequence was as follows:

− Mixing the dry powder with the activating solution at low speed for 10 min;
− Mixing the geopolymer paste with and without the acridine orange at high speed for

10 min. The mixture details are given in Table 2.

Table 2. Mixture details of geopolymers with and without the organic dye.

Sample
Name MK Activator Solution Liquid/Solid Ratio AO

GP 50 g 79.4 g 0.36 -

GPAO 50 g 79.4 g 0.36 0.4 g (in 6 mL of
ethanol)

The GP composition was optimized in a previous study based on the following ratios:
SiO2/Al2O3 = 4, Na2O/Al2O3 = 1, and H2O/Al2O3 = 13 [30]. The geopolymer synthesis
was carried out with an AUCMA stand mixer SM-1815Z (AUCMA Co., Ltd., Qingdao,
China). The fresh geopolymer pastes were placed into plastic molds and cured in an oven
at a constant temperature of 25 ◦C for 24 h. After this curing, the samples were removed
from the oven and aged at room temperature for 7, 14, 28, and 56 days. Geopolymer
samples were grounded for 3 min at 90 rpm and with adjustable spring pressure by using a
Retsch RM100 Mortar Grinder (Retsch GmbH, Haan, Germany). Before the analysis, the
powdered samples were sieved at d < 125 µm. All the samples were analyzed at different
ageing times.

2.3. Geopolymer Characterization
2.3.1. Chemical Stability

The chemical stability of the consolidated paste was checked with indirect measure-
ments of the aluminosilicate 3D reticulation proposed in the literature [22,31]. Powders from
the consolidated samples were immersed in water according to the procedure described
in the Supplementary Materials, and the measurements of the pH and ionic conductiv-
ity of the eluates were indicators of the efficiency of the 3D reticulation. The higher the
pH and ionic conductivity, the lower the networking degree. Additionally, pieces of the
final geopolymers at different curing times were immersed in water, and the weight loss
was used as an indicator of the reticulation over the 56 days after the preparation (see
Supplementary Materials for details on the experimental procedures).

2.3.2. FT-IR

Fourier-transform infrared spectroscopy (FT-IR) was performed by the Prestige21 Shi-
madzu system (Shimadzu, Milan, Italy). The instrument was equipped with a deuterated
triglycine sulfate with potassium bromide windows (DTGS KBr) detector, with a resolution
of 2 cm−1 and 60 scans. The analysis was carried out in the range of 400–4000 cm−1. The
KBr disks were used for the analysis (2 mg of ground sample mixed with 198 mg of KBr).
The FT-IR spectra were elaborated by IR solution (v.160, Shimadzu, Milan, Italy) and Origin
(v.2022b, OriginLab Corporation, Northampton, MA, USA). The analyses were carried out
on the samples aged 7, 14, 28, and 56 days at room temperature.
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2.3.3. XRD

The X-ray diffraction patterns of the synthesized materials after 56 days of ageing
were obtained using an X’Pert PRO X-ray diffractometer (Cu Kα1 radiation operated at
45 kV and 40 mA). X’Pert HighScore Plus (Malvern PANalytical software) was used for
phase identification.

2.3.4. SEM

Scanning electron microscopy (SEM) was used on Pt-coated samples (aged 56 days)
using a Zeiss SIGMA field emission electron microscope operated at an accelerating voltage
of 5 kV.

2.3.5. TGA/DTG

Thermogravimetric analysis (TGA) was conducted using a Precisa PrepASH 129
Thermogravimetric Analyzer. The samples were heated from room temperature to 1000 ◦C
with a heating rate of 10 ◦C/min under N2 atmosphere. The specimens tested for weight
loss in the TGA apparatus were the same powders used for the XRD analysis.

2.3.6. Flexural Strength

The mechanical behavior of the geopolymer systems was investigated by four-points
flexural testing using a Dual Column Tabletop Testing System (INSTRON, series 5967-
INSTRON, Norwood, MA, USA) configured with a crosshead speed of 1 MPa/min. The
tests were conducted on five rectangular parallelepiped specimens (11 cm × 2 cm × 4 cm)
with geometry according to ASTM C78 [32] or EN 12390-5 (EN 12390-5:2019—Testing
hardened concrete—Part 5: Flexural strength of test specimens) [33] as shown in Figure 1a.
The modulus of rupture is determined by the formula

R = PL/bd2 (1)

where R is the modulus of rupture, P is the maximum applied load indicated by the testing
machine, L is the span length, and b and d are the average width and the depth of the
specimen at the fracture, respectively. The configuration of the mechanical test is depicted
in Figure 1b.
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2.3.7. Compressive Strength

The compressive strength (σmax) tests on five cubic (5 cm × 5 cm × 5 cm) specimens
for each formulation were carried out by using an Instron 5567 electromechanical testing
machine (maximum load 10 kN) at a constant displacement rate of 5 mm/min, according
to European standard EN 826 [34].
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2.3.8. Antimicrobial Analysis

The antibacterial test was performed by the Kirby–Bauer method [35] on S. aureus
(Gram-positive) and E. coli (Gram-negative) microbial strains. The whole adopted proce-
dure can be described in five steps: (i) agar-based media preparation, (ii) sample prepa-
ration and sterilization, (iii) bacterial strain preparation, (iv) bacterial incubation, and (v)
inhibition halo diameter (IHD) and bacterial viability (BV, %) measurements [36].

i. For media preparation, Tryptone Bile X-Gluc (TBX) Medium powder was dissolved in
deionized water and autoclaved at 120 ◦C for 15 min. After cooling at 50 ◦C, the media
was poured into Petri dishes, PD (6 cm in diameter), and stored at 4 ◦C before use.
Baird–Parker Agar (BPA) powder was prepared following the same procedure as the
TBX Medium. Before pouring into Petri dishes, the egg yolk supplement, containing
potassium tellurite, was added to the BPA. Both bacterial media were purchased from
Liofilchem, Roseto Degli Abruzzi, Italy.

ii. For sample preparation, 150 mg of MK, GP, and GPAO powders were pressed to
obtain sample disks that were sterilized under UV light for 1 h.

iii. For bacterial strain preparation, S. aureus and E. coli bacterial strain pellets were
dissolved in saline sterilized water (0.9% of NaCl), obtaining bacterial suspensions of
109 CFU/mL. After the dissolution, E. coli was plated on TBX Medium, while the S.
aureus was plated on BPA.

iv. For bacterial incubation, after bacterial plating, the sterilized samples were put in the
centre of Petri dishes and incubated within the bacteria. E. coli was incubated at 44 ◦C
for 24 h, while S. aureus was incubated at 36 ◦C for 24 h.

v. For IHD and BV measurement, four measurements of IHD were taken for each Petri
dish to obtain both the mean and standard deviation. Bacterial viability (BV %) was
calculated following Equation (2) as reported in [37]:

BV = (PD − IHD)/PD ∗ 100 (2)

2.3.9. UV-Vis Analysis

Information about the presence and the amount of AO dye in GPAO after the alkali
activation was obtained by the UV-Vis analysis. To this aim, the spectrum of AO (extracted
in ethanol) was recorded with a Shimadzu UV-1800 UV-Visible Scanning Spectrophotometer
(Shimadzu, Milan, Italy) in the range of 350–600 nm. The extraction procedure was divided
into the following steps: (i) mix 1.00 g of GPAO powder with 25.0 mL of ethanol; (ii) shake
for 10 min; (iii) centrifuge for 5 min at 1300 rpm; and (iv) recover and filter (0.45 µm)
the supernatant. The spectrum was recorded after diluting 1:8 the filtered solution, and
the amount of organic dye was determined. Moreover, also the amount of the organic
dye released in the water (integrity test conditions, Supplementary Materials, Section S4)
was quantified. Both the quantifications were carried out by recording the absorbance at
λ = 490 nm, the maximum selected to build the calibration curve (Figure S5) as reported
in [38].

3. Results
3.1. Sample Characterization

Figure 2 shows the geopolymers obtained with and without the acridine orange dye.
The images reveal that the organic dye was not degraded in the alkali environment of the
geopolymeric paste. Moreover, both samples were homogeneous and showed no bubbles
or cracks on their surfaces.
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Ionic conductivity and pH measurements revealed that after 56 days of ageing time,
the pH values were 12 (Figure S1), and the GPAO sample had an ionic conductivity of
500 mS/m (Figure S2B), which was higher than the one without the dye (300 mS/m, Figure
S2A). Both samples were completely hardened after 56 days of ageing time; indeed, they
did not break after the integrity test (Figure S3 and Table S1) and had a weight loss lower
than 1.5% after 56 days of ageing (Figure S4). GPAO released a small amount of the dye
into the eluate water after both the integrity and weight loss tests.

These first tests indicated that the geopolymer reticulation occurred regularly even
in the presence of AO. The pH and the ionic conductivity values of the eluates are in the
range of almost completely reacted MK geopolymers [30,39]. The aluminosilicate network
retained the dye, which was only slightly released in water also because of its insolubility
in aqueous solutions.

3.2. FT-IR Characterization

The geopolymerization process was evaluated by determining the DOPSM (density
of state of peak maximum) shift of the band at 1090 cm−1 of MK [22,40,41]. Indeed, as the
geopolymerization occurred, the band at 1090 cm−1 assigned to the asymmetric stretching
of Si-O-T (T = Si or Al) shifted at 1017 (7 days) to 1011 cm−1 (58 days, Figure 3A) in the GP
sample. This shift has been already explained in the literature by the substitution of Si by
Al atoms in the 3D network [36,40,41]. The bands at 820 cm−1 and 880 cm−1 were assigned
to Al(IV)-OH and Al(IV)-O- vibrations, whereas the signal at 465 cm−1 was assigned to
Si-OH symmetric bending [42,43]. In addition, the band at 3645 cm−1 and a weak band
at 1645 cm−1 were assigned to the -OH stretching and bending deriving from both water
and silanol molecules. Furthermore, FT-IR spectroscopic results indicated that the presence
of the organic dye did not affect the geopolymerization occurrence of the GPAO samples.
Indeed, there was the DOSPM shift from 1090 to 1008 cm−1 (56 days) in the GPAO sample
spectra (Figure 3B).

Given the small amount of the organic dye, no strong signals were appreciable in the
GPAO IR spectra. However, an enlargement of the range 3000–2500 cm−1 revealed the
presence of weak signals related to the vibration of -CH2 [44–46] (Figure 4).
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Figure 4. FT-IR spectrum of AO and GPAO aged up to 56 days.

The encapsulation of AO in geopolymeric pastes did not alter the regular consoli-
dation process in terms of aluminosilicate network creation starting from the metakaolin
disordered structure. The large bands of the FT-IR spectra collected on GP and GPAO
samples indicated a similarly amorphous aluminosilicate structure where the bands at 1090
and 820 cm−1 of MK were substituted by a single 1011–1008 cm−1 band in 56 days at room
temperature. The shift of the 1090 cm−1 band occurred in the first 7 days of curing, while
in the remaining 56 days, a very slight additional shift was recorded in the direction of Al
incorporation in the silicate structure.
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3.3. XRD

The XRD diffraction patterns of the metakaolin and prepared geopolymers are shown
in Figure 5. MK displayed an amorphous feature between 15 and 35◦ 2θ with sharp reflec-
tions arising from crystalline TiO2 present as impurities in MK. The formed geopolymer
(GP) displayed a similar amorphous hump shifted to the range 20–40◦ 2θ, typical for a
“well-formed” geopolymer [47–49], on which were superimposed the sharp reflections
ascribed to the TiO2 impurities. The geopolymer with acridine orange (GPAO) displayed a
similar XRD pattern to that of GP, indicating that the presence of the organic dye did not
result in any mineralogical changes to the formed geopolymer and thus did not interfere
with the geopolymerization process.
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The XRD diffraction patterns confirmed the amorphous nature of the geopolymeric
matrices formed in the GP and GPAO samples. Additionally, the shift toward higher 2θ
angles of the amorphous halo confirmed the insertion of Al in the silicate network, typical
of the geopolymerization process [50].

3.4. SEM

The morphology of the prepared geopolymers without (Figure 6a,b) and with acridine
orange organic dye (Figure 6c,d) was investigated by SEM as shown in Figure 6. Both
geopolymers showed similar amorphous randomly shaped particles composed of smaller
particles aggregating to form voids within larger particles.
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Figure 6. SEM micrographs at different magnifications for the prepared geopolymers, GP (a,b) and
GPAO (c,d).

The obtained SEM images (Figure 6) show no differences in the morphological charac-
teristics of the prepared geopolymers (with or without the organic dye). This indicates the
suitability of geopolymers in applications such as the encapsulation of organic pollutants
or dyes without influencing their structural stability and characteristics.

3.5. TGA/DTG

The TGA/DTG profiles for the MK and the prepared geopolymers are shown in
Figure 7. MK displayed a slight weight loss (~2.5 wt.%) at temp < 300 ◦C, which could
be ascribed to the removal of adsorbed atmospheric moisture. The formed geopolymers,
however, showed a significant weight loss (up to 37.5 wt% over a total water content of
39.3 and 39.2 wt% calculated for GP and GPAO fresh paste, respectively) between 50 and
350 ◦C due to dehydration, which is typical for geopolymer materials [51]. As shown in
Figure 7, geopolymers both with acridine orange dye (GPAO) and without (GP) displayed
almost similar TGA profiles with a negligible difference. The desorption of the organic
dye was not detectable via TGA most probably due to the low amount of dye added to the
geopolymer mixture (Table 2).
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3.6. Flexural Strength

The determination of the flexural strength of a material (defined as the maximum
amount of tensile load to which a material can be subjected before failure) is an important
property for identifying the fields of application of the material because it is related to its
structural integrity, strength, and performance. The analyzed sample showed an average
maximum flexural strength of 6.5 ± 0.8 MPa. The introduction of acridine orange dye did
not substantially change the structure of the geopolymer, as a value of 5.8 ± 1.1 MPa was
found. These results were in accordance with those found in [52,53], which reported flexural
strength of 6 MPa after 28 days of ageing time for geopolymer systems with a water–solid
ratio equal to 0.36. Moreover, many papers also report on the lowering of flexural strength
properties with the entrapment of wastes inside metakaolin-based geopolymers [52,54,55].

Although the composition of the material plays a significant role in the correct use
of technology of geopolymers, the addition to the aluminosilicate source material of rein-
forcing elements or elements of another nature can change the mechanical characteristics
of the hardened material. In our case, the flexural performance of GP and GPAO-dense
hardened materials was to be considered good if compared with other studies in which
admixed geopolymers were produced. The value 6.5 MPa was a medium-high value that
fell in the range of flexural strength of many admixed systems that present elements such
as silica fume, steel fibers, nano-silica, etc. [56].

The same considerations could be extended to the compressive strength values ob-
tained for GP at approximately 22.52 MPa and 1% lower for GPAO (with 20.57 MPa)
calculated as average on five cubic specimens. The slight decrease in mechanical strength
could be related to the presence of ethanol in the paste, which might have generated some
pores during evaporation from the viscous fresh paste.

3.7. Antimicrobial Analysis

Aiming to evaluate the possible application field of the consolidated geopolymers
(such as decorative home objects), the bioimpact of GP and GPAO was assayed in the
presence of S. aureus and E. coli (Figure 8), and both the IHD and BV (%) were evaluated.
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Figure 9 shows the results of the IHD measurements. Growths of E. coli and S. aureus
were not detected on MK and GP samples, which seemed to be inert against these bacteria.
However, the presence of acridine orange increased antimicrobial activity. Indeed, the
IHD values were 1.94 ± 0.07 cm in the presence of E. coli and 1.89 ± 0.04 cm in regard to
S. aureus. As a consequence, also the BV (%) was highly decreased (BV = 67.5 ± 1.2% and
68.5 ± 0.7%) as shown in Figure 10. The antimicrobial effect of acridine orange was also in
accordance with the literature [57].
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These results indicated that the alkaline environment typical of the geopolymeric
materials and measured in water as pH = 12 was not affecting the proliferation of the
two bacterial colonies, while the presence of acridine orange was significantly inhibiting
their growth. The alkaline environment of the geopolymers did not affect the antibacterial
properties specific to the macromolecules of the dye, which retained its typical reactivity
(as shown by the FT-IR results), as it retained the color (see comments in Section 3.1).

3.8. UV-Vis Analysis and Release Study

The presence of the organic dye in GPAO was determined by UV-Vis analysis. The
spectrum of AO extracted in ethanol from GPAO in the range of 350–600 nm (Figure 11)
reported one main peak at 430 nm with a shoulder at 490 nm. The former was due to the
aggregate formation of the dye inside the alcoholic solution, whereas the latter was related
to the monomeric form of the acridine orange. Both the signals (aggregate and monomeric
forms) were due to the π–π* transition of the conjugated rings [58,59]. According to the
calibration curve (Figure S5), the amount of the organic dye extracted from GPAO was
2.48 mg per 1.00 g of GPAO, which was close to the theoretical amount (2.97 mg per 1.00 g
of GPAO) belonging to the geopolymer formulation.
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Regarding the release study in water, the results revealed that after 8 and 24 h of
release, the absorbance values of the solution (recorded at λ = 490 nm) were 0.071 and
0.064, respectively. These values were lower than the absorbance of 0.111 recorded for
the concentration of 2 µg/mL (that is the LOD of the built calibration curve, Figure S5),
suggesting the high retention of the organic dye within the geopolymer matrix.

4. Discussion

Many studies have reported the ability of geopolymers to entrap solid [8,60] and
liquid [61] wastes inside their 3D structures, proposing new eco-friendly solutions and
giving an added value to the wastes without their disposal in the environment. Some
authors have focused their research on the entrapment of hazardous macromolecules and
organic dyes [62,63]. Following this trend, in our previous study, the feasibility to synthesize
metakaolin-based geopolymers cured at 25 and 40 ◦C in the presence of pH indicators
(phenolphtalein, cresol red, methyl orange, and bromothymol blue) [22] was demonstrated.
The direct entrapment of these molecules into the fresh paste of geopolymers did not alter
the normal geopolymerization occurrences and obtained colored materials with possible
applications also for decoration. However, the formulation and syntheses proposed did
not lead to materials able to retain their colors once soaked in water for a long time. This
finding was in accordance with MacKenzie and O’Leary [64], which tried to synthesize
geopolymers with other acid–base indicators as tools to reveal color-change humidity.
Contrary to our previous study, the GPAO demonstrated a good geopolymerization and
retaining of the dye that was not released in water. In addition to this feature, the presence
of titania (shown in the XRD spectrum) and the ability to inhibit microbial growth could
represent good properties for the application of this geopolymer in the restoration field [65]
and building façade self-cleaning [66,67] and could contribute to the research in hazardous
dye inertization.

5. Conclusions

In this paper, the feasibility to obtain colored geopolymers with the entrapment of
acridine orange was investigated. In particular:

• FT-IR revealed the presence of the AO in GPAO and the occurrence of geopolymeriza-
tion (DOSPM shift at lower wavenumbers), supported also by the XRD analysis (see
the amorphous hump shift to the range 20–40◦ 2θ).

• The physical-chemical properties (analyzed through pH and IC, and weight loss and
integrity tests) of the samples revealed no huge differences between GP and GPAO.
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These indirect data on the stability of both samples were also strengthened by the
TGA/DTG and SEM analyses.

• The slight decrease in mechanical and flexural strengths of GPAO with respect to GP
could be explained by the formation of some pores during solvent evaporation from
the viscous fresh paste.

• The UV-Vis spectrum of AO extracted from GPAO supported that the alkaline envi-
ronment required for the geopolymerization did not degrade the organic dye, which
was also retained without being released (concentration of AO released in water lower
than the LOD of titration curve).

• The investigation of the antimicrobial activity of GP and GPAO revealed increased
activity of the specimens with acridine orange against E. coli and S. aureus bacterial
strains probably due to the very low amount of dye release.

Even if all these results are promising, further investigations are needed to evaluate
the applicability of the above-formulated geopolymer as a material for restoration or for
catalytic and eventually self-cleaning applications in building façades, because of the TiO2
in the white metakaolin, and for toxic dye inertization by directly using wastewaters.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym15030675/s1: Figure S1: pH measurements of (A) GP and
(B) GPA at different ageing times; Figure S2: IC measurements of (A) GP and (B) GPA at different
ageing times; Figure S3: Geopolymer samples after the integrity test; Figure S4: Weight loss results of
the geopolymer samples at different ageing times; Figure S5: Calibration curve of AO in water; Table
S1: Results of the integrity test.
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