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Abstract: Mechanochemistry is considered an alternative attractive greener approach to prepare
diverse molecular compounds and has become an important synthetic tool in different fields (e.g.,
physics, chemistry, and material science) since is considered an ecofriendly procedure that can be
carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic
amounts). Being able to substitute, in many cases, classical solution reactions often requiring signifi-
cant amounts of solvents. These sustainable methods have had an enormous impact on a great variety
of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of
multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the
advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in
this review, we describe and discuss the relevance of mechanochemical procedures in the formation
of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of
this paper, we collect a chronological survey of the most representative scientific papers reporting the
mechanochemical synthesis of cocrystals.

Keywords: mechanochemistry; green reactions; pharmaceutical cocrystals

1. Introduction

Grant et al., reported that the intrinsic activity of a drug is immensely influenced by its
molecular structure and its supramolecular arrangement [1]. Most of the 90% of marketed
pharmaceutical products are sold as solid forms: tablets, capsules, suppositories, etc. [2].
The drug efficacy largely depends on their physicochemical and materials properties in
the solid state, because its performance can be affected by different crystalline states [1].
It is said that approximately 80% of all drug molecules exhibit polymorphism [3]. Is for
this reason that pharmaceutical companies invest enormous amounts of money in the
development of high-throughput experimental technologies to determine the crystalline
diversity of a drug [4–8]. Crystallization methods in the pharmaceutical industry represent
one of the most recurrent practices in the separation and purification of an active phar-
maceutical ingredient (API). After partial or total synthesis of an API, crystallization is
considered the most efficient purification process compared with liquid-liquid extraction
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or chromatography [9]. Thus, in to ensure purity of the crystal, shape, and size of the
crystal distribution, and the crystal habit of a drug, the proper choice of solvent plays an
important role [10,11].

Drugs may exhibit different solid forms, and this diversity may modify their physico-
chemical and biological properties, such as melting point, thermal stability, solubility and
dissolution rate, and bioavailability [12–18]. For instance, nearly 40% of the approved drugs
and 90% of the developmental pipeline drugs show low solubility [17,19,20]. The determi-
nation of the different solid/crystalline forms adopted by an API during its development
process is fundamental since it may have a great impact in its scale-up, formulation, and
clinical trials; and in some cases, may avoid patent litigations among the pharmaceutical
companies [16,18,21].

Drug efficacy depends at least on three pharmaceutical and pharmacological factors:
potency (dose), solubility, and permeability [22–24]. By itself, potency is an intrinsic
property of the molecule and is difficult to manipulate, however, solubility and permeability
can be modulated. The biopharmaceutics classification system (BCS) is a guidance to
categorize drugs on the basis of its aqueous solubility and intestinal permeability [25]. This
protocol classifies drugs in four groups: Class I (high solubility and permeability); Class
II (low solubility and high permeability); Class III (high solubility and low permeability);
and Class IV (low solubility and permeability) [26,27].

The modulation of the drug permeability can be reached by various methods:
(1) metabolism inhibitors [28], (2) ion-pairing and complexing agents [29], (3) lipid and
surfactant adjuvants [30], and (4) inhibitors of secretory proteins [31]. In addition, many
approaches are employed to enhance low-solubility drug issues, such as: chemical modifi-
cations (prodrugs or preparation of salts) [32,33] and development of new dosage forms
(cyclodextrin complexes, lipid formulations, drug-carrier formulations: polymers, surfac-
tants, carbohydrates, dendrimers, etc.) [34–38]. The restrictions found in chemical modifica-
tions are that prodrug formation may represent an elevated-cost process subsequent to the
chemical derivatization and the structural modification can affect the toxicological profile
of the molecule [39]. Salt formation largely depends on the ionizable functional groups that
the drug has, otherwise the process is difficult and furthermore this procedure sometimes
can modify the properties of the parent drug [40]. On the other hand, the limitations
encountered in new dosage forms using cyclodextrin complexes are: size compatibility
cavity/drug, reversibility of complex, and sometimes cyclodextrins have been related with
toxic reactions, however, apparently these issues were more likely due impurities [41].
Additionally, lipid formulations only admit the entrapment of lipophilic drugs, and drugs
with high melting point and log p > 2 are poor candidates [42]. Recurrent hurdles found in
drug-carrier formulations include: (1) carriers used frequently are hygroscopic absorbing
water destabilizing the system, (2) sometimes high amounts of carrier are required to ensure
the molecular mixing, (3) scale-up problems, and (4) thermodynamic instability [35,43].

The formation of multicomponent solid forms is another important approach used for
the modulation of drug solubility and dissolution rate properties [44–53]. This approach
may offer important drug property improvements (physicochemical and biological), modi-
fying the molecular conformations and intermolecular interactions of the parent API due to
incorporation of a second molecular agent (coformer or drug), without affecting its intrinsic
activities [48,54,55]. All drugs with solubility issues are candidates to form multicompo-
nent solid forms, contrary to some of the methods mentioned above i.e., salt formation,
cyclodextrin complexes, and lipid formulation. Thus, the pharmaceutical industry and the
scientific community have proposed an ample view of how we must classify the different
solid forms observed in an API, Figure 1. This holistic view is based on scale range-order
periodicity and composition diversity, from single to multicomponent forms [14,15,18].
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Figure 1. Classification of an API depending on its scale range-order periodicity and composition. Adapted with permission
from [15], Elsevier, 2017.

Pharmaceutical multicomponent solid systems can solidify in various forms: cocrys-
tals [56–58], salts [59–62], solid eutectic compositions [50,51,63,64], coamorphous [52,53,64–67],
polymorphs of cocrystals [68–75], etc.

Pharmaceutical solid forms: cocrystals/multicomponent salts [76,77], 22 eutectic mix-
tures [50,51,63,64,78], coamorphous [53,64] can be prepared by diverse methods, however,
recently solvent free solid-state processes have gained a lot of interest, since they can take
place even in the absence or with the minimal amounts of solvent (catalytic amounts).

These free solvent reactions are different compared with the traditional solution reac-
tions (dissolving, heating, and stirring). Mechanochemistry, by itself is an important syn-
thetic tool branch of solid state-chemistry [79,80]. Mechanochemistry is related mainly with
the chemical transformation of matter induced by mechanical energy by grinding or milling.
Mechanochemistry has emerged as an important green tool of synthesis in diverse fields
(e.g., physics, chemistry, material science). Recently, mechanochemistry has had an impor-
tant impact in a great variety of synthetic fields of the chemistry, including catalysis [81–86],
synthesis of organometallic compounds [87–91], organic synthesis [83,92–97], metal com-
plexes preparation [98–100], main-group elements [101,102], porous metal-organic frame-
works (MOFs) [81,99,103–107], polymers [108–110], fullerenes [111], multicomponent phar-
maceutical materials [53,81,99,105,112–117], etc. Thus, the main focus of this review is to
highlight the benefits of mechanochemical reactions in the preparation of pharmaceutical
cocrystals. First, the paper will provide the reader with the definition of mechanochemistry,
historical aspects, comparisons with other sustainable techniques, etc. Then, the main char-
acteristics of cocrystals, definition, their diverse analytical methods to characterize, diverse
synthetic methods, etc., will be described. Finally, a chronological summary of the most
relevant papers concerning with their mechanochemical preparation will be presented.
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2. Mechanochemistry
2.1. Definitions, Relevant Historical Aspects, and Applications of Mechanochemistry

The old belief that the success of a chemical reaction depends of the presence of
large amounts of a solvent is no longer valid [118]. Recently, enormous interest has been
focused on the study of ecofriendly and sustainable reactions, with the aim to perform
them under solventless conditions or at least with a minimal utilization of solvents. These
kinds of reactions fall in the realm of Green Chemistry, prioritizing high yields and mild
conditions [119]. Green Chemistry is a discipline prone to reduce the utilization of en-
vironmentally noxious materials and energetic resources. Green Chemistry promotes
the development of benign reactions; limiting the use of solvents and finding the opti-
mization of all resources employed (materials, reactants, reagents, solvents, and energy
requirements). Green Chemistry is ruled by twelve lineaments [120,121].

On the other hand, solid state-chemistry explores the reactivity of the substances in solid
state, through different synthetic methods such as: [92] microwave irradiation [122,123], ultra-
sound (sonochemistry) [123–125], photochemistry [126–129], mechanochemistry [105,130].
A symbolic representation of these different synthetic methods is depicted in Figure 2 [101].

Figure 2. Symbolic representations of the different solid state-chemistry synthetic methods. Adapted
with permission from [101], Royal Society of Chemistry, 2019.

Mechanochemistry is a term related with the chemical reactivity promoted by diverse
mechanical stimulus, (typically friction, impact, collision, grinding). A mechanochemical
reaction is defined by the IUPAC as: “a chemical reaction that is induced by the direct ab-
sorption of mechanical energy” [131]. Mechanochemistry through the time have received
several definitions [132]. Wilhelm Ostwald classified overall the chemistry in diverse
fields: thermochemistry, electrochemistry, photochemistry, etc., depending on the energy
input [105]. From this classification, it should be noted that Wilhelm Ostwald separated
the mechanochemistry as a unique branch of chemistry [133,134]. Later, Walther Nernst
(Ostwald’s student) supported this classification [105,135]. However, according to Baláž,
the current accepted definition is that of Heinicke that establishes that “mechanochemistry
is a branch of chemistry which is concerned with the chemical and physicochemical trans-
formations of substances in all states of aggregation produced by the effect of mechanical
energy” [132].

Sometimes tribochemistry (vide infra) is confused with mechanochemistry, however,
by itself the former term is a branch of the latter, Figure 3 [80]. Tribochemistry (friction,
tribos), per se is related with chemical reactions occurred between two solid surfaces, within
the lubricating material, or between the lubricant and solid surfaces [136,137]. Thus, in
general, mechanochemistry it should be considered into four areas: tribochemistry (the
chemistry of surfaces in contact), trituration (chemistry induced by grinding and milling),
macromolecular mechanochemistry (from breakage of polymer chains to molecular motors
and biological motion), and sonochemistry (the chemistry generated from the mechanical
consequences of sound), Figure 3 [80].
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Figure 3. Different branches derived from the mechanochemistry. Adapted with permission from [80], Royal Society of
Chemistry, 2014. SDG: solvent drop-grinding; LAG: liquid-assisted grinding; MOFs: metal-organic frameworks.

Mechanochemistry can be dated back to the prehistoric times [138], Greek ages [Theophras-
tus of Ephesus (371–286 B.C.)] [139,140] and at the period between the 19th and the early 20th
century [105,113,138,141–143]. Particularly in the 19th and 20th centuries, the pioneering work
of Carey Lea (according with Takacs the first mechanochemist) [134,141,144,145] and Faraday
can be highlighted [142,143]. For an excellent detailed description of the development of
mechanochemistry through the history, “The historical development of mechanochemistry”
must be consulted [143].

The recent interest in mechanochemical methods is due to diverse advantages com-
pared with the classical-based dissolution reactions. According to Etter: “the absence or
at least the minimal usage of solvents during the course of the reactions, often leads by
mechanochemical methods to the phase similar to that obtained by solution crystal growth”,
suggesting that the presence of large amounts of solvent is not necessary for the formation
of a new phase [105,146–149]. Mechanochemical methods are preferred to be used when
the product is not accessible via conventional reactions (classical dissolution) [150–154].
In addition, mechanochemical processes can provide control over the polymorphic out-
come, sometimes not obtained in solution [155–162]. In addition, yields can be improved
and reactions may proceed faster than in solution [98,163–166]. Furthermore, improved
stereochemical control and selectivity can be achieved [167,168]. Additionally, reactions
can be carried out to completion, with additional purification steps not necessary [169,170].
Some reactions exhibit a reduced energy consumption due to efficient energy transfer in
the mixture reaction (e.g., planetary ball-milling) [171].
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Apparently, the first paper describing the formation of a cocrystal using a mechanochem-
ical reaction was reported in 1893 [172]. In this paper was informed the preparation of
quinhydrone cocrystals grinding equimolar amounts of p-benzoquinone and hydroquinone.
After this, the reports of Curtin [173] and Etter [174,175] were stablished as great contribu-
tions to the development in the preparation of cocrystals by mechanochemical procedures.

Kaupp indicated that milling, grinding, shearing, kneading, stirring, pulling, and
cutting do not constitute part of the mechanochemistry if this stimulus does not produce a
bond breaking [79]. The term mechanochemistry is usually ligated with the rupture and
formation of covalent bonds [140], but the “non-covalent mechanochemistry”, ref. [176] is
part of interest in the preparation of multicomponent pharmaceutical solid forms. Grinding
two chemical substances lead to the modification of the intermolecular interactions altering
the solid-state properties of the new solid form. The definition of what is a cocrystal will
be discussed in Section 3.1.

2.2. Different Mechanochemical Apparatuses

Grinding may be so simple as manually grinding two chemical reagents in a mortar
and pestle. However, it should be noted, that grinding and milling are different techniques,
since grinding is the mechanochemical procedure working in a mortar and milling is
carried out in ball mills devices [95]. At the laboratory level, ball-milling is employed
rather than grinding, when higher energy input is required, more systematic times of
reaction (reproducibility) are needed and better mixing (mass and energy transfer) is
sought [92]. Grinding with a mortar depends on the vigor and intensity applied during the
process being less systematic and sometimes atmospheric conditions can be an adverse
factor [101]. The implementation of automatic devices (milling equipment) can circumvent
these hurdles [162]. For a detailed description of the diverse types of milling apparatuses
and their characteristics (balls mills to vibratory, planetary, mills, and attritors), proper
references must be consulted [132,177,178]. According to Mack, at the laboratory level,
there are three typical mills (mixer/shaker mills, planetary, twin screw extrusion) [93].
From which mixing/stirring mills and planetary devices are more accessible to obtain (USD
3000–7000) [93]. For an excellent description of the characteristics and differences associated
with mixing/stirring mills and planetary devices, the following relevant references must
be consulted [93,100,179,180]. Twin-screw extrusion (TSE) is another mechanochemical
tool which can provide large-scale preparation of cocrystals (industrial level). [181–183]
Additionally, TSE has been used for the scale-up preparation processes in the synthesis of
organic compounds [184,185], MOFs [186], and deep eutectic solvents, etc. [187].

2.3. Advantages of Reaction Performance among Grinding/Milling and Other Sustainable Methods

Schneider et al., showed the advantages in energy consumption of mechanochemical
reactions over other sustainable methods [171]. Thus, in a comparative study of Suzuki-
Miyaura reactions (C-C couplings: phenylboronic acid + different aryl bromides) for the
production of several biaryls, Scheme 1. Experiments grinding the components with mortar
and ball-milling were carried out. Grinding outcomes revealed problems with the repro-
ducibility, not found in ball-milling experiments. In addition, different studies evaluating
the energy demand (ball-milling or microwave irradiation) were performed. A third ex-
periment was carried out combining (ball-milling + microwave irradiation, COMB) also
seeking to determine the energy consumption. Interestingly, ball-milling experiments re-
quired lesser energy demand than microwave assays and the combination of both methods,
demonstrating the advantages of mechanochemical synthesis over microwave irradiation.
According to the authors, the couplings of the p-bromoacetophenone proceed easier that
the other substrates due to the fact that the C-Br bond is weaker because of the electron-
donating nature of the p-substituent, resulting in the best yields in the couplings reactions.
Thus, taking this as a model reaction, their yields were evaluated, initially comparing the
reaction carried out with a mortar and pestle and in a Pulverisette 7 device (planetary
ball mill). From these experiments, it was observed that by grinding in a mortar, the
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reaction produced yields greater than 50%, but when the milling equipment was used,
the performance depended on the rpm used. Producing yields of ~5%, ~70%, and ~89%
for 200, 400, and 800 rpm, respectively. A further comparison of the yields employing
ball-milling (Pulverisette 7 (at 800 rpm) BM1 or swing/mixer mill BM2), microwave irra-
diation (MW1: multimode or MW2: mono-mode) or COMB, the following results were
obtained: BM1 (89%); BM2 (45%); MW1 (80%); MW2 (70%); COMB (94%), thus showing
the best yields to be produced by the COMB method for this particular Suzuki–Miyaura
cross coupling reaction. Although the BM1 procedure required lesser energy demand than
the other methods.

Scheme 1. Pd-catalyzed C-C coupling reactions (Suzuki–Miyaura).

Another study comparing the efficiency (chemical yield and energy consumption) of
ball-milling with different synthetic methods was reported by Thorwirth et al. [188]. The
oxidation of primary aromatic amines to azo and azoxy compounds were evaluated by
different methods: mechanochemical (planetary and vibratory ball-milling) and solvent-
based procedures (microwave, conventional heating, ultrasound). In this case, also the
mechanochemical reactions were more efficient in terms of both chemical yield and energy
consumption. However, planetary ball-milling was more efficient for a scale-up reactions
compared with vibratory milling.

2.4. Preparative Conditions of Mechanochemical Methods of Pharmaceutical Cocrystals

Braga has classified solid-state reactions as [189,190]:

1. Intrasolid reactions, which proceed amongst molecules within a single-crystal (Topo-
chemical Postulates developed by Schmidt), Figure 4 [191–193].

2. Intersolid reactions, which pertain to the reactivity between solids (mechanochemical
reactions), Figure 4.

3. Furthermore, Braga added a third category, solid–gas reactions [189,190].
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Figure 4. Classification of solid–solid reactions: (a) intrasolid and (b) intersolid. Adapted with permission from [189],
Wiley, 2004.

However, Bolm indicates that solventless reactions can be categorized into three
groups [194]:

1. Reactions between solids (solid–state reactions).
2. Reactions between solids with intermediate local melting.
3. Reactions with at least one liquid reagent.

One of the persistent problems found in the mechanochemical reactions is the lack of
understanding in the mechanisms involved. In this context, mechanochemical reactions can
be monitored ex situ [96,195,196] or in situ [84,96,197] using synchrotron XRPD [198–200]
and Raman spectroscopy [201–203], in order to get an insight into the different intermediate
steps and pathways involved.

The components involved in a typical mechanochemical reaction can be mixed at
least by two different conditions: the “dry” manner denominated neat grinding (NG) or
by “wet” conditions [105,112,204]. “Dry” conditions is to grind/mill all the components
in total absence of solvent, consequently “wet” conditions are carried out when solvent
is added in catalytic amounts. Currently, the accepted term used for “wet” conditions is
liquid-assisted grinding (LAG), but in some old literature, is also known as kneading [105].
Although LAG was also formerly known as solvent drop grinding (SDG) [154,155].

To the best of our knowledge, the first paper, the improvement in kinetics of cocrystal
formation by grinding under “wet” conditions was reported by Jones et al. [205]. Combin-
ing cyclohexane-1,3-cis-5-cis-tricarboxylic acid (CTA, C6H9(COOH)3) in the presence of
4,4′-bipyridine (4,4′-bipy) (1:1) for 1 h under NG conditions lead to the partial formation of
the cocrystal. However, the addition of 0.05 mL of methanol in the mixture and grinding by
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20 min lead to a significant acceleration of the reaction to achieve the complete formation
of the cocrystal. Another multicomponent system explored was CTA + 4,7-phenanthroline
(4,7-phen) (1:2) under NG. After a long period of time grinding, the reaction only occurred
partially. However, if the reaction was carried out in the presence of small amounts of
methanol, after 5 min, the reaction proceeded almost quantitatively, although traces of
the original reactants were detected. Based on these findings, Jones et al., proved that the
kinetics of the formation of cocrystals can be improved by LAG.

Jones and Friščić later showed that outstanding benefits can be obtained by LAG
over NG in the preparation of cocrystals [81,82,162,206]. For instance, NG has a slight
implication in the molecular change of the course of a mechanochemical reaction, contrary
to LAG which confers mobility to the components involved. In this regard, LAG imparts
additional degrees of freedom (orientational and conformational) to the molecules affecting
the reaction outcome. The empirical parameter η, η = V(liquid, µL)/m (sample, mg)
(volume of solvent, and m represents the weights of cocrystal components) helps to assign
a scale to distinguish the different conditions in which the reaction is carried out (NG = 0;
LAG 0 < η < 2; slurrying 2 < η < 12 and solution synthesis > 12) [81]. This parameter
provides an interesting insight of the role of the solvents for the design of experiments that
are mediated by the presence of a minimal amount of solvent (catalytic conditions) going
through slurrying or liquid phase [206].

The importance of η is illustrated by the work of Jones et al., where he explored
the polymorph diversity of the cocrystal caffeine:anthranilic acid (caf:ana) using VALAG
(variable amount liquid-assisted grinding) [207]. The screening experiments varying the
amount of the solvent used (η parameter range 0.05–0.5) and utilizing 15 solvents of
different polarity, revealed that polar solvents (4 of 15): acetonitrile, nitromethane, ethylene
glycol, and 1,6-hexanediol yielded one cocrystal polymorphic form. It should be noted
that experimental conditions (grinding time, frequency, and ball-to-powder weight ratio)
were maintained fixed. However, the utilization of non-polar solvents (11 of 15) led to
the formation of two or more different cocrystal polymorphs. Thus, globally, Jones et al.,
concluded that polymorphic control of the cocrystal can be achieved by the polarity of the
solvent used and fixing the η parameter. With this work, Jones demystified the common
belief of “one liquid for one specific polymorphic form”.

POLAG (polymer assisted grinding) is another relevant mechanochemical technique
for the screening of new pharmaceutical solid forms. As mentioned above in the in-
troduction, for drug-carrier formulations, polymers are used as excipients, mainly to
stabilize highly activated molecular structures [43]. In this context, Matzger has explored
new crystalline forms using primarily polymers as nucleation inducers for the discov-
ery of new polymorphs [208]. According with Matzger, polymers (are crystallization
directors) have the capacity to promote selectively the formation of one polymorph over
another [209,210]. Jones et al., continued in this line using POLAG, where by means of
mechanochemical reactions using polymers; these materials can direct the formation of
specific polymorphs [162,211]. Jones et al., described the preparation of three different
cocrystals previously reported in the literature caffeine:citric acid (caf:ca) [212] phenazine
and mesaconic acid (phe:ma) [213] and caf:ana [69]) by POLAG. The polymer used as
catalyst was polyethylene glycol (PEG) varying its molecular weight from 200 to 10,000.

The cocrystal caf:ca (1:1) can be obtained by LAG (grinding with water) or by NG
(only when caf hydrated + ca dehydrated is used). [212] In the second system phe:ma,
produced with LAG, a dramatical increase in the cocrystallization process is observed. In
addition, for the third system caf:ana, the product can be obtained by NG or LAG, however,
LAG promotes cocrystal polymorphism. Additionally, in the system caf:ana, using POLAG
yielded a different polymorphic form compared with NG. In general, according with the
findings in the three systems, using POLAG (adding PEG) produced similar results to
those observed with LAG. However, depending on the amount of polymer added in the
mechanochemical procedure, this promotes or inhibits the formation of the cocrystal. For
instance, in the system caf:ca, using PEG 10,000 in low amounts (1–5%), the presence of the
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characteristic peak of caf at 2θ = 12◦ is noted by powder X ray diffraction (PXRD). However,
by increasing the amount of PEG 10,000 to 10% the peak of caf at 2θ = 12◦ is considerably
reduced, but at higher percentages of PEG 10,000 (60%), the intensity of this peak increased
again. Experiments using other PEGs (200, 300, 400, 3000, 6000, 10% of polymer), and
increasing the times of milling, revealed in the PXRD patterns a considerably reduction of
the peaks corresponding to the starting materials. Besides, in general, in the three systems,
the polymer chain length did not affect the mechanochemical formation of the cocrystal,
revealing POLAG as an excellent method for the control of the powder particle size.

Recently, Germann et al., reported the first in situ PXRD monitored mechanochemical
cocrystallization (caffeine:glutaric acid; caf:glu) employing POLAG. [214] The authors
introduced the δ parameter for POLAG (equivalent to η parameter used in LAG) [81] to
compare the reactions in terms of the amount of grinding additive. In this work, they
explored the use of diverse PEGs and different δ values.

So far, two forms of the system caf:glu (1:1) have been reported: Form I which
is metastable and converts to Form II under high humidity conditions, (CSD refcodes:
EXUQUJ (P21/c) and EXUQUJ01 (Pı̄)), Figure 5. [155,215] However, after the transformation
of Form I into Form II, the latter system remains stable for three days before inevitably
undergoing conversion to caffeine hydrate. Both forms of caf:glu 1:1 (P21/c or Pı̄) can be
prepared by slow evaporation techniques or NG and LAG [155]. By using NG, Form I
can be exclusively produced, but by using LAG, both forms can be obtained. Form I is
obtained by LAG using non-polar solvents (hexane or heptane) whilst Form II was formed
preferably employing polar solvents (acetonitrile or dichloromethane).

Figure 5. Sheets of caf:glu (1:1) ribbons. (a) Form I and (b) Form II. Stacked ribbons of caf:glu (1:1): (c) Form I and (d) Form
II. CSD refcodes: Form I; EXUQUJ (P21/c) and Form II; EXUQUJ01 (Pı̄).

The first milling experiments carried out in this work used NG and LAG (acetoni-
trile, η = 0.05 mL·mg−1). In NG, Form I was formed in the first 7 min of reaction. LAG
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experiments were faster than NG reactions. In LAG, firstly, Form I was formed as an
intermediate, but subsequently, Form II appeared as the final product. LAG experiments
adjusting η to higher values (0.12 and 0.17 mL·mg−1) exhibited that while this parameter
is augmented, the overall rate is generally increased. The findings with POLAG (δ = 0.05;
PEG 3000) showed the formation of Form I after 4 min, reaching completion after ap-
proximately 30 min. Enhancing δ (0.12 and 0.5) apparently has no direct influence in the
cocrystallization efficiency. In POLAG conditions (δ = 0.05; PEG 10,000), the increment in
the polymer chain length has no influence in the overall reaction, however, apparently the
cocrystallization was slightly slower. At higher amounts of polymer PEG 10,000 (δ = 0.05)
at 60 min of reaction, unreacted starting materials were detected.

Interesting results were obtained through qualitative comparison of the rates of cocrys-
tallization by determining the start of the reaction (induction time) and the 50% conversion
point performed in NG, LAG, and POLAG experiments. Overall, POLAG and NG showed
NG to be almost two times faster. Additionally, in POLAG, the reaction rate was not influ-
enced by the molecular weight of the polymer additives. However, in LAG, the reaction
rate was enhanced when η was increased. In addition, the authors indicated that in this
reaction, only small quantities of polymer were necessary to have a catalytic role. This
work represented an important advance in the influence of the δ parameter in the cocrystal
formation as it was mentioned with VALAG.

Another variant of LAG is known as ion liquid-assisted grinding (ILAG), where a salt
is added during the grinding as an additive. For instance, the addition of small amounts of
salts (NO3

− or SO4
2−) in the preparation of the MOF [Zn2(ta)2(dabco)] (ta: terephthalate;

dabco: 1,4-diazabicyclo [2.2.2]octane), under ILAG conditions, accelerated the formation of
the MOF compared with LAG. [216] The authors suggested that under ILAG conditions,
the formation of the MOF [Zn2(ta)2(dabco)] goes through an anion-templating mechanism.

Besides, in 2018, Mukherjee et al., described the formation of the cocrystals caf:ca
and caf:glu using ILAG [217]. It must be noted, that for the preparation of the MOF
[Zn2(ta)2(dabco)] by ILAG [216], the grinding was made in the presence of inorganic salts,
however, in the formation of the systems caf:ca or caf:glu, different imidazolium-based
ionic liquids (IL) were employed. The caf:ca system (1:1) has two cocrystal polymorphs
(CSD ref codes: KIGKER (Pı̄), KIGKER01 (P21/c); Form I and Form II), Figure 6 Form I can
be produced by LAG (grinding with water) or NG (only when is used caf hydrated + ca
dehydrated) [212]. Form II has only been obtained by slow evaporation in a chloro-
form/methanol solution [218]. As it was described previously, Form I also can be isolated
by POLAG [211]. With this rationale, Mukherjee et al., explored ILAG in an attempt to
emulate the results obtained with POLAG, by employing a series of ILs, Figure 7, in-
stead of varying chain lengths of polymers (PEGs). Various ILs were used modifying
the substitution on the imidazolium cation (different alkyl chain lengths) or by changing
the anions (different hydrogen bonding ability) to determine their influence in the final
crystallization outcome.

Experiments in both systems (caf:ca and caf:glu) were carried out in a mortar and
pestle in stoichiometric ratio of components (1:1) and adding c.a. 40 µL of the ILs (15 min).
The formation of both cocrystal systems was monitored by PXRD.

From the results obtained in the system caf:ca, the authors suggest that independently,
the different nature of ILs were employed (hydrophobicity/hydrophilicity), this did not
affected the outcome since only the formation of the Form I was observed. However, a
different case was observed in the cocrystal system caf:glu. As mentioned above, Form I in
caf:glu is obtained by LAG using non-polar solvents. Additionally, Jones et al., reported
that the employment of POLAG (increasing the chain lengths of polymers increasing non-
polar effect) provides a selective control in the formation of Form I. [219] From this, it has
been hypothesized that in both LAG and POLAG, the presence of a non-polar slip plane
(200) in Form I absent in Form II, interacts favorably with non-polar liquids. Based on these
results, Mukherjee et al., carried out ILAG experiments using hydrophobic and non-polar
ILs to stabilize the non-polar slip plane (200) favoring the formation of Form I.
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Figure 6. Sheets of caf:ca (1:1) ribbons. (a) Form I and (b) Form II. CSD refcodes: Form I; KIGKER (Pı̄) [216] and Form II;
KIGKER01 (P21/c).

Figure 7. ILs employed in ILAG experiments.

Mukherjee et al., described that employment of all these ILs led to the crystallization of
Form I, however the increase in alkyl chain length in the ILs affected the rate of formation.
In particular, the use of IL5 promotes the formation of Form I, however, IL7 leads to Form
II (polymorph control), by the simple change of the anion, but showed traces of the Form I.
With this work, Mukherjee et al., demonstrated that slight modifications in the ILs used in
ILAG may promote polymorphic control over cocrystals.

Finally, VATEG (variable temperature grinding) is another subclass of LAG. Here,
the monitoring of the temperature changes observed during a mechanochemical process
is a relevant factor to reveal reaction kinetics and mechanisms involved [162]. However,
VATEG has been scarcely explored and few papers have been reported [220,221]. One of
the main hurdles to explore VATEG in ex situ experiments is to monitor the reaction at
a given temperature, because it is necessary to interrupt the mechanochemical process
to extract a sample for analysis [162]. However, real-time in situ monitoring techniques,
in particular variable-temperature synchrotron powder X-ray diffraction, have shown
remarkable results to overcome this obstacle. One case study of variable-temperature in
situ investigations will be discussed in Section 2.5 [222].
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2.5. Mechanistic Aspects in Cocrystal Formation Applying Mechanochemistry

Despite the benefits of mechanochemical reactions in the preparation of cocrystals,
there is an incipient knowledge behind its formation mechanism. The cocrystal mechanism
using mechanochemical methods remains unclear, for this reason, many models have
been proposed.

According to Jones and Friščić, the cocrystal formation cannot be assumed as a single
mechanism process [117]. At least three different models are accepted to explain these
mechanistic aspects: molecular diffusion [117], eutectic formation [223], and mediation
by an amorphous phase [224]. These models have a common point, all of them propose
the presence of an intermediate bulk phase (gas, liquid, or amorphous form) during the
mechanism. Detailed examples explaining these models have been reported [117].

First, under NG conditions using the molecular diffusion model, it is likely to occur
when one or both components exhibit considerable vapor pressure in the solid state. In fact,
some reactions can proceed simply by contact between the starting chemical reagents, even
in the total absence of mechanochemical action. Rastogi et al., reported mechanochemical
reactions between picric acid and some aromatic hydrocarbons, where the mechanism is
proceeding through surface migration and diffusion via vapor phase [225].

In addition, Kaupp contributed with important advances into the mechanistic aspects
via molecular diffusion through NG cocrystallization (intersolid reactions), Figure 8 [226].
Using an atomic force microscope, he proposed a three staged mechanism starting from
crystal solid species A and B, which give rise to the new product C, Figure 8.

1. Molecule migration. The first stage is the reconstruction of the solid phase, suggesting
directional long-range migrations of molecules, where component A invades the
planes or channels of component B (or vice-versa). The incipient formation of C
distorts the original crystal structures of A and B, producing a mixed A-B-C phase.

2. Product-phase formation. The concomitant appearance of component C in the mixed
phase A-B-C favors spatial discontinuity in particles A and B due to strain and
crystal defects.

3. Crystal disintegration. In this step, is suggested a chemical and geometrical mismatch
between components A and B, produced by the appearance of C causing a disintegra-
tion of the particles. The grinding/milling process produces fresh surfaces available
for further reaction to completion.

Jones and Friščić suggested that Kaupp’s model although is related for a solid–solid
intercrystalline reaction, it may be adopted to explain the formation of cocrystals or multi-
component salts, Figure 8 [117,227].

Additionally, Scott et al., emphasized that some NG reactions between two solids may
proceed via an eutectic intermediate (observation of a liquid phase) [228]. According to
Chadwick et al., the cocrystal formation (grinding in a mortar) starting from benzophe-
none and diphenylamine is through an eutectic phase. The authors indicated that the
action of the grinding creates a high interfacial area between the starting components
facilitating the eutectic form. This induces nucleation and the eventual formation of the
cocrystal phase [223].

The cocrystal formation via NG mediated by an amorphous phase is most likely to
proceed when the components are non-volatile, especially with solids with strong inter-
molecular interactions (hydrogen bonds) [117]. Rodríguez-Hornedo et al., demonstrated
that grinding carbamazepine and saccharin below the expected glass transition of the final
mixture outcome induces an amorphous phase formation. But conversely, when the com-
ponents are ground at higher temperature of the expected glass transition of the mixture, it
would lead to a metastable polymorphic form. The storage of this amorphous form at room
temperature slowly tends to cocrystallize. Under high relative humidity conditions (75%),
this amorphous phase increases its molecular mobility and complementarity between the
components, leading to the cocrystal formation. The amorphous phase intermediate is
considered a high energy and high molecular mobility species.
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Figure 8. Schematic representation of cocrystal formation mechanism applying grinding/milling in
a binary system. Adapted with permission from [117], American Chemical Society, 2009.

Regarding LAG, the cocrystal formation mechanism is not fully understood [227]. In
fact, it has been suggested that the liquid is a lubricant facilitating the molecular diffusion
among the components [117,206]. Where the parameter η and polarity of solvent employed
plays an important role in the cocrystal formation as it was mentioned with VALAG [207].
Additionally, the parameter η has a strong influence on the possible mechanisms, interme-
diates, or different polymorphic outcomes in a cocrystallization reaction [229].

It has been suggested that many milling parameters may affect the rates of product
formation: milling frequency [203,230], milling time [231], filling degree of the jar [232,233],
milling ball diameter and the beaker size [164,234,235], degree of milling ball filling [164],
energy input [236,237], and material of jar [231].

Furthermore, variable-temperature in situ studies have shown that reaction rates are
temperature-dependent and that slight changes in temperature generally influence the
mechanism [222]. Using as a model of synthesis, the preparation of the coordination poly-
mer (CdCl2 + cyanoguanidine in dry conditions), the authors showed that an increment of
45 ◦C in the bulk reaction temperature accelerates the rate reaction (6-fold). The increment
in the bulk reaction temperature could be reached by increasing the number of ball impacts,
or when are used heavier balls (7 to 9 mm). Raising of the temperature has an important
influence in the reactant consumption rate, as well as a change in reaction mechanism. In
this context, the authors explain that the accepted model mechanisms for milling reactions
in the preparation of inorganic materials (“hot-spot” and “magma-plasma”) [238–240], ap-
parently do not properly fit for softer materials such as coordination polymers or cocrystals.
According with these results, at temperatures near room temperature, the mechanism goes
through an amorphous phase intermediate. However, at higher temperatures, the mech-
anism proceeds by the rapid formation of an intermediate. Thus, it has been suggested
that at elevated temperatures, the mobility of the amorphous intermediate is higher, thus
facilitating the formation of the final product via crystallization of the intermediate.
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Recently, Friščić et al., demonstrated the appearance of the cocrystal polymorph
(Form II) in the system nicotinamide and adipic acid (nic:adi) [229]. It must be noted
that the nic: adi cocrystal form has been reported to exist in two stoichiometric rela-
tions 1: 1 and 2:1 [241]. Milling nic and adi in a 1:1 stoichiometric proportions using
acetonitrile (η = 0.125 µL·mg−1) led to the formation of Form I. Having the milling reac-
tion performed using two stainless steel (ss) balls (7 mm) in a poly(methyl methacrylate)
(PMMA) material jar.

Repeating the previous experiment, but using ss jars instead of the PMMA jars lead
to the formation of the Form II. The molecular structure of Form II was established by
the combination of PXDR and solid state nuclear magnetic resonance (for more details
about this technique see Section 3.3) analyses. Besides, in order to verify that the control of
the polymorphic outcome depends on the choice of the jar material, experiments under
NG and LAG in the presence of different solvents at a fixed η parameter (0.125 µL·mg−1)
were performed. The solvents chosen were H2O, methanol and MeNO3. Hence, in LAG
reactions, the formation of Form I was preferably observed when PMMA jars were used.
Further, Form II tends to be formed when ss jars where employed, Figure 9. In both cases,
NG and LAG experiments, the reactions performed with H2O were slower, and a mixture
of products (Form I and Form II) was observed. These results thus prove that the milling
jar material has an important effect in the polymorphic outcome.

Figure 9. Schematic representation of the different solid forms in the cocrystal system nic:adi. These
processes can be controlled by the choice of milling assembly. Adapted with permission from [229],
Royal Society of Chemistry, 2020.

The mechanochemical interconversion, Figure 9, can be achieved milling a sample
of Form I initially prepared using a ss jar and a pair of ss balls of 7 mm diameter each in
the presence of acetonitrile η = 0.125 µL·mg−1. From this milling (60 min), Form I can be
interconverted to Form II (Form I→ Form II). In the case of the reverse process, i.e., Form II
→ Form I, starting from Form II milling in a PMMA jar under identical conditions, Form I
was produced after 2 h, but this reaction was slower and traces of the Form II were detected.
It should be noted that the transition enthalpy for the metastable Form II with respect to
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Form I was determined by differential scanning calorimetry DSC (∆H = +2.3(3) kJ·mol−1).
For further details about the DSC technique, consult Section 3.3.

In addition, three different experiments were studied by in situ PXDR. In the first one,
(A) PMMA jars and two ss balls of 7 mm diameter were used. Then, in the second and
third experiments (B and C), PMMA jars were used, but in experiment B ss balls of 7 mm
diameter were added, while in experiment C, two zirconia balls of 10 mm diameter were
used. It should be noted that the total balls weight in experiment A, B, and C were 2.8, 5.6,
and 5.8 g, respectively.

In the three experiments, the formation of nic:adi (2:1) as the first reaction intermediate
was detected, Figure 9. For the experiment A, initially the formation of nic:adi (2:1) is
observed and gradually Form I is produced as a final product after 85 min of milling.
Further, in experiment B (where balls weight was increased), the reaction proceeded from
the intermediate nic:adi (2:1) and the subsequent formation of the Form II and finally
produce Form I. The increase in balls weight in experiment B led to an increase in the
reaction rate due to a higher energy input. Based on these results, both reaction sequences
can be explained under the Ostwald’s rules of stages. These rules describe that: “states
that in a crystallization, the system moves to equilibrium from an initial high-energy state
through minimal changes in free energy, and thus implying that the least stable polymorph
must be the first isolated in any crystallization” [242]. In this context, experiment C showed
unexpected results, since the reaction sequence observed was first the formation of nic:adi
(2:1) and then Form II (metaestable polymorph) via the thermodynamically more stable
phase (Form I). This completely challenges Ostwald’s rules of stages. With this work on
mind, Friščić et al., elegantly demonstrated that the polymorphic outcome of the cocrystal
system nic:adi is strongly influenced by the nature of the jar material and the balls used.

In another interesting investigation, Guerain et al., demonstrated that cocrystal poly-
morphism can be observed in the system S or RS-ibuprofen (S-ibp or RS-ibp) with nicoti-
namide (nic). [243] According to the authors, the polymorphic outcome depends on the
synthetic method used. It should be noted that previously both cocrystal S-ibp:nic and
RS-ibp:nic were reported by Berry et al. [244] and Guerain et al., synthesized both cocrystals
using the following methods: (1) milling under dry conditions, (2) melting at 100 ◦C and
then the mixture was cooled down and then recrystallized (isothermal and non-isothermal
processes), and (3) slow evaporation (ethanol). From the results obtained by PXRD or
Raman spectroscopy (for further information about this technique, consult Section 3.3),
in both cocrystals obtained from methods 1 and 3, the spectral and diffraction informa-
tion obtained are almost identical. However, the analytical information obtained from
method 2 exhibited differences compared with 1 and 3. It is noteworthy that the analyt-
ical results observed in the solid form (hereafter Form B) produced by methods 1 and
3 are in agreement with that reported by Berry et al. [244]. This evidence indicated that
the solid form obtained from method 2 (Form A) is a cocrystal polymorph of the Form
B. Hence, additional PXRD experiments were performed with the products of the room
temperature and 100 ◦C procedures. According to the diffraction results, both cocrystals
obtained by methods 1 and 3 remained as Form B until melting. After cooling down from
the melting process, both cocrystals were found to be in an amorphous form. The solid
form obtained from method 2 corresponds to Form A being slightly different from Form
B. This Form A is transformed into Form B at 65 ◦C, and above 80 ◦C, the solid form
is melted. Further analytical studies by DSC and Raman spectroscopy were performed.
The Raman analysis revealed a subtle polymorphic transformation not detected in DCS
experiments. Despite DSC techniques being the more suitable technique to analyze phase
transitions, non-detection of the polymorphic transformation was observed, suggesting
that both Forms are slightly different from an energetically point of view. Since the poly-
morphic transformation was not detected by DSC, analysis by low-wave number Raman
experiments under similar thermal conditions employing the same calorimetric technique
(DSC) led to the observation of two-step successive mechanism. From recrystallization
experiments (method 2, isothermal and non-isothermal), it was first observed the formation
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of Form A via a nano/microcrystalline state. Being the second step, the transformation
of Form A into Form B. It was observed that transformation of Form A into Form B upon
heating via the two-step mechanism exhibited very weak changes in the hydrogen bond
networks of the participant intermediates. This work thus demonstrated the crucial role of
the H-bonding organizations on the cocrystal formation mechanisms.

Finally, in another interesting study, Dudek et al., prepared, by ball-milling using
methanol as an additive, a ternary cocrystal system starting from a binary cocrystal system.
Evaluation of the possible pathways involved suggests a non-concerted mechanism [245].
The components involved were barbituric acid (BA), thiobarbituric acid (TBA), and 1-
hydroxy-4,5-dimethyl-imidazole 3-oxide (HIMO), Figure 10. Using the binary cocrystal
system BA:TBA; 1:1 as model, [246] and comilled with HIMO, the reaction was monitored
by ssNMR (for further information about this technique, consult Section 3.3), Figure 10.
Based on the results obtained, two mechanistic pathways were assumed. Pathway 1 involv-
ing a concerted process, in which, as HIMO is forming the new solid form (HIMO:TBA),
BA is simultaneously departed in a synchronized manner. Additionally, the non-concerted
Pathway 2, where it is proposed that in the intermediate stage the three components are
completely separated and subsequently HIMO:TBA is formed.

Figure 10. Schematic representation of the two proposed mechanisms behind the formation
of HIMO:TBA.

According to the ssNMR experiments and theoretical calculations, this mechanochem-
ical reaction leading to the formation of HIMO:TBA follows a non-concerted mechanism.
It is important to remark that authors indicate that both pathways are equivalent to the
mechanisms observed in organic chemistry (SN1 and SN2 reactions).

3. Cocrystal
3.1. Cocrystal Definition

For many years, there has been an intense debate in the attempt to propose a formal
definition of what a cocrystal is [18]. Thus, several variations and modifications in the
definition have been made in the last years [48]. The difficulty to have a proper definition
of a cocrystal is due to the diversity observed in the scale range-order periodicity and
composition amongst the different multicomponent solid forms of an API, Figure 1 [15,247].
Apparently, before the contributions of Aitipamula et al. [18] and Groethe [56], it was
somewhat difficult to delimitate the cut-off amongst polymorphs, solvates, hydrates,
molecular salts, polymorphs of cocrystals, etc. However, it seems that Aitipamula and
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Groethe’s approaches have had a great impact in the development of a simplistic way to
classify and differentiate all of this.

By itself, the term cocrystal is referred as a crystalline molecular complex, in which
the components are neutral species forming an adduct, otherwise it should be considered a
multicomponent salt (charged anions and cations) [248]. Thus, in a binary system (A: acid;
B: base), a salt is formed when a proton transfer exists establishing the molecular specie (A−

B+-H) [60]. Thus, from the Crystal Engineering context, the formation of multicomponent
salts comes from the combination of acids and bases, and cocrystals are not necessarily
made up from these species, Figure 11 [248]. Thus, it is noteworthy to mention three
important considerations described by Aakeröy et al., to define a cocrystal [249].

1. “Only compounds constructed from discrete neutral molecular species will be consid-
ered cocrystals. Consequently, all solids containing ions, including complex transition-
metal ions, are excluded”.

2. “Only cocrystals made from reactants that are solids at ambient conditions will be
included. Therefore, all hydrates and other solvates are excluded which, in prin-
ciple, eliminates compounds that are typically classified as clathrates or inclusion
compounds (where the guest is a solvent or a gas molecule)”.

3. “A cocrystal is a structurally homogeneous crystalline material that contains two or
more neutral building blocks that are present in definite stoichiometric amounts”.

Figure 11. Schematic representation of the formation of multicomponent salt or cocrystal or ionic cocrystal.

In addition, some authors have mentioned that the prediction of whether a cocrystal or
salt will be formed can be on basis of the ∆pKa rule [250,251]. This empirical consideration
refers that a salt is expected to be formed when a ∆pKa value between the acid and the
base is greater than 3 (∆pKa > 3), thus observing a proton transfer (A−:B+-H) [13,61,252].
Further, when the value is ∆pKa < 0, the product is a neutral cocrystal (proton is retained on
the acid). However, many cocrystallization attempts may fall in the range of 0 < ∆pKa < 3,
which will form mixed ionization states between components (proton is in-between the acid
and the base) [253]. These multicomponent forms found in this situation are denominated
salt-cocrystal continuum [48,61,254].

From these borderline concepts, apparently, the distinction between cocrystal vs. mul-
ticomponent salt is well defined. However, difficulties have emerged when the ionization
state of the charged species can change upon variations in temperature [255]. Additionally,
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few papers have reported binary systems where some multicomponent pharmaceutical
solid forms crystallize concomitantly as cocrystals and salts in the same stoichiometric
proportions [256,257]. In fact, recently, Boldyreva et al., reported that the formation of
a cocrystal or a salt is dependent of the synthetic method used [258]. Boldyreva et al.,
specifically mentioned that the binary system β-alanine (β-ala) and DL-tartaric acid (DL-
ta) in 1:1 stoichiometry is an interesting case of study since by ball-milling under liquid
assisted conditions and/or by slow evaporation crystallization, the cocrystal form can be
produced (CSD refcode: VELBIA; P21/c). However, by ball-milling under dry conditions,
the multicomponent salt is formed (CSD refcode: VELBIA01; Pı̄), Figure 12.

Figure 12. Formation of different multicomponent solid forms (β-ala + DL-ta; 1:1) depending on the
synthetic method used: (a) cocrystal (plane bc; CSD refcode: VELBIA) and (b) multicomponent salt
(plane bc; CSD refcode: VELBIA01).

Aitipamula et al., indicate that the FDA definition of a cocrystal is ambiguous: “solids
that are crystalline materials composed of two or more molecules in the same crystal
lattice” [18]. Therefore, they proposed a more ample and broader definition: “cocrystals
are solids that are crystalline single-phase materials composed of two or more different
molecular and/or ionic compounds generally in a stoichiometric ratio” [18]. Recently,
Zhang et al., redefined the term cocrystal in an attempt to achieve a more uniform definition:
“a cocrystal is a single-phase crystalline solid composed of two or multiple components in
a stoichiometric ratio, and the components of a cocrystal can be atoms, molecules, anions,
and cations in pairs, and/or metallic cations with free electrons shared [259].” According
to this definition, cocrystals can be subdivided in five groups depending of the type of
the components and their interactions in the crystal entity: atomic cocrystal, molecular
cocrystal, ionic cocrystal, metallic cocrystal, and mixed-type cocrystal [259]. It should be
noted that typically, ionic cocrystals are defined as multicomponent materials composed
from a salt (or an ionic compound) and a neutral organic molecule [57,58,260]. Ionic
cocrystals are defined in general as A+B−N where A+ is a cation, B− is an anion, and N is a
neutral molecule, Figure 11.

Thus, a straightforward form to view a pharmaceutical cocrystal is a crystalline single
phase where in the crystal lattice of an API is incorporated another neutral component denominated
coformer (cocrystallizer agent or cocrystal former) in a specific stoichiometric ratio [55,58]. In this
context, the incorporation of a coformer alters the physicochemical and biological properties
of the parental API (e.g., solubility, thermal stability, dissolution rate, bioavailability)
without any covalent modification [57]. Both API/coformer are held together by non-
covalent interactions (van der Waals contact forces, π-π interactions, and/or hydrogen
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bond). The coformer to be incorporated in the crystal lattice of an API must be selected as a
pharmaceutical molecule accepted, Generally Recognized as Safe (GRAS) [57,261]. On the
other hand, agglutination of two or more APIs into one unit dose yields the formation of a
drug–drug cocrystal also known as multidrug cocrystal [227]. Recently, the preparation
of drug–drug cocrystals has gained a lot of interest in combination therapy [57,262]. The
importance of these multidrug materials lies mainly in their potential activity in the
treatment of complex diseases which require the simultaneously administration of two
drugs [64,263,264]. Despite the potential therapeutic properties that may show drug–drug
cocrystals, few examples are found marketed (Entresto™: Valsartan sodium–sacubitril
sodium) and some are encountered in clinical trials (Esteve™: tramadol hydrochloride–
celecoxib) [20,265].

Another important point to highlight is that from the legal and regulatory perspective,
pharmaceutical cocrystals are a patentable product [266,267].

3.2. Design of Pharmaceutical Cocrystals: Selection of Appropriate API/Conformer

The ability of an API to cocrystallize in the presence of a coformer depends on diverse
parameters: stoichiometry ratio (API/coformer), solvent(s) employed, temperature, and
crystallization technique used. Usually an API is more apt to cocrystallize when possessing
donor and acceptor sites able to form reliable hydrogen bonding (supramolecular syn-
thons [268]) with the coformer [14,269]. The selection of an appropriate coformer is mainly
on basis of hydrogen bond propensities, molecular recognition, and innocuousness (GRAS),
nevertheless these considerations do not guarantee the formation of the cocrystal [12,270].
For the design of pharmaceutical cocrystals, there are two approaches: (1) identification
of complementary sites of the API and the coformer to form reliable hydrogen bonds,
and (2) the preparation of cocrystals based on high throughput screening crystalliza-
tion [5,263]. The first approach is mainly based on the precepts of the graph set theory
(Etter’s rules) [271]. The second approach may result time-consuming and expensive. In
addition, the help of computational and informatics approaches are recurrently used as
tools in the prediction and selection of suitable API/coformer candidates [272–274]. Re-
cently, Aakeröy et al., reported a systematic process to find a proper selection of coformers
based on hydrogen-bond propensities using the CSD database [275].

3.3. Characterization of Pharmaceutical Cocrystals

Single crystal X-ray diffraction (SCXRD) is by far the most preferable technique to
gain information on molecular recognition, hydrogen bonding patterns, assembly and
packing of pharmaceutical cocrystals [276,277]. SCXRD is an excellent technique to make
distinction between the formation of cocrystal vs. multicomponent salts [278,279], and
salt-cocrystal continuum forms [61]. Unfortunately, in most of the cases obtaining suitable
single crystals for X-ray diffraction is not easy, and other analytical methods must be used
to gain knowledge about the formation of cocrystals.

Among these other techniques for the characterization of cocrystals, we found PXRD.
This diffraction analysis technique is extensively used for the characterization of differ-
ent multicomponent solid forms: cocrystals/salts [276,277], eutectics solid mixtures [63],
coamorphous [52], allowing to understand the structural properties of these materials.
In some cases, simulated molecular structures can be predicted from PXRD data [14].
The employment of software programs as DIFFRAC.TOPAS (Bruker AXS, Karlsruhe Ger-
many) [280] or DASH [281] help in the structural determination of molecular structures
based on Rietveld analysis.

Thermal analysis methods are of high importance in the structural characterization of
cocrystals; for instance, DSC, differential thermal analysis (DTA), and thermogravimetric
analysis (TGA) [14,276,277]. These analytical methods help to determine the formation
of new solid phases; to determine percentages of crystallinity and percentages of weight
loss, providing quantitative measurement of the associated enthalpy change, observation
of thermal transitions, and detection of polymorphism, etc. DSC can prove the formation
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of cocrystals, since the melting point determined is usually observed between the melting
temperatures of the pure components. However, some DSC cocrystal thermograms exhibit
consecutive multiple peaks. When DSC thermograms show two peaks, the first is due to
the eutectic melting and the second corresponds to the cocrystal melting. In some cases,
DSC scans may show three peaks, the first again corresponding to the eutectic melting, the
second endotherm indicates the melting of the excess of one of the components (API or
conformer) and the third corresponds to the cocrystal melting. Additionally, the appearance
of multiple peaks in DSC scans could be associated with a polymorphic transformation of
cocrystals [48].

Currently, the construction of binary phase diagrams (components A + B) based on
DSC data is fundamental to distinguish among different solid forms: eutectic mixtures,
cocrystals, solid solutions, physical mixtures, etc., Figure 13 [13,48].

Figure 13. Schematic representation of binary phase diagrams (components A + B). (a) Solid eutectic
mixture; TE: eutectic temperature. (b) Cocrystal formation; TE1 and TE2: eutectic temperatures
1 and 2. (c) Solid solution formation. (d) Physical mixture. Adapted with permission from [48],
MDPI, 2018.

The construction of binary phase diagrams are made from data obtained from DSC
scans at different compositions [282]. The formation of a binary eutectic mixture can
be proved by the observation of the characteristic V-shaped diagram (depression in the
melting point, TE: eutectic temperature, Figure 13a).

On the other hand, a pharmaceutical cocrystal has a W-shaped graph (Figure 13b). A
W-shaped diagram exhibits at least two or more eutectic points (TE1 and TE2) and among
them is found the cocrystal phase, Figure 13b [283]. Thus, the screening and detection of
pharmaceutical cocrystals [284,285], solid eutectic mixtures [286,287], solid solutions [288],
and physical mixtures (in binary systems two endotherms are observed in DSC thermo-
grams corresponding of each component) [289] can be carried out by DSC analysis.

Additionally, ternary phase diagrams (component A + component B + solvent) help
in the determination of the suitable stoichiometric ratio for the formation of a cocrystal.
These types of diagrams are employed when cocrystals are not formed in a particular
solvent due to the fact that both components exhibit incongruent solubility during solution
crystallization [48,117].
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Spectroscopic analysis is also widely used in the cocrystal characterization. According
with Pindelska et al., there are two types of spectroscopic characterization methods: vibra-
tional and nuclear magnetic resonance (NMR) [276]. Vibrational methods span from Fourier
transform infrared spectroscopy (FT-IR), Raman scattering and Terahertz spectroscopy.

Specifically, a FT-IR spectrum shows the frequency, shape, position, and intensity
of a peak related with the absorption of a vibrational mode associated with a functional
group. Raman spectroscopy on the other hand, exhibits vibrational and rotational modes
at low frequencies, mainly nonpolar functional groups that FT-IR cannot detect. Tera-
hertz time-domain spectroscopy on the other hand, records frequencies in the interval
(0.1–10 THz, which is 3.3–333.6 cm−1), where bands correspond to vibrations associated
with intermolecular interactions (hydrogen bonds, van der Waals, etc.) [276].

Another spectroscopic technique gaining relevance lately is X-ray photoelectron spec-
troscopy (XPS). This technique is capable of exhibiting the changes involved in the chemical
environment of a substance as a result of the supply of different amounts of energy (binding
energy), required to emit an electron from the nucleus at the atomic level. Fundamentally,
XPS records the binding energy (kinetic energy) of photoelectrons emitted from a sample
after being irradiated with X-rays [290,291]. XPS can distinguish between the formation
of a cocrystal or a multicomponent salt. However, although Tothadi et al., indicated that
the reliability of XPS in the distinction between a cocrystal and a multicomponent salt is
robust, the determination of a salt-cocrystal continuum is difficult to distinguish [253].

Solid-state NMR (ssNMR) is another important technique to gain more valuable
insights in the cocrystal characterization [248,276,277]. Recently, a new approach denom-
inated NMR crystallography has been developed [276]. This approach combines the
long-order data provided by PXRD and short-order data obtained by ssNMR (e.g., local
symmetry, number of molecules contained in the unit cell, orientations, and non-covalent
distances of the molecules). NMR crystallography provides a complete characterization us-
ing molecular modeling and quantum chemical to offer a prediction of the crystal structure
when structures cannot be determined by SCXRD [292].

3.4. Diverse Preparation Methods of Pharmaceutical Cocrystals

The preparation of cocrystals comprises diverse strategies: refs. [48,227,293] dissolu-
tive cocrystallization methods, antisolvent addition, slurry conversion, sublimation, vapor
digestion, hot-stage microscopy melt interface, supercritical fluids, sonic slurrying, melt
extrusion, wet compression, dry compression, microwave synthesis, and various solid-state
synthetic methods, including NG, LAG, POLAG [293], TSE [48,182,183,294,295], resonant
acoustic mixing (RAM) [296–299], ultrasound methods, etc.

TSE offers a unique opportunity not found in grinding or milling approaches because
they are difficult to scale up to manufacture large amounts of the desired cocrystal [298].
In fact, one of the benefits of TSE is that the process of crystallization can be carried out
under solventless conditions [181]. Alvarez-Núñez et al., demonstrated that TSE can be an
important method of preparation of cocrystals at the large scale by studying four different
cocrystal systems [182]. The authors emphasize that temperature and extent of mixing are
the main parameters for a successful conversion in the process. TSE equipment consists
basically of two co-/counter-rotating screws in a single barrel. By mechanical action of
screwing, the components are mixed along the length of the barrel forming cocrystals [227].

RAM is another technique that deserves to be described in this review, since within
the branches of mechanochemistry, sonochemistry considers chemical transformations
produced by the action of sound, Figure 3 [80]. RAM was born as an alternative to
mechanochemical synthesis, because the considerable amount of mechanical energy trans-
ferred from milling bodies to the sample may cause damage to particles, or large numbers of
defects into the crystalline lattice or complete amorphization. Mainly, RAM is an alternative
for the preparation of highly sensitive-explosive materials and propellants. Furthermore,
RAM is recommended when the desired outcome is required to have high crystallinity. Be-
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sides, another benefit found in the use of RAM is the scale-up possibility for the formation
of a given cocrystal [298,299].

Basically, RAM is a technique where the components are mixed intimately at high
frequency, promoting the formation of cocrystals. The acoustic energy is generated by the
action of the oscillation of springs, which induce mechanical resonance, frequency directly
transferred to the sample vessel originating local mixing zones [296].

An interesting case of the scale-up benefits of RAM in cocrystal production is reported
by Nagapudi et al. [299]. The authors carried out high throughput screening to 16 cocrystal
systems previously reported. A 96-well plate was adapted to screen the 16 cocrystal systems
using RAM. The screening experiments at each well were carried out at different conditions:
(i) components with no zirconia beads, (ii) components with water, (iii) components with
zirconia beads and water, (iv) components with ethanol, (v) components with zirconia
beads and ethanol.

According with the number of hits obtained after the screening of the 16 cocrystal
systems, the best conditions found were when solvent was added (13 out of 16). Further,
the worst conditions (3 out of 16) were when no solvent or beads were added. Under
conditions of adding beads without solvent, moderate hits were obtained (5 out of 16).
Then, Nagapudi et al., reported that solvents played a crucial role in the screening. The
use of beads and solvent showed similar results as those observed in the hits with just
the use of solvents. The liquid assisted high-throughput screening using RAM is an
effective technique to produce cocrystals. In addition, the cases where the screening were
unsuccessful could be due two factors: (i) wrong choice of solvent or (ii) no proper selection
of energy-input.

In a second experiment, the theophylline-citric acid (thp:ca) system was used as a
model. The cocrystal system thp:ca can be prepared by NG or LAG [212]. The cocrystal-
lization outcome is dependent of the conditions used. If one of the initial components is
hydrated or water is added during the grinding, the cocrystal hydrated form is obtained.
Otherwise, if both components are anhydrous or the solvent used is not water, then the
anhydrous cocrystal form is yielded. In this case, Nagapudi et al., reproduced all the above-
mentioned experiments using RAM. The experiments were carried out with 50 µL of either
ethanol or water. In addition, essays were conducted with and without beads. From these
results, it was observed that both forms can be obtained by RAM (anhydrous and hydrated).
Experiments using simultaneously beads and solvent exhibited complete conversion of the
reaction. However, essays only employing solvent, presented unreacted amounts of thp. It
was observed that addition of beads accelerates the kinetics of the conversion.

Another set of experiments were carried out evaluating η at different values (0.0, 0.25,
0.5, 1.0, and 2.0, using water). The cocrystal system used was thp and oxalic acid (ox) in a
2:1 stoichiometry. The results obtained from η = 0.0 to 1.0 showed that the reactions almost
completely led to the formation of the cocrystal thp:ox. However, when η = 2.0 exhibited
unreacted thp. It should be noted that solubility in water of thp is ~8.3 mg/mL whilst ox
is ~143 mg/mL. Under η = 2.0, probably ox is completely solubilized and thp not. It is
important to note that at η = 2.0, a significant conversion to the cocrystal thp:ox is observed,
but due to the lower solubility of thp compared to ox, this hampers the completeness
of reaction.

Besides, scale-up experiments were carried out using the cocrystal system thp:ox. For
the scale up entry at 80 g, it was observed that the successful formation of the cocrystal
depends at least on two parameters, acceleration and mixing time. For instance, the first
30 min of mixing at 60 g the conversion to the cocrystal reaches 97–98%. No perceptible
changes in conversion were detected increasing from 30 min to 6 h. In addition, increasing
to 10 h of mixing led to a similar conversion percentage as that observed at 30 min. However,
according to PXRD data, it is possible that the thp experiences polymorphism. According
to these results, an excellent balance between acceleration and mixing time is important for
the formation of the cocrystal.
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In general, Nagapudi et al., indicated that TSE and RAM are important techniques for
the scaling up of cocrystals. TSE seems not to be effective for the cocrystal screening but
provides higher shear and access to a greater temperature range than RAM. When cocrystal
formation occurred by an eutectic intermediate, TSE is more appropriate than RAM. In
scale up proportions, RAM is suitable to produce hundreds of grams to 1 kg of the desired
cocrystal while TSE is appropriate for larger manufacturing scales (various kilograms).

Michalchuk et al., reported the first in situ real-time study of cocrystal formation
by RAM using synchrotron X-ray radiation and a Resodyn LabRAM instrument [296].
The cocrystal system used as the model was carbamazepine:nicotinamide (cbz:nic 1:1;
CSD refcode: UNEZES; P21/n) [300] starting from cbz Form III + nic Form I, Figure 14.
Previously, it has been reported the cocrystallization of cbz:nic 1:1 using RAM [298].

Figure 14. Cocrystal formation of cbz:nic 1:1 (CSD refcode: UNEZES; P21/n) using RAM.

RAM experiments under dry conditions did not produce the cocrystallization product
between cbz and nic. Nevertheless, the reaction proceeded after addition of one drop of
water (ca. 20 µL). The experimental conditions of the Resodyn LabRAM instrument were
kept fixed with respect to the magnetic resonance frequency approximately 61 Hz, however,
the amplitude of the oscillation was adjusted to two acceleration values 50 and 100 G.

After 90 s of mixing of both components under 50 G using RAM, Rietveld refinement
of the in situ PXRD data indicated that the major product detected was the dihydrated form
of cbz (cbz·2H2O). The formation of cbz·2H2O implies that this is the kinetically controlled
product. Additionally, according with the Rietveld refinement, after 90 s of reaction, only
10 mol% of the cocrystal cbz:nic 1:1 is formed.

Substantial acceleration in the cocrystal formation of cbz:nic 1:1 was observed under
100 G. During the first 30 s of mixing, it was detected only traces of the initial components
and the cocrystallization occurred rapidly. Contrary to the Rietveld refinement observed at
50 G, suggesting the formation of the product cbz·2H2O, at 100 G, the dominant phase was
the cocrystal cbz:nic 1:1.

Therefore, the authors suggested that higher accelerations conditions led to a more
rapid mixing of the components. Higher accelerations promote more reaction zones
(comminution, particle–particle interfaces, surface regeneration, etc.) favoring the intimate
mixing, while at lower accelerations particles tend to be agglomerated inhibiting this
process. According to the authors, temperatures reached in situ in the sample jar at
different acceleration conditions vary slightly (ca. 40 ◦C).

Cocrystal formation by sonochemistry is another technique that is worth mention-
ing [124]. Sonochemistry is based on the formation of acoustic cavitation (formation,
growth, and implosive collapse of bubbles in liquids) caused by the action of mechanical
effects of sound. Application of ultrasound generates interruption and breaking of attrac-
tive forces between the molecules of the liquid medium, causing a considerable drop in
the internal pressure forming bubbles. Bubble collapse or collision creates unique condi-
tions: temperatures above 5000 K, pressures exceeding 1000 atmospheres, and heating and
cooling rates in excess of 1010 K·s−1 providing mechanical energy [80].

Some examples using sonochemistry for the preparation of cocrystals have been re-
ported [206,301]. It should be noted that sonochemistry processes typically proceed, adding
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a drop of solvent or under slurry conditions. Usually, all the papers reporting sonochem-
ical reactions mentioned were conducted under ultrasonic cavitation of a liquid phase
(formation of microbubles). However, recently, Roy et al., published that preparation of
cocrystals by this method can be performed under dry conditions employing an ultrasonic
cleaning bath [124]. Specifically, the report of the formation of two cocrystal systems; first,
paracetamol in the presence of caf; 4,4′-bipy or 5-nitroisophthalic acid (5-nip) each in a
1:1 ratio. Additionally, the other cocrystalline form is meloxicam:aspirin (1:1) reported
previously by Zaworotko et al. [302].

Initially, for the systems using paracetamol, each pair of solids were sonicated for
60 min in a glass vial sealed and suspended in an ultrasonic cleaning bath under dry
conditions. Analysis by PXRD of the solid forms paracetamol:caf and paracetamol:4,4′-bipy
exhibited the successful formation of the cocrystals. However, the system paracetamol:5-nip
only showed the unreacted starting components by PXRD. Another set of time-dependent
experiments were carried out to determine how the percentage of conversion towards
the cocrystal was affected. Samples of paracetamol:caf and paracetamol:4,4′-bipy were
sonicated for 15, 30, 45, and 60 min. The full conversion for the cocrystalline product in both
systems was observed only at 60 min. For the cocrystal formation of paracetamol:5-nip, it
was necessary to micronize the powders in particle size of <500 or <150 µm. Decreasing
particle size enhances the rate of reaction since the surface area was increased. Sonication
experiments using micronized powders were unsuccessful in the transformation to the
cocrystal phase. Thus, liquid assisted sonochemical irradiation (LASI, analogous to LAG)
was applied. The successful conversion into the cocrystal form paracetamol:5-nip was
observed, sonicating the powders by 60 min using methanol (1.0 mol·eq). Additionally,
experiments at different times of sonication (15, 30, and 45 min) and employing different
LASI conditions (0.25, 0.5, and 0.75 mol·eq) were carried out. The reaction at 15 min
and in the presence of 0.25 mol·eq of methanol was quantitative. Therefore, the authors
concluded that adding solvent in catalytic amounts dramatically accelerates the reaction.
Additionally, they suggested that despite the melting points of the starting materials being
high, formation of a melt as an intermediate during the reaction is not discarded.

Regarding the cocrystal system meloxicam:aspirin, produced by sonication of both
components in complete dry conditions, analysis by PXRD exhibited the formation of the
desired solid form. However, traces of the starting constituents were observed. Addition-
ally, the starting powders were micronized and sonicated by 60 min. The resulting PXRD
patterns indicated that the reaction occurred, however the crystallinity of the product was
very low. With these results, it could not be categorically concluded the formation of the
desired cocrystal. Thus, in an attempt to optimize the reaction LASI was carried out using
CHCl3 (10.0 mol·eq) sonicating by 60 min. Being these conditions enough for the complete
formation of the desired cocrystal. Thus, globally, this work demonstrated that ultrasonic
cavitation of the liquid phase (formation of microbubbles) is not necessary, since some
reactions were carried out in the absence of solvent.

3.5. Benefits of Pharmaceutical Cocrystals

Cocrystallization methods have emerged as a Crystal Engineering approach in an
attempt to modify the solid-state properties of an API without affecting its intrinsic proper-
ties [303]. The implications of these solid-state modifications by cocrystallization proce-
dures rely mainly in the improvement of properties as: solubility [47–49,304], dissolution
rate [45,46], bioavailability [55,304,305], permeability [304], tablet ability [306,307], and
thermal stability [308], or taste masking [55].

3.6. Chronological Survey of Papers Mentioning Mechanochemical Synthesis of
Pharmaceutical Cocrystals

Various scientific reports are available in the literature describing the formation of
diverse pharmaceutical cocrystals by mechanochemical methods. These mechanochemical
methods span from grinding/milling under dry or liquid assisted conditions, TSE, RAM,
impact/shear/vibratory treatment, POLAG, ILAG, etc. In this regard, Table 1 shows a
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chronological summary of the most representative publications associated with these proce-
dures. Table 1 is related with the formation of pharmaceutical cocrystal or multicomponent
salts (and all their different solid forms described in Figure 1 and Section 3.1) of the type
API + coformer or API + API forms (multidrug). In this survey, also were included natural
products (NP hereafter) instead an API. NP should exhibit pharmaceutical activity. The
survey was made using Scifinder® (Columbus, OH, USA) under the restriction search
“Liquid assisted grinding cocrystals or neat grinding cocrystals or milling cocrystals or
grinding cocrystals or grinding salt-cocrystal continuum”. The survey was made for the
period of 16 November 2020 to 5 February 2021. Patents were not included in this survey.

Table 1. Chronological summary of the most representative publications related with the formation of pharmaceutical
cocrystals or multicomponent salts by mechanochemical procedures.

API or NP + Coformer or API + API Year of
the Paper

Type of Grinding or Method of
Synthesis and Characterization

Type of
Multicomponent Form Reference

Adenine + Thymine 1993 NG/slow evaporation Cocrystal [309]

Sulfadimidine + 8 diverse Carboxylic
acids coformers 1995 NG Cocrystal [310]

Caffeine + Glutaric acid 2004 SDG Cocrystal [155]

Caffeine or Theophylline + chiral or
racemic forms D,L-tartaric acid 2006 LAG Cocrystal [311]

Ternary system Caffeine + Succinic
acid + diverse solvent guest 2006 NG/LAG/slow evaporation Cocrystal solvent [312]

Caffeine or Theophylline + citric acid 2007 NG/LAG Cocrystal [212]

Theophylline + 1,7-Heptanediamine 2007 NG Salt-Cocrystal
Continuum [61]

Nicotinamide + Mandelic acid
or Ibuprofen 2007 NG/LAG Cocrystal [313]

Carbamazepine + diverse coformers 2009 SDG/slow evaporation Cocrystal [149]

Theophylline or Caffeine + L-Malic
or L-Tartaric acid 2009 LAG/sonochemical reactions Cocrystal [206]

Meloxicam + Succinic acid or
Maleic acid 2009 SDG Cocrystal [314]

Nicotinamide + 10 diverse
dicarboxylic acids coformers 2009 Melt/NG/LAG/slow

evaporation Cocrystal [241]

Paracetamol + 13 diverse coformers 2009 NG/LAG Cocrystal [306]

2-Chloro-4-nitrobenzoic
acid + Nicotinamide 2010 LAG/slow evaporation Cocrystal [315]

Indomethacin + 30 diverse coformers 2011
LAG/Prediction of cocrystal
formation employing Hansen

solubility parameter
Cocrystal [316]

Piracetam + Citric acid or Tartaric acid 2011 NG/LAG Cocrystal [317]

Nicotinamide + five Fenamic
acid derivatives 2011 LAG/liquid assisted

sonication/slow evaporation Cocrystal [318]

Curcumin + Resorcinol or Pyrogallol 2011 LAG Cocrystal [319]

Prulifloxacin + Salicylic acid 2011 Kneading Cocrystal [320]

Furosemide + 8 diverse coformers 2012 LAG Cocrystal [321]

Acetazolamide + diverse carboxilic
acids or amide derivatives coformers 2012 LAG Cocrystal [322]
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Table 1. Cont.

API or NP + Coformer or API + API Year of
the Paper

Type of Grinding or Method of
Synthesis and Characterization

Type of
Multicomponent Form Reference

Indomethacin + Saccharin 2012 LAG Cocrystal [323]

Nitrofurantoin + 4-Hydroxybenzoic
acid or Nicotinamide or L-Proline

or Vanillic acid
2012 LAG Cocrystal [324]

Piroxicam + 20 different
carboxylic acids 2012

LAG/fast cooling and slow
cooling of a hot saturated

solution/precipitation with an
antisolvent/slow

evaporation/melting

Cocrystal/cocrystal
hydrate/coamorphous [325]

Meloxicam + diverse carboxylic acids 2012 SDG Cocrystal [326]

DL-Malic acid + L-Tartaric acid and
L-Malic acid + DL-Tartaric acid 2012 LAG Cocrystal [327]

Andrographolide (NP) + Vanilin or
Vanillic acid or Salicylic acid

or Guaiacol
2013 LAG Cocrystal [328]

α- or γ-Glycine + 7 carboxylic
acids coformers 2013 NG/spray drying/fast and slow

anti-solvent techniques
Cocrystal/

multicomponent salt [329]

Racemic Praziquantel + diverse
aliphatic dicarboxylic acids coformers 2013 LAG/slurry method Cocrystal [330]

Carbamazepine + Saccharin and
Nicotinamide + Suberic acid 2013 LAG Cocrystal [200]

L-Serine (anhydrous or monohydrate)
+ Oxalic acid (anhydrous or dihydrate) 2014

NG/LAG/slow
evaporation/precipitation on

antisolvent crystallization

Multicomponent
salt/multicomponent salt
hydrate/multicomponent

salt polymorph

[331]

Trospium chloride + diverse
carboxylic acid coformers 2014 NG/LAG/slurry method/slow

evaporation Cocrystal [332]

AMG 517 + Sorbic acid 2014 Ball-milling/TSE Cocrystal [294]

Caffeine + Anthranilic acid 2014 LAG Cocrystal polymorph [68]

Lenalidomide + urea or
3,5-Dihydroxybenzoic acid (1:1 and

1:2:1 monohydrate)
2014 LAG Cocrystal [333]

Ezetimibe + Methyl paraben 2014 LAG/slow evaporation Cocrystal [334]

α-Glycine + β-Malonic acid 2014
NG/LAG/Impact
treatment/shear

treatment/vibratory treatment
Multicomponent salt [335]

Stanozolol + Malonic acid or
D-Phenyllactic acid or

6-Hydroxy-2-Naphthoic Acid
2014 LAG Cocrystal [336]

Caffeine + Citric acid or Anthranilic
acid and Phenazine + Mesaconic acid 2015 LAG/POLAG Cocrystal [211]

Pyrazinamide + p-Nitrobenzoic acid 2015 LAG Stoichiometric cocrystals [337]

Theobromine + Oxalic acid 2015

NG/structure solved based on
the powder X-ray data/in situ

using synchrotron powder
X-ray diffraction

Cocrystal [338]

Theophylline + 4-Aminosalicylic acid
or 4-Aminobenzoic acid 2015 LAG/slow evaporation Cocrystal [339]
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Table 1. Cont.

API or NP + Coformer or API + API Year of
the Paper

Type of Grinding or Method of
Synthesis and Characterization

Type of
Multicomponent Form Reference

Pyrimidin-2-amine + Glutaric acid 2015 NG/slow evaporation Cocrystal/salt-
cocrystal continuum [340]

Theophylline + Benzoic acid 2015

NG/In Situ investigations of
milling reactions using

combined powder X-ray
Diffraction and

Raman spectroscopy

Cocrystal [341]

Anthranilic acid + Carbamazepine or
Salicylic acid or Theophylline and

Salicylic acid + theobromine
2015

NG/LAG/slurry
methods/competitive

milling reactions
Cocrystal [342]

Pentoxifylline + diverse carboxylic
acid derivatives or Furosemide

or L-Ascorbic acid
2015 NG/LAG/In Silico screening Cocrystal [343]

Triamterene + DL-Mandelic acid
or Saccharin 2015 LAG/slurry method Cocrystal [344]

Theophylline + o-Aminobenzoic acid
or m-Aminobenzoic acid or

p-Aminobenzoic acid
2015 LAG/slow evaporation Cocrystal [345]

Adefovir Dipivoxil + Glutaric acid 2015 LAG Cocrystal [346]

Resveratrol + 4-Aminobenzamide
or Isoniazid 2016 LAG/rapid solvent removal Cocrystal [307]

Ethionamide + Oxalic acid or Glutaric
acid or Adipic acid or Sebacic acid

or Fumaric acid
2016 LAG Cocrystal/

multicomponent salt [347]

Piroxicam + Saccharin 2016 NG/LAG/slow evaporation Cocrystal [348]

Theophylline + Benzamide 2016
LAG/solvent screening/in situ

synchrotron powder
X-ray diffraction

Cocrystal/
Cocrystal polymorph [349]

Glicazide + Malic acid or Succinic acid 2016 LAG Cocrystal [350]

Ibuprofen + Nicotinamide 2016 NG/in situ Raman spectroscopy Cocrystal [351]

Simvastatin + Malic acid 2016 LAG Cocrystal [352]

Theophylline + Benzamide 2016 NG/synchrotron X-ray powder
diffraction data Cocrystal [353]

Meloxicam +
Acetylendicarboxylic acid 2016 LAG/slow evaporation Cocrystal [354]

Theophylline + Benzamide or Benzoic
acid or Isonicotinamide 2016

NG/Competitive Cocrystal
Reactions/in situ powder

X-ray diffraction
Cocrystal [355]

Pyrazinamide + Oxalic acid 2016
NG/LAG/in situ using

combined synchrotron Powder
X-ray Diffraction and Raman

Cocrystal [356]

5-Fluorouracil + 3-Hydroxybenzoic
acid or 4-Aminobenzoic acid or

Cinnamic acid
2016 LAG/slurry method Cocrystal [357]

Lamotrigine + 4,4′-Bipyridine
or 2,2′-Bipyridine 2017 LAG Cocrystal [358]

Aripiprazole + Orcinol 2017 LAG Cocrystal [359]
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Table 1. Cont.

API or NP + Coformer or API + API Year of
the Paper

Type of Grinding or Method of
Synthesis and Characterization

Type of
Multicomponent Form Reference

Hydrochlorothiazide + Piperazine or
Tetramethylpyrazine or Picolinamide

or Isoniazid or Malonamide or
Isonicotinic acid

2017 NG/LAG Cocrystal [360]

Glicazide + Sebacic acid or
α-Hydroxyacetic acid 2017 LAG Cocrystal [361]

Praziquantel + Citric acid or Malic
acid or Salicylic acid or Tartaric acid 2017 NG/LAG Cocrystal [362]

γ-Glycine + Oxalic acid dihydrate 2017 NG/Real-time in situ X-ray
powder diffraction Multicomponent salt [363]

Mycophenolic acid + Isonicotinamide
or Minoxidil or 2,2′-Dipyridylamine 2017 LAG/slow evaporation Cocrystal [364]

Gliclazide + Catechol or Resorcinol or
p-Toluene sulfonic acid or Piperazine 2017 LAG/slow evaporation Cocrystal/

multicomponent salt [365]

Pyrazinamide + Malonic acid 2017 NG/LAG/slurry methods/In
situ Powder X-ray Diffraction Cocrystal polymorph [366]

Carbamazepine +
p-Aminosalicylic acid 2017 LAG/slurry methods/

slow evaporation Cocrystal [367]

Theobromine + Oxalic acid and
Pyrazinamide + Oxalic acid 2017 NG/LAG/in situ

Raman experiments Cocrystal [368]

Felodipine + Imidazole 2017 LAG/in situ Raman experiments Cocrystal [369]

Metformin hydrochloride +
Dehydrated disodium succinate 2017 NG/melting/slow evaporation Multicomponent salt [370]

Chlorothiazide + 13 diverse coformers 2017 LAG/slow evaporation Cocrystal/
multicomponent salt [371]

11-Azaartemisinin + 13 diverse
carboxylic acids coformers 2018 LAG Cocrystal [372]

Fluoxetine·HCl + Fumaric acid or
Benzoic acid or Succinic acid 2018 NG/LAG/solvothermal

synthesis/slow evaporation Cocrystal [373]

11-Azaartemisinin + trans-Cinnamic
or Maleic acid (1:1 and 2:1) or

Fumaric acid
2018 LAG Cocrystal [374]

Seselin (NP) + Thiourea 2018 LAG/slow evaporation Cocrystal [375]

β-Alanine + DL-Tartaric acid 2018 NG/LAG Cocrystal/
multicomponent salt [258]

Naproxen + Proline 2018 LAG
Cocrystal

polymorph/cocrystal
hydrate/cocrystal solvate

[376]

Caffeine + Dapsone 2018 Slow evaporation/LAG/
spray drying Cocrystal [377]

Theophylline + Aspirin 2018 NG/LAG/slurry
method/ternary phase diagram Multidrug cocrystal [378]

Caffeine + Citric acid or Glutaric acid 2018 ILAG Cocrystal polymorph [217]

Glipizide + Glycolic acid 2018 NG/LAG/slurry method/
slow evaporation Cocrystal [379]

Theophylline + Benzamide 2018 LAG Cocrystal polymorph [380]



Pharmaceutics 2021, 13, 790 30 of 49

Table 1. Cont.

API or NP + Coformer or API + API Year of
the Paper

Type of Grinding or Method of
Synthesis and Characterization

Type of
Multicomponent Form Reference

Diclofenac acid + L-Proline 2018 NG/LAG Cocrystal [381]

Pefloxacin + 10 diverse
dicarboxylic acids 2018 LAG/solvent evaporation

Multicomponent
salt/multicomponent salt

hydrate/salt cocrystal
[382]

Tofogliflozin + Sodium acetate or
Potassium acetate 2018 LAG Salt cocrystal [383]

Flurbiprofen + Proline 2018
LAG/in situ Variable

Temperature Synchrotron
X-ray Diffraction

Chiral cocrystal/cocrystal
solvate/stoichiometric

cocrystal/
cocrystal polymorph

[384]

Piroxicam + Succinic acid or
Methylparaben or Resorcinol 2019 LAG Cocrystal [385]

Lamotrigine + Phthalimide
or Succinimide 2019 LAG/slow evaporation/Ternary

phase diagram
Cocrystal/

Cocrystal hydrate [386]

Pyrazinamide + Pimelic acid 2019 NG/LAG/Time Resolved In situ
Powder X-ray Diffraction Cocrystal polymorph [231]

Nevirapine + p-Aminobenzoic acid 2019 NG/LAG Cocrystal [387]

Luteolin (NP) + Isoniazid or Caffeine 2019 LAG/Rapid solvent removal Cocrystal [388]

Meloxicam + Salicylic acid or Fumaric
acid or Malic acid 2019 LAG Cocrystal [389]

Oxcarbazepine + Oxalic acid or
2,5-Dihydroxybenzoic acid

or Salicylic acid
2019 LAG/slow evaporation Cocrystal [390]

α-D-Glucose + NaCl or NaBr or NaI 2019 NG/LAG Ionic cocrystal [391]

Carbamazepine + DL-Mandelic acid
or DL-Tartaric acid 2019 LAG/computational prediction Cocrystal/

cocrystal polymorph [392]

2-Pyridine-carboxaldehyde
benzoylhydrazone (hydrazone) +

Malonic acid + Succinic acid +
Glutaric acid + Mesaconic acid

2019 NG/LAG/slow evaporation
Cocrystal/cocrystal

solvate/
multicomponent salt

[393]

Betulin + Adipic acid or Succinic acid
or Suberic acid 2019 LAG Cocrystal [394]

Ciprofloxacin + Salicylic acid 2019 LAG/in situ Raman
spectroscopy experiments

Multicomponent
salt/multicomponent salt

hydrate and
solvate/salt-cocrystal

[395]

Pyrazinamide + Glutaric acid +
Isonicotinamide and

Pyrazin-2-carboxylic acid + Glutaric
acid + Isonicotinamide

2019 LAG/In situ Powder
X-ray Diffraction Ternary cocristal [396]

Pirfenidone + Fumaric acid or
Trimesic acid 2019 LAG/slow evaporation Cocrystal [397]

Glipizide + Glutaric acid 2019 NG/LAG/slow
evaporation/slurry method Cocrystal [398]

Gemfibrozil + Isonicotinamide 2019 Milling Cocrystal [399]

Salicylic acid + diverse
Imidazole coformers 2019 NG/structures were solved by

powder X-ray diffraction Multicomponent salt [400]

Caffeine + Glutaric acid 2020 NG/LAG/POLAG Cocrystal [214]
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Table 1. Cont.

API or NP + Coformer or API + API Year of
the Paper

Type of Grinding or Method of
Synthesis and Characterization

Type of
Multicomponent Form Reference

Oxyresveratrol + Nicotinamide
or Proline 2020 LAG/employing principal

component analysis Cocrystal [401]

Itraconazole + Terephtalic acid 2020 LAG Cocrystal [402]

Ciprofloxacin + Nicotinic acid or
Isonicotinic acid 2020 LAG Cocrystal [403]

Nicotinamide + Adipic acid 2020

Ball-milling LAG/Demonstration
of reversible mechanochemical

cocrystal polymorph
interconversion (stable→

metastable phase transformation).
This process can be controlled by

the choice of milling
assembly/Real-time X-ray

powder diffraction

Cocrystal polymorph [229]

Betulin + Terephthalic acid 2020 LAG Cocrystal [404]

Ciprofloxacin + Carvacrol or Thymol 2020 NG/ball-milling LAG/slow
evaporation/slurry method Cocrystal [405]

5-Fluorouracil + Kaempferol 2020 LAG/slurry method/slow
evaporation/ternary phase diagram Multidrug cocrystal [406]

Chromotropic acid +
1,10-Phenanthroline 2020 LAG/solvent evaporation Cocrystal salt hydrate [407]

Ibuprofen + Nicotinamide 2020

Ball-milling NG/melting/slow
evaporation. Detection of
cocrystal polymorphism

(2 forms). Formation of one or
another polymorph depend on

the synthetic method used.

Cocrystal polymorph [243]

Thiobarbituric acid or Barbituric
acid + 1-Hydroxy-4,5-

Dimethyl-Imidazole 3-Oxide
2020 LAG/solvent evaporation Cocrystal [408]

Telmisartan + Hydroclorothiazide 2020 LAG/slow evaporation Multidrug cocrystal [409]

Chlorothiazide + 13 diverse coformers 2020

Ball-milling LAG/Study of the
effect of grinding on

11 cocrystals an one salt in the
presence of the excipients
polyvinylpyrrolidone and
microcrystalline cellulose

Cocrystal/
multicomponent drug [410]

Nebivolol hydrochloride +
4-Hydroxybenzoic acid

or Nicotinamide
2020 LAG Cocrystal [411]

9-Ethyladenine + Malonic acid or
Succinic acid or Fumaric acid or

Glutaric acid or Adipic acid
2020 LAG/slow evaporation Cocrystal/

multicomponent salt [412]

Carbamazepine + DL-Tartaric acid 2020 LAG Cocrystal [413]

Emtricitabine +
1,2-Bis(4-pyridyl)ethane or

1,2-Bis(4-pyridyl)ethylene or
4,4′-Azopyridine or 4,4′-Bipyridine

2020 LAG Cocrystal [414]

Caffeine + Glutaric acid 2020 NG/LAG/POLAG/in situ X-ray
powder diffraction Cocrystal [214]
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Table 1. Cont.

API or NP + Coformer or API + API Year of
the Paper

Type of Grinding or Method of
Synthesis and Characterization

Type of
Multicomponent Form Reference

Cocrystal (Barbituric
acid/Thiobarbituric acid)

BA0.5TBA0.5 +
1-Hydroxy-4,5-dimethyl-

imidazole 3-oxide

2020

Ball-milling LAG/Preparation of
ternary cocrystal system

beginning from binary cocrystal
system. Evaluation of the

possible pathways involved, the
evidence suggests a

non-concerted process.

Binary and
ternary cocrystal [245]

Tinidazol + p-Aminobenzoic acid or
Citric acid or Salicylic acid 2020 NG/LAG Cocrystal [415]

Ciprofloxacin + Pyrazinoic acid or
p-Aminobenzoic acid 2020 NG/LAG Cocrystal [416]

Zaltoprofen + Nicotinamide
(1:1 or 1:2) 2020 LAG Cocrystal [417]

Metronidazole +
3,5-Dihydroxybenzoic or

3,4,5-Trihydroxybenzoic acid
2020 LAG/melt/slow evaporation Cocrystal [418]

Exemestane +
9-Hydroxyphenanthrene

and 1-Hydroxypyrene
2020 LAG Cocrystal [419]

Penciclovir + 3,5-Dihydroxybenzoic
acid or Gallic acid (1:1 or 1:1:1

hydrate) or 4-Hydroxycinnamic acid
(1:1 or 1:1:1 hydrate)

2020 LAG Cocrystal/
cocrystal hydrate [420]

Berberine chloride +
Pyromellitic dianhydride 2020 LAG

Diverse multicomponent
stoichiomorphs:
multicomponent

salt/multicomponent salt
polymorph/ionic
cocrystal hydrate

[421]

Allopurinol + Isonicotinamide or
Piperazine or

2,4-Dihydroxybenzoic acid
2020 LAG/slurry methods/

slow evaporation Cocrystal [422]

Trimethoprim + Flufenamic acid or
Tolfenamic acid or Mefenamic acid

and Sulfamethazine + Flufenamic acid
or Niflumic acid

2020 LAG/slow evaporation
Multicomponent salt

hydrate/
multidrug cocrystal

[423]

Ciprofloxacin + 4-Hydroxybenzoic
acid or 4-Aminobenzoic acid

or Gallic acid
2020 LAG Multicomponent

salt hydrate [424]

Regorafenib + Malonic acid or
Glutaric acid or Pimelic acid 2021 LAG/slurry methods Cocrystal [425]

Theobromine + Trimesic acid or
Hemimellitic acid and Caffeine +

Trimesic acid or Hemimellitic acid
2021 NG/LAG/slow evaporation Cocrystal/multicomponent

salt/cocrystal hydrate [426]

Temozolomide + Hesperetin 2021 LAG/slurry methods/
slow evaporation Multidrug cocrystal [427]

4. Conclusions

In conclusion, we have highlighted most of the benefits found in the field of the
mechanochemistry particularly in the formation of pharmaceutical cocrystals. Mechano-
chemistry offers unique opportunities in a green approach, eliminating or minimizing
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almost entirely the use of solvents. It must be noted, that mechanochemistry has an
extensive set of advantages compared with classical solution synthesis. For instance, the
selective formation of solid or polymorphic forms that would not otherwise be obtained by
solution-based synthesis. Additionally, the decrease in energy consumption, reduction in
the generation of residual solvents, etcetera.

Despite the benefits mentioned above, the emerging understanding of mechanistic
factors leading to the formation of pharmaceutical cocrystals through mechanochemistry,
has limited the use of these methods, because of the significant differences often found
between reaction outcomes compared to classical solution methods. This must trigger
further studies of these procedures with the aim of prioritizing these ecofriendly reactions.
Besides, this review makes a chronological recount of the most relevant publications dealing
with relevant studies related to mechanochemical synthesis of pharmaceutical cocrystals.

In this sense, mechanochemistry can be seen as an attractive prospective green tool,
not only for the preparation of cocrystals, but also finding many applications in other fields
(e.g., physics, chemistry, materials science).
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Abbreviations

adi Adipic acid
ana Anthranilic Acid
API Active Pharmaceutical Ingredient
α-alanine α-ala
BA Barbituric acid
BSC Biopharmaceutics classification system
4,4′-bipy 4,4′-Bipyridine
ca Citric Acid
caf Caffeine
cbz Carbamazepine
CSD Cambridge structural database
CTA Cyclohexane-1,3-cis-5-cis-tricarboxylic Acid
δ δ parameter
dabco 1,4-diazabicyclo [2.2.2]octane
DL-ta DL-tartaric acid
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DSC Differential Scanning Calorimetry
DTA Differential thermal analysis
FDA Food and drug administration
FT-IR Fourier Transform Infrared Spectroscopy
GRAS Generally recognized as safe
Glu Glutaric acid
HIMO 4,5-dimethyl-imidazole-3-oxide
IL Imidazolium based ionic liquids
ILAG Ion liquid-assisted grinding
IUPAC International Union of Pure and Applied Chemistry
LAG Liquid-Assisted Grinding
LASI Liquid-assisted sonochemical irradiation
ma Mesaconic Acid
MeNO3 Methyl nitrate
MOF Metal-organic framework
m weights of cocrystal components
NP Natural product
NG Neat Grinding
Nicotinamide nic
5-nip 5-Nitroisophtalic acid
η η parameter
ox Oxalic Acid
PEG Polyethylene Glycol
phe Phenazide
4,7-phen 4,7-phenanthroline
POLAG Polymer-Assisted Grinding
PMMA Poly(methyl methacrylate)
PXRD Powder X-ray Diffraction
RAM Resonant acoustic mixing
RS-ibp RS-ibuprofen
sa Salicylic Acid
SCXRD Single Crystal X-ray Diffraction
SDG Solvent Drop Grinding
S-ibp S-ibuprofen
ssNMR solid-state Nuclear Magnetic Resonance
ta Terephthalate
thp Theophillyne
TBA Thiobarbituric acid
TGA Thermogravimetric Analysis
TSE Twin-screw extrusion
tp Theophylline
V volume
VALAG Variable amount liquid-assisted grinding
VATEG Variable temperature grinding
XPS X-ray photoelectron spectroscopy
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Elsevier: Boston, MA, USA, 2016; Chapter 1; pp. 1–54. ISBN 978-0-12-802184-2.

97. Wang, G.-W. Mechanochemical Organic Synthesis. Chem. Soc. Rev. 2013, 42, 7668–7700. [CrossRef]
98. Beillard, A.; Métro, T.X.; Bantreil, X.; Martinez, J.; Lamaty, F. Cu(0), O2 and Mechanical Forces: A Saving Combination for Efficient

Production of Cu-NHC Complexes. Chem. Sci. 2017, 8, 1086–1089. [CrossRef]

http://doi.org/10.1016/j.addr.2015.12.009
http://doi.org/10.1039/C4CE00472H
http://doi.org/10.1107/S2052520613033167
http://doi.org/10.1021/acs.cgd.5b01628
http://doi.org/10.1021/cg4019037
http://doi.org/10.1021/cg401179s
http://doi.org/10.1039/C0CE00214C
http://doi.org/10.1107/S2053229618006861
http://doi.org/10.1039/c3ce42008f
http://doi.org/10.1016/j.addr.2017.07.008
http://www.ncbi.nlm.nih.gov/pubmed/28712924
http://doi.org/10.1016/j.tips.2012.12.003
http://www.ncbi.nlm.nih.gov/pubmed/23347591
http://doi.org/10.4172/2329-6631.1000e130
http://doi.org/10.1039/B810822F
http://doi.org/10.1039/C4FD00148F
http://doi.org/10.1039/c0jm00872a
http://doi.org/10.1002/anie.201906755
http://doi.org/10.3762/bjoc.13.186
http://doi.org/10.1021/acscentsci.6b00277
http://doi.org/10.1039/b812536h
http://doi.org/10.1002/chem.202001177
http://doi.org/10.1039/C3GC42104J
http://doi.org/10.1007/s11172-018-2321-2
http://doi.org/10.1021/acs.cgd.7b00106
http://doi.org/10.1016/j.inoche.2019.107622
http://doi.org/10.1039/C5DT03866A
http://doi.org/10.1039/C1CS15204A
http://doi.org/10.1039/C7GC03797J
http://doi.org/10.1039/C7SC05370C
http://doi.org/10.1039/c0cs00195c
http://doi.org/10.1039/c3cs35526h
http://doi.org/10.1039/C6SC03182J


Pharmaceutics 2021, 13, 790 38 of 49
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situ and Real-time Monitoring of Mechanochemical Milling Reactions Using Synchrotron X-ray Diffraction. Nat. Protoc. 2013, 8,
1718–1729. [CrossRef]

200. Halasz, I.; Puškaric, A.; Kimber, S.A.J.; Beldon, P.J.; Belenguer, A.M.; Adams, F.; Honkimäki, V.; Dinnebier, R.E.; Patel, B.; Jones,
W.; et al. Real-time in situ Powder X-ray Diffraction Monitoring of Mechanochemical Synthesis of Pharmaceutical Cocrystals.
Angew. Chem. 2013, 52, 11538–11541. [CrossRef]
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