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Abstract: The influence of meal frequency and timing on health and disease has been a topic of
interest for many years. While epidemiological evidence indicates an association between higher meal
frequencies and lower disease risk, experimental trials have shown conflicting results. Furthermore,
recent prospective research has demonstrated a significant increase in disease risk with a high meal
frequency (≥6 meals/day) as compared to a low meal frequency (1–2 meals/day). Apart from meal
frequency and timing we also have to consider breakfast consumption and the distribution of daily
energy intake, caloric restriction, and night-time eating. A central role in this complex scenario is
played by the fasting period length between two meals. The physiological underpinning of these
interconnected variables may be through internal circadian clocks, and food consumption that is
asynchronous with natural circadian rhythms may exert adverse health effects and increase disease
risk. Additionally, alterations in meal frequency and meal timing have the potential to influence
energy and macronutrient intake.A regular meal pattern including breakfast consumption, consuming
a higher proportion of energy early in the day, reduced meal frequency (i.e., 2–3 meals/day),
and regular fasting periods may provide physiological benefits such as reduced inflammation,
improved circadian rhythmicity, increased autophagy and stress resistance, and modulation of the
gut microbiota

Keywords: time-restricted feeding; fasting; meal frequency; meal timing; obesity; cardiovascular
health; diabetes

“Eat like a king in the morning, a prince at noon, and a peasant at dinner”

(Moses ben Maimon or Maimonides. 1135-1404)

1. A Brief Historical Introduction

In Western culture, it is a common idea that the daily food intake should be divided into three
square meals: breakfast, lunch, and dinner. Often dieticians suggest adding two snacks (morning and
afternoon) to help appetite control, and indeed the mainstream media message is to eat “five to six
times a day”. However, the number of meals is not a universal standard, and the traditional three
square meals are, somewhat surprisingly, a recent behaviour. As an example, the Ancient Romans
had only one substantial meal, usually consumed at around 16:00 h (coena), and they believed that
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eating more than once per day was unhealthy. Although they also ate in the morning (ientaculum)
and at noon (prandium), these meals were frugal, light and quick [1]. Later, Monastic rules influenced
common peoples’ eating behaviour. The term breakfast means “break the night’s fast”, pointing out
that it is the first meal after the evening/night devoted to prayer [2]. In the early medieval times,
monks were obliged to remain silent during meals while one of them read aloud a religious text.
One of the most-read texts was the Collationes (compilation) by Giovanni Cassiano, and it is worth
mentioning that the Italian term for breakfast is “colazione”, which is derived precisely from the Latin
word “collationes” [3]. Breakfast also became important during the industrial revolution as a meal
consumed before going to work. Dinner in its current form and timing became popular after the
widespread use of artificial light, which facilitated eating before dawn and after dark [3].

2. Meal Frequency

2.1. Epidemiological Studies about the Effects of Meal Frequency on Cholesterol, Body Weight and Diabetes

The origin of the firm belief that eating three meals per day is the better healthy choice is a mix of
cultural heritage [4–6] and early epidemiological studies [7]. The available epidemiological studies
have not primarily investigated cardiovascular diseases (CVDs), but rather some risks factors such
as cholesterol and body weight [8,9]. These studies observed a worsening of blood lipids associated
with a “gorging” (a reduced meal frequency, one or two meals daily) diet compared to “nibbling” (the
consumption of frequent smaller meals or snacks). In these early studies, authors stated that a reduced
meal frequency is associated with an increased risk of cardiovascular disease [10]. Subsequent studies
seemed to confirm these previous findings, reporting a lower age-adjusted total and LDL (low-density
lipoprotein) cholesterol in subjects who reported eating four or more meals daily, compared to those
reporting one or two [11]. The association was also confirmed after adjustment for alcohol, smoking,
systolic blood pressure, anthropometric measurements as WHR (waist to hip ratio) and BMI (body
mass index), and macronutrient intake. In a 1989 paper, authors compared a very high frequency
of meals (17) to a lower frequency (3) and found an improvement of total and LDL cholesterol
with the higher frequency; however, this particular approach is clearly atypical in ordinary life [12].
A recent study within the European Prospective Investigation into Cancer (EPIC) project showed
a lower concentration of total and LDL cholesterol in subjects reporting a higher (≥6 times/day)
meal frequency compared to those who ate 1 or 2 times a day, even when adjusted for age, BMI,
physical activity, smoking, total energy intake, and macronutrient distribution [13]. Again, a recently
published cross-sectional analysis within the prospective Seasonal Variation of Blood Cholesterol Study
in Worcester County, Massachusetts (SEASONS) showed that a frequency higher than four times per
day leads to a lower risk of obesity compared to a frequency lower than three times per day, even after
adjustment for age, sex, physical activity, and total energy intake [14].

Another large cohort study, the Malmo Diet and Cancer study, reported that eating more than
six meals per day reduces the risk of obesity compared to less than three meals daily; moreover,
after adjustment for diet and lifestyle, frequent eaters had lower waist circumference [15]. Regarding
diabetes, a 16-year follow-up study showed an increased risk of type 2 diabetes mellitus in men
who ate 1–2 times a day compared to those who ate three meals a day (relative risk RR 1.26) after
adjustments for age, BMI, and other relevant factors [16]. These data are in contrast to another study
that found no correlation between increased meal frequency and type 2 diabetes risk in women after
six years follow up (3 times a day: RR 1.09, ≥6 times a day: RR 0.99) [17]. Despite the numerous studies
examining risk factors, only one prospective cohort study investigated the relationship between meal
frequency and coronary heart disease (CHD) risk. Cahill et al. [18] found that men eating 1–2 meals
per day hadan RR for CHD of 1.10, men eating 4–5 meals per day hadan RR of 1.05, and men eating
≥6 times hadan RR 1.26, as compared to who ate three times a day after adjustment for total energy
intake, diet composition, and other risk factors. In general, conflicting results are depending on the
outcome investigated and the methodology used.
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However, as also suggested by other authors [19,20], the correlation between a reduced meal
frequency and a higher risk of CHD in these studies appears to be weak considering the cross-sectional
nature of these studies, making it difficult to establish the causality or temporality of this association.

2.2. Meal Frequency and Weight Control: One, Two, Three, or More Meals?

Obesity is a rapidly growing epidemic worldwide; its prevalence has nearly doubled in more than
70 countries since 1980. In 2015, a total of 107.7 million children and 603.7 million adults were obese [21].
Seventy-five percent of the world’s population live in countries where overweight and obesity kills
more people than underweight [22]. Obesity is one of the main risk factors for cardiovascular disease,
along with dyslipidemia and hypertension [23]. As a part of the strategies proposed for reducing
energy intake (diets, drugs, and bariatric surgery) [24] and for increasing energy output (exercise and
non-exercise movement) [25], meal timing and frequency could exert a significant influence on weight
control and weight loss. [26,27]

A very recent and extensive study published by Kahleova and colleagues [28] investigated
50,660 adult members of Seventh-day Adventist churches in the United States and Canada. The results
showed that eating one or two meals daily was associated with a relatively lower BMI compared with
three meals daily. Interestingly, they found a positive relationship between the number of meals and
snacks (more than three daily) and increases in BMI. Furthermore, the change in BMI was related to the
length of the overnight fast: the longer the overnight fast, the lower the BMI. Authors suggested that the
positive effects of such nutritional regimen are due to the combination of timing, meal frequency, and
long overnight fasting; they hypothesised different underlying reasons as an effect of satiety hormones
(leptin or ghrelin), an improvement of peripheral circadian clock (and therefore an improvement of key
metabolic regulators such as cAMP response element-binding protein), and a reduction of oxidative
damage together with a higher stress resistance [28]. These data suggest that 1–2 meals are better
than three or more, but how can we integrate these results with previous, older research? Both older
studies [9,10,12,29,30] and more recent research [31] seem to suggest that a higher meal frequency
can reduce weight gain risk; however, recent large prospective studies seem to support that frequent
snacking increases the risk of weight gain [32,33] and type 2 diabetes [16,17]. Additionally, research
investigating acute metabolic responses to differing meal frequencies may support the benefits of a
lower meal frequency. Taylor and Garrow evaluated the effects of isocaloric diets consisting of two or
six meals per day on energy expenditure measured in a metabolic chamber. The results showed no
differences during the day whilst night expenditure was significantly higher with two meals compared
with six meals [34]. On the contrary, other studies demonstrated a significantly higher basal energy
expenditure in the morning compared to the evening [35–37]. However, diurnal differences in the total
energy expenditure are not consistently found in all studies [38]. Other studies suggest that weight
gain and its metabolic consequences with a higher meal frequency are due to not only to the higher
sugar derived energy intake [39] and associated metabolic issues, but also to increased food stimuli,
hunger and desire to eat [40,41]. Thus, a regular meals pattern has potential positive effects on health
outcomes regardless of meal frequency.

Often infrequent meal pattern, i.e. a reduced meal frequency, is associated with an irregular eating
approach that could cause weight gain, increase hunger-related hormones, and ultimately lead to a
metabolic disturbance that may increase cardiovascular risk [42]. On the contrary, a lower frequency
but with regular timing may decrease weight gain risk [28].

2.3. Intervention Studies and Reciprocal Influences of Meal Frequency and Macronutrients

In addition to the effects of changing meal frequency per se, it must be considered that these
changes could also modify the overall macronutrient intake. This was demonstrated by McGrath
and Gibney, who convinced subjects who usually eat six times daily to reduce their frequency while
persuading lower frequency eaters (three times daily) to increase their frequency to six times. The
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increase of meal frequency induced a significant reduction of total and LDL cholesterol but was
coupled with a reduction of carbohydrate intake [30].

The reductions of cholesterol observed by McGrath and Gibney can be considered in light of
the current debate about the real relationship between traditional disease markers such as total
cholesterol and LDL cholesterol and CHD [43], as some have challenged the common idea that higher
blood levels of cholesterol increase stroke and other cardiovascular events [44]. It is reasonable
to assume that the mechanisms involved in cholesterol reduction may be related to cholesterol
synthesis mechanisms. We now know that insulin activates a key enzyme in cholesterol biosynthesis,
hydroxymethylglutaryl-CoA (HMGCoA) reductase (the target for statins) [45]. Even though the
discussion about the mechanisms underlying this control (AMP-activated protein kinase, increased
rate of transcription, or insulin-induced genes) [46–48], exceeds the aims of this review, it appears
consequential that an increase in blood glucose and, of consequence, of insulin will lead to increased
endogenous cholesterol synthesis [49–51]. It was demonstrated that a higher meal frequency (nibbling)
reduced insulin concentrations as compared to three meals daily [12], likely caused by a reduction in
cholesterol synthesis [29].

Apart from insulin’s action, another effect of a high meal frequency could be the increased
cholesterol removal (reverse cholesterol transport) in the postprandial phase after a meal containing
fat [52] and the inhibitory effects of cholesterol and fats on HMGCoA reductase [53]. We cannot
dismiss the effects of macronutrient composition on meal frequency, blood lipids, and insulin effects.
An increase in the number of snacks can also increase the amount of dietary protein [54]. Data suggest
that whilst there is no correlation between number of snacks and hunger [54], or at least not a positive
one [55,56], there is a greater fullness-related response with higher protein intake [41,55]. Thus, when
discussing meal frequency, it is essential to also consider, from an ecological perspective, that changing
meal frequency could also change the percentage of energy from particular macronutrients during
the day. Moreover, substituting carbohydrates/sugars with protein in the snacks could change the
outcome of low or high-frequency meals studies [39]. Finally, it is important to underline that meal
frequency alone could not explain its effects on health’s outcomes. The contrasting data about meal
frequency and health could be explained by the fact that, often, a reduced number of meals reflects an
incorrect distribution: skipping breakfast, light lunch, and a high-calorie dinner or a very low number
of meals (i.e., 1–2) could lead to poor metabolic control [16]. Moreover, the meal frequency effects are
strictly related to meal timing and macronutrients uptake. At the moment the available data about the
effects of nibbling (small, frequent meals) compared to gorging (large, infrequent meals) on isoenergetic
conditions [57] provide conflicting results, probably due to the above-mentioned confounding factors.

3. Meal Timing

3.1. Epidemiological Data on Meal Timing: Breakfast or Not Breakfast, This Is The Question

When considering meal frequency and timing, which meals are maintained or removed is not
a minor issue. Generally speaking, those who consistently eat breakfast have a lower risk of weight
gain compared to those who skip breakfast; moreover, those eating their largest meal at lunch or
dinner have a greater risk of an increased BMI [28]. Moreover, Cahill et al. in 2013 discovered
an interesting association between coronary heart disease (CHD) risk and frequency of consuming
breakfast. Authors reported data coming from 51,529 healthy males (monitored from 1992 up to
2008) and concluded that “eating breakfast was associated with significantly lower CHD risk” [18]. Both
dinner and breakfast skipping increased 24-h energy expenditure, concomitant with a longer fasting
period, but skipping breakfast may elicit higher postprandial insulin concentrations and increased fat
oxidation, suggesting a metabolic inflexibility that may lead to low-grade inflammation status and
impaired glucose homeostasis [58]. In general, available data suggest that if there are health-promoting
effects of reducing meal frequency, there may be differential effects of skipping breakfast versus
dinner (i.e., evening fasting before an overnight fast vs. an overnight fast followed by continued
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morning fasting). Moreover, it has been suggested that late eating is related to increased risk of obesity
and CHD [59] and also that a “grazing” eating pattern is related to higher total energy intake and
later night-time food consumption [60]. Finally, there is a consensus about the association between
breakfast consumption and CHD. Cahill et al. [18] published a large prospective study from the Health
Professionals Follow-up Study on 26,902 American men aged 45 to 82 years. They found that men
who skipped breakfast had a 27% higher risk of CHD compared with men who regularly ate breakfast
(RR 1.27; 95% confidence interval CI 1.06–1.53). Additionally, eating late at night led to a 55% higher
CHD risk (RR 1.55; 95% CI 1.05–2.29) compared to an earlier dinner.

3.2. Intervention Studies and Meal Timing: Inner Clock Mechanisms

Furthermore, Jakubowicz et al. [61] demonstrated that an isocaloric diet differing in the
distribution of calories during the day (i.e., high calorie in the morning vs. high calorie in the evening)
could influence weight loss, serum ghrelin, insulin resistance indices, and subjective appetite feeling in
overweight/obese women. The results confirmed the positive effects of consuming more calories earlier
in the day, including through breakfast consumption, and the correlation between meal timing and
body weight. However, it should be noted that some evidence has failed to support the importance of
breakfast consumption for body weight change in free-living adults. Dhurandhar et al. [62] conducted
a randomized controlled trial that assigned 309 overweight and obese adults to either eat breakfast
or skip breakfast for 16 weeks. Despite high compliance with the assigned programs, they found
that breakfast consumption did not produce weight loss relative to breakfast skipping. On the
contrary, regarding cardiovascular health, Uzhova and collaborators found that skipping breakfast
was associated with an increased risk of non-coronary and generalized atherosclerosis independent of
conventional CVD risk factors in a sample of middle-aged asymptomatic individuals [63]. Moreover,
Betts and colleagues showed that both lean and obese adults expend less energy during the morning
when remaining in the fasted state than after consuming breakfast [64–66].

The opposite (i.e., the negative effects of late dining) is not so conclusive. Even though a recent
meta-analysis demonstrated an association between evening energy consumption and higher BMI,
they concluded that because of high heterogeneity it is difficult to draw conclusions about the effect of
large evening dinner on weight control [67].

An important consideration related to early versus late feeding is the influence of feeding on the
internal circadian clock [68–71]. The body circadian timing system is composed by a central clock in
the hypothalamic suprachiasmatic nucleus and by different peripheral tissue clocks. The circadian
clock system is involved in many metabolic rhythms including glucose and lipids. Whilst central
clock dictates food intake, energy expenditure and insulin sensitivity, peripheral/tissues clocks carry
out an additional control. For instance, the peripheral clock in the gut regulates glucose absorption
and peripheral clocks in the adipose tissue and liver regulate their insulin tissue sensitivity while
another peripheral clock in the pancreas regulates insulin secretion. Also lipids biosynthesis and
catabolism are regulated in different tissue by a local molecular clock as demonstrated by recent studies
on metabolomics and lipidomics.

It is well-known that disruption of central and or peripheral circadian clocks could promote
obesity and CHD in many organisms [72]. Almost all species have developed an internal cellular clock
mechanism, sensitive to the light and dark phases of a day, which allows animals to anticipate and
to adapt to the changes in the environmental conditions linked to light and darkness. Early research
performed in the 1970s identified the suprachiasmatic nucleus (SCN) as the main biological clock. The
SCN regulates not only sleep-wake cycles but also many other physiological variables such as body
temperature, blood pressure, hormone secretion, and behavioural variables. These circadian rhythms
allow the organism to adapt to the environment and to be prepared for the different demands of daily
life. For example, the morning increase of cortisol prepares the cardiovascular system for the upcoming
day’s activities, and thus disruption of the circadian cortisol rhythm and the consequent cardiovascular
impairment could lead to an increased risk of cardiovascular events in the early morning [73]. Another
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important marker of the internal clock is melatonin. Melatonin is strongly regulated by light/dark
cycle with high levels during the night in all vertebrates. This fundamental rhythmic endocrine signal
for darkness in the body is controlled by the master clock in the SCN and mainly by the Period gene
(Per1) that has been shown to cycle rhythmically in the pineal gland [74]. For instance, McHill et al. [75]
found that, on average, obese individuals consumed most of their calories an hour closer to melatonin
onset (biological marker of impending sleep onset) compared to lean individuals.

Also different physiological functions exhibit circadian rhythm: for example glucose tolerance
changes during the day showing a poorer glycaemic control in the evening and at night in healthy
adults. These changes are influenced by diurnal rhythms in β-cell responsiveness, insulin clearance,
and peripheral insulin sensitivity, whilst hepatic insulin sensitivity seems to be less important.
However, the circadian rhythm and the inner clock mechanism could be affected by different factors
such as light exposure, sleep/wake, physical activity, and food intake. Actually, meal timing is one
of the main factors that might influence these physiological functions and, therefore, various health
outcomes and body weight control [76]. Meal timing influences either the central master clock (SCN)
or peripheral cellular clocks, including Bmal1, Clock, Per1/2, Cry1/2, Rev-erbα/β, Rorα/β, Dbp,
Dec1/2, CK1ε/δ, and NPAS2 [74,77].

It is important to underline that peripheral tissues show proper circadian rhythms and cellular
clocks. Central and peripheral clocks work together and they are also influenced by food availability.
Indeed, regular feeding patterns may synchronize human peripheral clocks and delayed meals could
instead influence plasma glucose rhythm but not insulin rhythm [78].

Many genes whose expression is not cyclic may start to follow a circadian rhythm under the
pressure of nutritional challenge that modulates PPARs (besides their circadian rhythm) activating
many genes by cyclic chromatin recruiting.

Even though the mechanisms underlying the effects of meal timing on health outcomes remain
obscure, some hypotheses (Figure 1) can tentatively be presented:

(1) Food timing that is out of sync with light/dark cues could induce higher caloric intake due to
impaired satiety mechanisms through leptin and ghrelin [79]. Even other hormones involved in
metabolism control are affected by circadian misalignment as thyroid hormones [80].

(2) Alteration of gene expression in genes that are associated with evening eating preference and
weight loss resistance e.g.,SIRT1, CLOCK 3111T/C, and Perilipin1 [81,82]

(3) Modification of resting energy expenditure: feeding time may affect energy expenditure/basal
thermogenesis as core body temperature is controlled by circadian clocks. For example, Rev-erbα
is a cellular circadian clock that controls the rhythmic expression of uncoupling protein 1 (UcP1),
a fundamental factor for brown adipose tissue thermogenesis [83].

(4) Differences throughout the day in diet-induced thermogenesis (DIT): DIT decreases from morning
to night [35,36,84], and some have suggested that “Such circadian thermogenesis could reasonably
explain increases in the body mass of persons who skip breakfast” [85].

(5) Circadian clocks influence also insulin resistance through glucose absorption, muscle, fat
tissue, and liver insulin sensitivity [86] and food intake or nutritional challenge influence,
in turn, circadian clock. Indeed shift workers, transcontinental travelers and people with
irregular work schedules often show gastrointestinal symptoms as alterations in bowel habits,
constipation, and diarrhoea. These examples indicate that some intestinal functions are
rhythmically regulated and that their disruptions lead to health disorders. It was demonstrated
that Clock (a peripheral cellular clock) regulates nutrient absorption through the expression of
many nutrient transport proteins in the intestine e.g., GLUT2, GLUT5, and Pept1 (a major
protein involved in the transport of small peptides from the intestinal lumen to intestinal
epithelial cells). However, other external factors could influence the internal clock. For example,
NAD+ (nicotinamide adenine dinucleotide) levels are influenced by nutritional status and/or
physical activity. NAD+ influences the SIRT1-dependent deacetylase that activates, through
deacetylation, the clock genes BMAL1 (brain-muscle-arnt-Like-protein 1) and PER2 (Period
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gene 2). Nicotinamide phosphoribosyltransferase (NAMPT) a downstream of BMAL1, has an
oscillatory behaviour, therefore modulating the intracellular concentration of NAD+. Thus, in
a feedback loop, NAD+ concentration regulates SIRT1 that modulates nuclear factors such as
PPARγ (peroxisome proliferator-activated receptor gamma) and cofactors as PGC-1α (peroxisome
proliferator-activated receptor gamma coactivator 1-alpha) with many effects on different tissues
e.g., on hepatic glucose homeostasis (PGC-1α) or adipose tissue lipid mobilization (PPARγ).
In general, a regular availability of food (regular meal timing) influences the release, from the
gut, of different signals. It has been suggested that signals coming from intestine inform the
dorsomedial hypothalamus (DMH) about food availability. Thus, DMH might influence other
tissue and regulate food anticipation, digestion, and absorption. Thus, even though circadian
genes expressed by gut play an important role, there is some evidence that food, per se, is an
important regulator of food entrainment through Clock activity.
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4. Reducing Meal Frequency: The Case for Time Restricted Feeding

The Importance of Fasting: What’s New?

If the potential health-promoting effects of less frequent eating are considered sufficient for
implementation of this dietary strategy, is consuming one daily meal equivalent to the consumption of
two daily meals? In this case, the answer is not merely “less is better”: reducing food intake to only
one meal per day may worsen the positive effect of lower meal frequency [87,88]. Therefore, the intake
of two (or three) meals per day is perhaps the best option, and the difference between two or three
could depend on the length of the daily fasting period they produce.

Much research in recent years suggests a positive health effect of a wide temporal fasting window
during the day, i.e., limiting daily food intake to a ~6–8 h time window seems to induce, in humans,
many health benefits compared to the normal daily meal distribution (i.e.,three to five meals, spread
from breakfast to late dinner), even in isocaloric conditions [89]. It is clear that fasting, in general, exerts
many positive effects on health [90], with some features in common with the caloric restriction (CR)
approach (protects against diabetes, cancers, heart disease, and neurodegeneration; reduces obesity,
hypertension, asthma, and rheumatoid arthritis).
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During a typical CR protocol, the daily energy intake is chronically reduced by 20–40%, but
meal frequency is maintained. It is well known that CR is a viable tool for health improvement:
both animal studies [91] and human research [92,93] showed that this approach could improve many
health-related variables.

However, we have to consider the experimental setting of the ab libitum diet and the CR condition
to which it is compared in animal experiments. Often, in animal models, the CR condition influences
fasting duration. In these experiments, animals in the ad lib diet have unrestricted access to food, not
only in quantity but also in frequency, whilst the CR group can only eat within a specific window,
usually determined by the researcher’s schedule. In these settings, meals are often spaced out, creating
prolonged fasting windows that could influence the outcomes [94]. This is an important issue because
fasting is a different approach than traditional CR. We consider fasting as an abstention from food
and caloric beverages for a specific interval of time, usually longer than the normal 8 h of sleep.
Alternatively, starvation refers to extreme forms of fasting, which result in nutrient deficiencies and
other chronic health problems related to the absence of appropriate nutrient intake. Starvation is,
actually, a dysregulated condition that leads to a pathological loss of homeostasis related to the
reduction in fundamental organ and tissues performance [95]. When considering the different types of
fasting programs, we can divide them into two main categories: long-term fasting (LTF) that induces
ketosis, and short-term fasting (STF) that does not lead to ketosis. LTF, i.e., fasting with accompanying
ketosis, is performed for approximately three days or more. After this period, glucose reserves
become depleted and glycogen stores are no longer sufficient to either aid in normal fat oxidation (via
oxaloacetate in the Krebs cycle) or to supply energy to the brain and central nervous system (CNS) [96].
Thus, an alternative energy source is needed to maintain the metabolism of the brain. This energy
is supplied by the ketone bodies (KBs) acetoacetate (AcAc), 3-hydroxybutyrate (3HB), and acetone,
which are generated from acetyl-CoA via a process called ketogenesis, which occurs mainly in the
mitochondrial matrix of hepatocytes [96,97]. Ketosis exerts many positive effects on metabolism and
numerous cellular pathways, such as increasing stress resistance, lipolysis, mitochondria efficiency,
and autophagy (e.g., one of the ketone bodies, b-hydroxybutyrate (D-bHB), is a natural inhibitor of
class I and IIa histone deacetylases that repress transcription of the FOXO3a -forkhead box O3 - gene).
Moreover, ketone body metabolism reduces the ROS (reactive oxygen species) toxicity through the
NADPH system [98]. However, in the context of meal timing and frequency, we want to emphasize
the role of STF, which utilizes fasts of insufficient duration to induce ketosis unless used in conjunction
with a ketogenic diet. There are several types of STF programs [99]: intermittent fasting (IF) performed
as alternate day fasting (ADF) or whole-day fasting for 1–2 days per week, periodic fasting (PF)
lasting three or more days every 2–3 weeks, and TRF (Time restricted feeding) whichallows subjects to
consume ad libitum energy intake within a defined window of time (from 3–4 h to 10–12 h) [100,101],
resulting in a fasting window of 12–21 h per day. For our purposes, we will discuss the TRF because
if the number of meals is reduced to two (i.e., breakfast and lunch), and the last meal is consumed
between 14:00 h and 16:00 h, this leads to a 12 to 16 h of fasting per 24-h period. It is also worth
noting that a substantial amount of research has been conducted during the month-long period of
Ramadan fasting observed by practicing Muslims [102]. Ramadan fasting can be considered a form
of TRF since food intake is disallowed when it is light outside. However, some notable factors make
it difficult to appropriately compare Ramadan fasting to other forms of TRF: the light/dark cycle of
eating and fasting is reversed as compared to natural circadian rhythms, the length of fasting window
varies based on geographical location and year (Ramadan is set according to the lunar calendar), and
different implementations of Ramadan fasting exist (i.e., some eat before the sun rises and after the
sun sets, while others only eat after the sun sets). Finally, nearly all studies are observational and last
only 4 weeks since this is the duration of Ramadan fasting.
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Despite the fact that the duration of fasting during Ramadan (about 16 h) would not typically
result in ketosis, it is sufficient to stimulate many of the pathway linked to long term fasting approach,
e.g., autophagy [103]. Autophagy, an intracellular process that mediates protein degradation, organelle
turnover, and recycling of cytoplasmic components, is a fundamental process to combat cellular
stress and preserve normal cell function. In heart and blood vessels, specifically, autophagy plays a
fundamental role not only during cardiac embryonic development but also for a normal cardiovascular
function. It has been suggested that many of peptides and hormones involved in cardiovascular
system physiology are also regulated by autophagy, thus “it is possible to speculate that dysregulation of
autophagy could be associated with hypertension, obesity, diabetes mellitus, and end organ damage” [104]. As
fasting stimulates autophagy, it is likely that these two factors are both related to the demonstrated
cardioprotective effect. Indeed, Godar et al. 2015 [105] demonstrated that ADF protects mice from
in-vivo ischemia-reperfusion injury, but only in wild-type animals. In mice with impaired autophagy
(heterozygous null for Lamp2 coding for lysosomal-associated membrane protein 2), there was not a
protective effect, but rather a worsening effect. Another study performed on rats showed that ADF
has a cardioprotective effect reducing cerebral infarct size and infarct expansion in a rat model of
myocardial infarction (MI) [106].

Fasting affects substrate metabolism, the cardiovascular system and inflammation, as well as
exerting potentially powerful effects on circadian rhythms.Increasing the fasting window stimulates
fat metabolism and the metabolic switch between glucose oxidation and fat oxidation. Indeed, at
between 12 and 36 h of fasting there is an increase of TG (triacylglycerol) lipolysis highlighted by the
increase of plasma FFA and glycerol [107]. The metabolic switch typically occurs in the third phase of
fasting when glycogen stores in hepatocytes are depleted and the accelerated adipose tissue lipolysis
produces an increase in plasma fatty acids and glycerol (21). The fasting period associated with IF
and TRF seems to have various positive effects on the cardiovascular system as well: they enhance
parasympathetic activity (mediated by the neurotransmitter acetylcholine) in the autonomic neurons
that innervate the heart and arteries, resulting in a reduced heart rate and blood pressure [90,108].
Furthermore, TRF could also act on inflammation levels. It is well known that inflammation is related
to CHD and atherosclerosis. We demonstrated in humans [100] that an isocaloric TRF approach may
reduce many markers of inflammation such as tumour necrosis factor a, interleukin 6, and interleukin
1b, and, at the same time, may increase adiponectin (an anti-inflammatory cytokine). As demonstrated
for late eating, fasting also seems to be involved in circadian rhythm regulation or dysregulation. It has
been demonstrated that TRF could protect mice against obesity, hyperinsulinemia, hepatic steatosis,
and inflammation when fed with a high-fat diet (HFD). The ad libitum HFD rodents also showed
altered circadian rhythmicity compared to the TRF rodents. Moreover, TRF improved CREB (cAMP
response element-binding protein), mTOR (mechanistic target of rapamycin), and AMP-activated
protein kinase (AMPK) pathway function and oscillations of the circadian clock, as well as improving
motor coordination [109]. These results could be explained through the considerable crosstalk and
the tight interaction between the cellular clocks and the signalling induced by fed/fasted state. For
example, we know that fasting, similar to a ketogenic diet, induces the phosphorylation of AMPK,
a fundamental actor in mitochondrial biogenesis and function. On the other hand, the fed state
stimulates the mechanistic target of rapamycin pathway (mTOR), which promotes anabolic processes
during increased energy availability, which could interfere with AMPK pathway. This connection
supports the tight relationship between fed/fast state and molecular pathways.

Finally, we have to underline that ketogenic diet, caloric restriction and fasting have many
pathways and targets in common as shown in Figure 2.
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Figure 2. Mechanisms involved in health effects of the ketogenic diet (KD), caloric restriction (CR), and
fasting. The size of the arrows is related to the relative effect of KD (orange), CR (blue), and fasting
(green) on the different pathways involved (IGF-1: insulin-like growth factor-1; Murf2: Muscle-specific
RING finger-2; Nf-kB:nuclear factor kappa-light-chain-enhancer of activated B cells).

5. Meal Frequency and Timing: The Microbiota Connection

We cannot conclude this exploratory review without discussing the role of meal frequency on
microbiota. In recent years, this field of research has experienced rapid growth. The collective
microbiomal organ provides many fundamental functions such as metabolic, immunological, and
infection control. In the last years the gut microbiota has been recognized as an important factor for
host general health, immunity, and also energy homeostasis. Changes in microbiota population might
cause the development of many metabolic diseases attributable to the modification of the relationship
between the bacteria and the host. Up to 100 trillion bacteria constitute the human gut microbiota with
150 times more genes (the microbiome) than the human genome. Abnormalities in gut microbiota
composition might have many effects on metabolism in adipose tissue, muscle and liver. Moreover,
the gut microbiota has been associated to many metabolic diseases such as obesity, diabetes, chronic
low-grade inflammation and, last but not least, cardiovascular disease [110].

Indeed, it has been demonstrated that the composition of microbiota might be a risk factor for
CVD. Mice studies have demonstrated the link between gut microbiota dysbiosis and the development
of hypertension and vascular dysfunction [111] while in human demonstrated a relationship between
negative changes in gut microbiota and primary hypertension has been demonstrated [112]. Gut
microbiota converts choline (derived from dietary phosphatidylcholine) to trimethylamine (TMA). In the
liver, TMA is converted in trimethylamineN-oxide (TMAO) that promotes atherosclerosis and increases
thrombosis risk through the agonist-induced platelet activation [113,114]. In conclusion, available data
strongly support the critical role of gut microbiota as a regulatory element in many CVD risk factors.

The microbiota exerts also many actions on the central nervous system, so many that it has been
coined the “gut–brain axis.” Diet composition (e.g., fat and fibre content) influences gut microbiota.
No data are available in humans concerning meal frequency, whilst some preliminary information
about food timing and microbiota are available. Changes in gut microbiota may be stimulated by
changes of diurnal feeding and sating rhythms, and it is known that a desynchronization of the
suprachiasmatic nucleus, the master clock of the brain, together with a parallel desynchronization
of the tissue circadian clocks in skeletal muscle, fat and liver may influence the risk of chronic and
metabolic diseases [115]. There is a multifaceted relationship between microbiota and food timing:
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first, intestinal epithelia cells’ internal circadian clock influences daily glucocorticoid production under
the control of the pituitary-adrenal axis, and this rhythm is influenced by microbiota status; second, an
alteration of microbiota could lead to a disrupted corticosteroid circadian rhythm influencing food
uptake. Moreover, microbiota composition has its variability during the day that could be disrupted
by a variety of conditions, for example, jet-lag [116] or high-fat diets. Not only can diet composition
exert negative effects on microbiota, but meal timing can also: consuming food outside the normal
feeding phase (eating during light time for rodents and during late night in humans) may disturb
normal peripheral and central clocks [115]. This desynchronization of internal clocks, and thus the
modification of microbiota, is associated with increased risks of metabolic and cardiovascular diseases.
Recently it has been demonstrated that a chronic circadian misalignment in mice and a time shift
jet–lag in humans induces a dysbiosis; this dysbiosis has been demonstrated to be able to promotes
glucose intolerance and obesity in a germ-free mice throughfaecal transplantation [117]. On the other
hand, maintaining a correct eating phase (diurnal for humans) and increasing the fasting period
(i.e., reducing meal frequency) could positively affect the gut microbiome, reducing gut permeability
and improving systemic inflammation. Finally, further studies are needed to explore properly the
connection between microbiota and meal frequency and timing.

6.Concluding Thoughts

In order to gain a comprehensive picture of the physiological and health effects of meal timing
and frequency, multiple lines of research must be integrated and an exploratory review seems to be,
in our opinion, the appropriate approach in order to understand, at a glance, the influence of fasting,
meal frequency, and timing on cardiovascular diseases. In addition to considering existing evidence
of meal frequency and timing per se, research on breakfast consumption, night-time eating, caloric
restriction and intermittent fasting can help provide much more awareness about the effects meals
manipulation on health outcomes. While a recent meta-analysis reported that high versus low meal
frequencies result in negligible differences in body weight and composition changes [117], many of
the experimental trials of meal frequency have not adequately considered some of the determinants
highlighted in this article which could influence these outcomes (i.e., duration of daily fasting periods
and different spacing of meals within the same meal frequency, influence of eating styles on food
choices and macronutrient intake, etc.). Additionally, beyond body weight and composition, it is likely
that different eating patterns may exert some degree of differential effects on physiological processes,
even in isocaloric conditions (Figure 2). Furthermore, the existence of different chronotypes should
be taken into account: being larks and owls [118,119], or morning types (M-types) and evening types
(E-types), might probably influence also eating behaviour and food metabolism. Even though this
classification is not new [120] only in recent years has the association between chronotypes and eating
behaviour been investigated. A recent paper by Maukonen and colleagues analysed the associations
between chronotype and intakes of energy and macronutrients in the morning and the evening in
1854 participants from the National FINRISK 2007 and FINDIET 2007 studies. They found that, in
the morning, E-types showed lower total energy and lower macronutrient intakes except for sucrose
(increased intake) compared to M-types.In the evening, E-types had higher intakes of energy, fats, and
sucrose than M-types. These data suggest that even chronotype might influence meal patterns [121]

Based on the evidence presented in this review, several interesting health-promoting
recommendations can be shared with the audience. There may be physiological benefits to consuming
a greater proportion of calories earlier in the day, which often involves breakfast consumption, as
compared to consuming a large number of calories later at night. There may also be benefits to
extending the daily fasting period beyond a standard overnight fast or implementing occasional
fasting periods. In order to reconcile these two strategies, an individual could eat from breakfast until
mid- to late-afternoon each day (Figure 3). However, it should be considered that this style of eating
may not be desirable or feasible for many individuals, as it represents a paradigm shift from traditional
eating patterns in many parts of the world.
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Additionally, due to the increased access to food associated with evening leisure time, compliance
with this recommendation may not be realistic for some. In those cases, it may be beneficial to
implement one of the health-promoting strategies (i.e., shift the consumption of most calories earlier
in the day or implement a fasting window longer than an overnight fast). The lifestyle approach
should include physical activity. Unfortunately, whilst there are few papers on physical exercise and
internal clock [122], no data are available about the reciprocal influence of meal time and frequency
and physical exercise in humans. This topic is worthy of further investigation.

While a complete picture of the impact of meal timing and frequency in various populations remains
to be elucidated, it is likely that manipulation of these variables may be useful in improving health in
the human population (Figures 4 and 5). The scientific literature provides sufficient data to suggest that
there is a substantial influence of fasting, meal frequency, and timing on health outcomes. These findings
underline that not only the food quality but also frequency and timing are crucial for optimal health.Nutrients 2019, 11, x FOR PEER REVIEW 13 of 19 
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