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Abstract: Curcumin belongs to the family of natural compounds collectively called 

curcuminoids and it possesses remarkable beneficial anti-oxidant, anti-inflammatory,  

anti-cancer, and neuroprotective properties. Moreover it is commonly assumed that 

curcumin has also been suggested as a remedy for digestive diseases such as inflammatory 

bowel diseases (IBD), a chronic immune disorder affecting the gastrointestinal tract and 

that can be divided in two major subgroups: Crohn’s disease (CD) and Ulcerative Colitis 

(UC), depending mainly on the intestine tract affected by the inflammatory events. The 

chronic and intermittent nature of IBD imposes, where applicable, long-term treatments 

conducted in most of the cases combining different types of drugs. In more severe cases 

and where there has been no good response to the drugs, a surgery therapy is carried out. 

Currently, IBD-pharmacological treatments are generally not curative and often present 

serious side effects; for this reason, being known the relationship between nutrition and 

IBD, it is worthy of interesting the study and the development of new dietary strategy. The 

curcumin principal mechanism is the suppression of IBD inflammatory compounds (NF-κB) 

modulating immune response. This review summarizes literature data of curcumin as  
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anti-inflammatory and anti-oxidant in IBD, trying to understand the different effects in  

CD e UC. 
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1. Introduction 

Curcumin, the active yellow pigment of the turmeric spice, is an herb belonging to the ginger family 

native to India and Southeast Asia. Curcumin is commonly used in Indian traditional cusine and 

medicine, especially in the treatment of biliary disorders, rheumatism and diabetic ulcers [1]. 

In more recent years, curcumin has regained interest due to its pharmacological actions and  

anti-inflammatory, anti-oxidant, anti-tumor, and anti-proliferative properties [1–6]. In addition, it is 

also known for its beneficial effects in neurological diseases by acting as a neuroprotective agent [7]. 

The principal mechanism, by which curcumin mediates these effects, is connected to the activity of 

suppression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, 

curcumin activity includes suppression of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α), 

two main cytokines that play important roles in the regulation of inflammatory responses [6]. 

For these important activities, curcumin is considered as a valid potential drug treatment in 

inflammatory bowel disease (IBD). IBD are chronic progressive diseases defined as autoimmune 

diseases implicated in aberrant and persistent inflammation of the bowel; the two main forms are the 

Crohn’s disease (CD) and the ulcerative colitis (UC). Although IBD is normally manifested in 

adulthood, it could onset in childhood even before 2 years of age (early onset child disease, EOCD). 

This early onset is typically more extensive and characterized by rapid progression, leading to severe 

repercussion on disease course. 

Nowadays there are no therapeutic strategies able to significantly alter the natural history of IBD; 

instead, the nutritional therapy holds interesting possibilities for the treatment especially considered 

that conventional pharmacological treatments are discussed for the side-effects and/or adverse events 

particularly in early onset patients. In this review we summarized literature data of curcumin principal 

activity, trying to investigate its possible role in the treatment of IBD and to understand the different 

activities performed in CD and UC. 

2. Generalities on Inflammatory Bowel Disease 

IBD is a multifactorial disorder in which complex interactions among genetic, immune, and 

environmental factors are involved and represent a group of inflammatory intestinal idiopathic and 

chronic diseases [8]. The two main forms, CD and UC, overlap as intestinal disease and differ 

precisely in the clinical, pathogenic and biomolecular features. 

UC is a chronic inflammatory disorder restricted to the colon, characterized by abdominal pain, 

mucosal ulceration, hematochezia and diarrhea. Pediatric patients may present macroscopic skin 

lesions in the colon, blackwash ileitis and extensive colitis and periappendiceal inflammation [9]. 
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CD is an inflammatory disorder affecting the gastrointestinal tract in both children and adults. All 

layers of the intestine may be involved and normal healthy bowel can be found between sections of 

diseased bowel. The inflammation can affect the entire stretch starting from the mouth to the anus and 

in more complicated cases perianal and strictures fistulas may also arise. Given the variability of the 

disease localization the possibility to make a rapid and correct diagnosis is not so easy; initially the 

diagnosis could be done by performing the endoscopic analysis of biopsies from the patient’s 

gastrointestinal tract; then, a diagnostic workup for staging the disease especially when the onset is 

very early in pediatric patients is also very important [10]. From the literature it also appears that in a 

group of pediatric patients with EOCD an upper gastrointestinal and isolated colonic involvement is 

more frequent and more evident, compared to those patients in whom the disease occurs later [11]. 

The molecular pathogenesis of IBD is not completely understood, but among contributing factors 

may be included the bacterial translocation across a defective mucosal barrier and the imbalanced 

regulation of the intestinal immune response. The patients with IBD are defined considering the 

parameters of Montreal Classification: the disease onset, the location and the behavior. On the other 

hand, however, this classification had some limiting criteria for the pediatric patients classification. On 

this purpose on the classification of Paris has been added, for pediatric classification the growth 

failure, and the disease onset before 10 years of age (Table 1) [12]. 

Table 1. Pediatric modification of the Montreal classification for inflammatory bowel 

disease: the Paris classification. 

Classification Montreal Paris 

Age at 
Diagnosis 

A1 <17 year 
A2 17–40 year 
A3 above 40 year 

A1a 0–10 year 
A1b 10–17 year 
A2 17–40 year 
A3 > 40 year 

Location 

L1 terminal ileal ± limited cecal disease 
L2 colonic 
L3 ileocolonic 
L4 only upper disease 

L1 distal 1/3 ileum ± limited cecal disease 
L2 colonic 
L3 ileocolonic 
L4a upper disease proximal to ligament of Treitz 
L4b upper disease distal to ligament of Treitz 
and proximal to distal 1/3 ileum 

Behavior 

B1 non stricturing 
non penetrating 
B2 stricturing 
B3 penetrating 
P perianal disease modifier 

B1 non stricturing 
non penetrating 
B2 stricturing 
B3 penetrating 
B2B3 both penetrating and stricturing disease, 
either at the same or different times 
P perianal disease modifier 

Growth not classified 
G0 no evidence 
G1 growth delay 



Molecules 2014, 19 21130 

 

 

2.1. Environmental Exposure and Lifestyle 

The continuing changes in environmental factors, such as lifestyle, hygiene, medication, diet, affect 

the IBD onset differently and its course and prevalence is increasing worldwide [13]. The incidence is 

low in the Pacific region, Asia, South America Africa and Eastern Europe, while is very high in both 

Northern and Western Europe and in North America. Recent studies, however, have shown an increase 

of IBD in developing countries and among emigrant populations moving to industrialized  

societies [14,15]. The interaction between environmental exposure and life styles and IBD is 

observable, e.g., in the role of hygienic conditions suggesting that less hygienic situations play a 

protective role and cleaner life conditions are associated with increased rates of IBD, because in rich 

countries there is a lower rate of enteric pathogens, hot water and sanization resources [16,17]. The 

role of the breast-feeding leads as well to different conclusions as to whether it plays a protective role 

or increases the risk by altering the gut microbiota of breast-fed infants [18–21]. 

The exposure to antibiotics may influence the risk of IBD development affecting the mechanism 

that alters the gut microbiome, especially in children [22,23]. In a study of Canadian adults the 

relationship between the onset of IBD and the amount of antibiotics taken has been confirmed [24]. 

The lifestyle factors include the living setting and the dietary choices and both may play the role of 

risk or protective factors on IBD development. In the last decades much attention has also been paid to 

the living setting, analyzing the effects of the difference between living in an urban setting or in a rural 

setting on the onset and course of IBD [25]. Exposure to industrial agents and pollution may play an 

important role increasing the risk of early onset UC and DC [26]. A dietary intake rich in meats and 

fatty foods increases the risk of CD and a diet based on vegetables, fruits, fish and olive oil was 

inversely associated with CD. The different aliments can affect the gut permeability and the 

autoinflammatory response of the mucosa through microbiota alterations [27,28]. 

All findings evaluated indicate that the relationship between the different environmental factors and 

lifestyle that can affect CD and UC and the disease onset and course is complicated and the 

relationship between environment and genetic susceptibility is still unclear. 

2.2. Genetic Involvement in IBD 

The literature increasingly suggests that IBD develops in patients with a certain genetic 

predisposition and the localization, disease progressions and response to treatments have 

characteristics that strongly depend on the age of onset [29–32]. A difficult issue is that the functional 

relevance of most of the susceptibility genes is unclear and the total of loci identified until now do not 

account for the total hereditability of IBD. Even given the unproven assumptions that these loci are 

individually causal and collectively additive, the relative risk conferred by each locus is very small and 

their overall contribution would account for only 13.6% of CD and 7.5% of UC hereditability [33]. 

This difficult issue is a problem referred to the missing heritability. In addition to the variants found 

with the GWAS studies, other genes may be involved and they could be associated with the disease as 

monogenic pattern of hereditability and this could escape the association analysis [34,35]. There is in 

addition also the problem of the missing intelligibility, as it is very difficult to define and to make 

immunological sense of all these loci and pathways, both at the cellular and molecular level. Pediatric 
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IBD onset is increasing; about 20%–25% of IBD patients develop intestinal inflammation during 

childhood and adolescence and approximately 1% of children below one year develop the disease. 

Moreover very early onset IBD has an estimated incidence of 4.37/100,000 children and a prevalence 

of 14/100,000 children [36]. 

2.3. Immune Response and IBD 

From different studies can be inferred that an imbalance of pro- and anti-inflammatory factors plays 

an important role in the pathogenesis of IBD [37,38]. Both disorders, CD and UC, are characterized by 

immunological responses against (bacterial) antigens but the type of the inflammatory reaction appears 

to be distinct. Given that in UC there exists neither predominance of interferon gamma (IFN-γ) nor IL-4, 

while it is clear the up-regulation of IL-5, we can consider it more as a Type 2 Immunity (TH2) 

disease. On the other hand, as in CD areas of active inflammation with elevated IFN-γ, IL-12 and 

tumor necrosis factor (TNF) levels are observed, CD is considered a Type 1 Immunity (TH1) disease 

prototype [39]. 

It is commonly assumed that T helper cells comprise two subsets, each having different patterns of 

cytokine production in immune responses: the TH1 and the TH2, both implicated in the regulation of 

many immune response. The TH1 cells secrete in particular IFNγ, TNFα and TNFβ and IL-2, while the 

TH2 cells secrete IL-4, IL-5, IL-6, IL-10 and IL-13 [40]. 

In their study, Pastorelli and colleagues showed an increased expression of IL-33 and IL-1 receptor 

ST2 in the serum and in the inflamed mucosa of the IBD patients. ST2 exists in two different splice 

variants leading to the synthesis of ST2L, a transmembrane receptor that confers IL-33’s biologic effects, 

and sST2, a soluble molecule that likely serves as a decoy receptor for IL-33. From their research it is 

clear that the system IL-33/ST2 is strongly activated and plays an important role in the pathogenesis of 

the IBD, also evident in patients with UC. Specifically, it was observed that during active UC, the 

accumulation of the intraepithelial and intracellular IL-33 as well as the decrease of the ST2L were 

regulated by TNF. In fact, the anti-TNF treatment of IBD patients, particularly those suffering from 

UC, modulates the levels of IL-33 and of sST2 [37]. 

A very recent study also shows that blockage of the IL-33 signal may help in the treatment of UC 

patients. Specifically this study demonstrates that IL-33 is able to induce the intestinal GATA-3 

(master regulatory gene) in the mucosa T cells, thus entrusting to IL-33 a mediating role in the 

intestinal inflammatory TH2 responses (pathological or not) [41]. 

By studying how genetic and epigenetic factors influence the age at onset and other clinical features 

of CD, it is possible to improve the understanding of the disease pathogenesis, in particular through the 

development of in vitro and ex vivo models reproducing the interaction between epithelial cells and 

microbiota. These models are fundamental to study also the development of novel therapeutic 

approaches aimed to restore a normal balance between immunity and environment. These data 

contribute to develop disease-specific cellular models based on induced pluripotent stem cells. 

Once the disease is started, complete healing is an exceptional outcome, suggesting that some 

epigenetic changes, such as DNA methylation, may stably affect the way that mucosal immunity 

respond to intestinal microbiota. Focusing on immune defects as well as excesses in the pathogenesis 

of IBD may be relevant for therapeutic approaches [42,43]. 
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3. IBD and Pharmacological Treatments 

The chronic and intermittent nature of inflammation in IBD requires long-term drug treatments in 

combination or alternation to different drugs. The first aim in treatment is to reduce symptoms and to 

induce the remission and then to maintain this remission for as long as possible. 

The severity, the presence of complications and the goal of the treatment (induction or maintenance 

of the remission) determine the choice of therapeutic line: aminosalicylates are the first line therapy for 

mild to moderate IBD; corticosteroids are preferred to use for moderate to severe disease, but are 

ineffective in the maintenance of remission [44] and then immuno-modulators which generally are not 

the elective choice due to their slow onset of action and toxicity [45]. Numerous studies have reported 

on the use of biological factors capable of manipulating the immune and inflammatory responses: 

inhibitors of T-Cell activation, anti-inflammatory cytokines (IL-10 or IL-11) and inhibitors of  

pro-inflammatory cytokines including TNF antagonists (infliximab, certolizumab pegol, etanercept, 

onercept, adalimumab, mitogen-activated protein kinases), inhibitors of PPARs, inhibitors of  

pro-inflammatory cytokine receptors (anti IL-6 receptor), inhibitors of TH1 polarization (anti-IL-2R 

antibodies, anti-IL-12, IL-18 and IFNγ) and adhesion molecule inhibitors (natalizumab) [46]. 

Although there are several potential therapeutic targets considered for the treatment of IBD, 

currently only a few biologic drugs have achieved any significant results and are approved for 

treatment, such as infliximab that has been introduced into clinical routine in the United States in 1988 

and continues to be effective. 

Adverse Effects of IBD Treatments 

The aminosalicylates are effective in controlling the inflammation, but may have adverse effects 

such as nausea, vomiting, heartburn, diarrhea and headache. The side effects of the corticosteroids are 

weight gain, acne, facial hair, hypertension, diabetes, bone mass loss and increased risk of infections. 

The use of immunosuppressant drugs (thiopurines, methotrexate, tacrolimus, thalidomide, 

cyclosporine and infliximab) is effective in the treatment of IBD (active or quiescent CD or in cases of 

steroid dependent UC), as well in pediatric patients [47,48], but these drugs are not without adverse 

effects, sometimes also serious as the case of methotrexate, which may cause dyspepsia, alopecia, 

myelosuppression, abdominal pain, headache and arthralgia [49]. Thalidomide, that acts as an inhibitor 

of TNFα synthesis, besides being a teratogen, could lead to peripheral neuropathy, dizziness and 

allergic reactions [47,50]. The use of tacrolimus has shown an elevated risk to develop adverse effects 

in UC patients, including the most common, finger tremors. The anti-TNFα molecules, including 

infliximab and adalimumab, cause reactivation of latent infections, cutaneous reactions (skin eruptions 

and macules), systemic and hematological complications, allergic events and local side effects [51,52]. 

Recently Lakatos et al., suggested that the use of biological drugs for a long time may increase the risk 

to develop malignancies such as the non-Hodgkins’s lymphoma [53]. 

It has also been seen that therapy with biological agents (anti-TNFα), as well as the use of 

immunosuppressants and/or the repeated use of corticosteroids, make patients much more susceptible 

to endemic and opportunistic infections by bacteria, fungi, parasites or pathogens viruses [54]. 
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Cyclosporine acts by inhibiting the production of IL-2 by activated T lymphocytes and it is used in 

the case of severe UC, but it is related to manifestations such as hypertension, impaired renal function 

and neurotoxicity (tremor or paresthesia), as well as minor adverse effect such as fever, headaches and 

diabetes mellitus [55]. 

As regards children and adolescents, researchers must bear in mind that the disease involves the 

physical but also the psychological level and drug treatments can affect the quality of life. Even if the 

strategies that involve the steroids use in children are preferable, one study performed in children 

suffering from Crohn’s disease has shown that a short course of polymeric diet was more effective 

then corticosteroid treatments [56]. Conventional medications used in the treatment of symptoms of 

IBD consist of anti-inflammatory and immuno-modulator drugs as summarized in Table 2 [44–54]. 

4. Curcumin: Potential and Limits 

Curcumin (diferuloymethane) is the most active component of the plant Curcuma longa, belonging 

to the family Zingiberaceae also known as turmeric, commonly employed as a natural food additive. It 

is an indigenous plant of India, but is also cultivated in other countries such as China and  

Sri Lanka [57]. Used in Indian and Chinese traditional medicine, it has been described as an  

anti-inflammatory, antioxidant, pro-apoptotic, chemopreventive, antitumor and antimicrobial 

compound, as reported in Table 3 [58–140]. 

Several studies have described the strongly link within these beneficial properties; indeed they don’t 

show different and separated effects, but they are related each other as a consequence of some specific 

characteristic. As an example, the anti-oxidant effect of curcumin and analogues was related to their 

anti-tumor and anti-inflammatory mechanism, as already described in recent studies [141–143]. 

Curcumin has been proposed to be a therapeutic molecule in various illnesses such as arthritis, 

cancer, diabetes, cardiovascular diseases, liver fibrosis, gall stone formation, neurological disease and 

inflammatory bowel disease [144,145]. The clinical development as a therapeutic drug is limited due 

to its poor aqueous solubility, poor absorption, biodistribution, rapid metabolism and fast  

elimination [146,147]. In the last years various natural and synthetic analogues of curcumin have been 

synthesized to improve bioavailability problems increasing its therapeutic potential, but their 

effectiveness is still controversial [148]. 

In spite of all this, the oral administration of the drug allows for an active level of curcumin in the 

gastrointestinal tract, making it a good candidate for the treatment of the diseases in this anatomical 

site [149–151]. 

How curcumin exerts its pleiotropic effects has been thoroughly investigated and a vast array of 

targets has been assumed to play a role in the disease pathogenesis. Some molecular targets include 

transcription factors, inflammatory cytokines, enzymes and the epigenetic modulation which modulate 

histone deacetylases, histone acetyltransferases, DNA methyltransferase I and miRNAs [80]. 
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Table 2. Characteristics of inflammatory bowel disease. 

 Localization Symptoms Cytokine Inflammation TH1/TH2 Treatments 

Crohn’s Disease 
(CD) 

Deep layers of the intestinal wall,  
the ileum,  
the first part of the colon,  
esophagus,  
stomach and duodenum 

Pain in the abdomen,  
diarrhoea,  
weight loss,  
rectal bleeding and fever 

Interferon gamma (IFN-Y),  
Interlukin 12 (IL-12),  
Tumor Necrosis Factor (TNF)

TH1 disease 

Anti-inflammation drugs, 
corticosteroids, 
immunomodulators and 
biologic treatments 

Ulcerative Colitis 
(UC) 

Inner lining of the colon (large 
interstine) and rectum 

Diarrhoea,  
abdominal cramps,  
rectal bleeding,  
frequent fever and nausea 

Interlukin 5 (IL-5),  
Interlukin 33/Interlukin 1,  
Receptor ST2 (IL-33/ST2) 

TH2 disease 

Aminosalicylates, 
corticosteroids, 
immunomodulators and 
biological treatments 

Table 3. Molecular targets of curcumin and relative effects and diseases involved. 

Targets of Curcumin Effects of Curcumin Diseases Involved 

Activation of redox-regulated transcription factor Nrf2 that induces heme 
oxygenase 1 (HO1) paraoxonase 1 (PON1) and GSH 3 [58,60–62] 

Free-radical-scavenging activity Chronic inflammatory diseases 

Inhibition of DNA-binding of STAT3 3 [63] Anti-inflammatory activity Chronic inflammatory diseases 
Reduced phosphorylation of cytosolic phospholipase A2 (cPLA2) limiting the 
arachidonic acid availability [64] 

Anti-inflammatory activity Chronic inflammatory diseases 

Reduced phosphorylation of IκB [65] Anti-inflammatory activity 
Chronic inflammatory diseases 
Cancer 

Inhibition of the transcription factor Nf-κB [65–72] 
Anti-inflammatory activity 
Anti-oxidant activity 
Tumor suppressive activity 

Chronic inflammatory diseases 
Cancer 

Inhibition of mRNA levels of COX2 and iNOS [73–76] 
Anti-inflammatory activity 
Tumor suppressive activity 

Chronic inflammatory diseases 
Cancer 
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Table 3. Cont. 

Targets of Curcumin Effects of Curcumin Diseases Involved 

Inhibition of matrix metalloproteinases MMP-9 and MMP-2 [72,77–79] 
Tumor suppressive activity 
(Anti-inflammatory activity) 

Cancer 
(Chronic inflammatory diseases) 

Inhibition of histone deacetylases (HDACs) and acetyltransferases (HATs) 
activity [80–88] 

Gene regulation Cancer 

Up-regulation and down-regulation of micro RNA (22, 199, 186, 203) [80,89–91] 
Pro-apoptotic activity 
Tumor suppressive activity 

Cancer 

Activation of caspase 3, 7, 8 and caspase 9 [92–94] Pro-apoptotic activity Cancer 
Increased cleavage of poly (ADP-ribose) polymerase (PARP) [67,95] Pro-apoptotic activity Cancer 
Up-regulation of several tumor suppressor genes [95–99] Tumor suppressive activity Cancer 

Up-regulation of different proapoptotic genes [100–103] 
Pro-apoptotic activity 
Tumor suppressive activity 

Cancer 

Inactivation of several oncogenes [104–112] Tumor suppressive activity Cancer 

Down-regulation of different antiapoptotic genes [113,114] 
Pro-apoptotic activity 
Tumor suppressive activity 

Cancer 

Inhibition of angiogenesis suppressing VEGF, Akt and PI3K [65,115–118] Tumor suppressive activity Cancer 
Inhibition of enzymes of phase I reactions [119–121] Tumor suppressive activity Cancer 
Activation of enzymes of phase II reactions [122–128] Tumor suppressive activity Cancer 
Down-regulation of androgen receptor (AR) [110,129–131] Tumor suppressive activity Cancer 
Repressed N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ [132–136] Protection from excitotoxicity Neurodegenerative diseases 
Reduced oxidative mitochondrial damage [137–140] Antioxidative activity Neurodegenerative diseases 
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In idiopathic inflammatory bowel diseases the persistent inflammation depends partially on the 

activation of NF-κB signaling cascade level or other molecular targets, as indicated in Table 3, and part 

of the pleiotropic effect of curcumin seems to due to inhibition of this pathway. In vivo and in vitro 

studies exhibit a different reaction to curcumin in both IBD form, CD and UC, probably depending on 

the kind of immune dysregulation involved, as shown in Figure 1 [152–155]. 

Figure 1. The curcumin activity in mucosal. 

 

Experimental Studies and Clinical Trials 

In their study Billerey-Larmonier et al., showed the effect of dietary curcumin in two mice strains 

(BALB/c and SJL/J) with chemically induced colitis. An improvement in the pathological condition of 

BALB/c mice, exhibiting a mixed TH1/TH2 response, was detected, while a lack of benefits was 

revealed in SJL/J mice characterized by TH1 response, suggesting a role of curcumin in regulating the 

immune response [152]. 

Other studies showed a weakened colonic inflammation in induced colitis mice and rats due to 

inhibition of NF-κB pathway, p38 mitogen-activated protein kinases (MAPK) activity and reduction of 

pro-inflammatory TH1 cytokine response, resulting in suppression of inducible nitric oxide synthase  

and lower neutrophil recruitment [156,157]. Furthermore, in mice with spontaneous development of 

intestinal inflammation the administration of the Indian spice showed a reduced inflammation in 

histological colonic pattern [158]. In the human colonic mucosa of IBD patients a reduced MAPK 

activity was detected, while IL-10 was increased and IL-1β reduced [154]. Although in mice 

experiments curcumin was administered intraparenterally, the oral administration in human patients 

highlighted improvements on the overall IBD situation, detecting however, a similar response to 

curcumin as adjuvant IBD therapy in patients with CD and UC [159,160]. The co-administration of 
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curcumin with conventional drugs was also shown to be safe and well-tolerated in IBD pediatric 

patients, and in fact no clinically significant side effects were reported [161]. 

Keeping in mind that CD is associated with a TH1/TH17 cell mediated response, while UC is 

associated with atypical TH2 response, clinical trials, unlike in vivo studies, suggest that curcumin 

could act on a common pathway shared by the two immune responses, probably NF-κB. 

To evaluate the curcumin efficacy in IBD disease a study on 10 IBD patients was conducted:  

five patients suffered from CD and five were affected by Ulcerative Proctitis, a mild form of UC. For 

this form of UC patients were administered for the first month of therapy 550 mg of curcumin twice 

daily and for the second month the same dose, but three times a day. After therapy a significant 

reduction of both the symptoms and the inflammatory indices was evident. To CD patients instead 360 

mg were administered three times per day for the first month and four times daily for the second and 

third month. Only four patients completed the study and in them an evident reduction of both the CD 

activity index and some indicative parameters was observed [162]. 

Another study was carried out in an adult woman (60 years) suffering from UC and enteropathic 

arthropathy. After having tried all medications including all possible combinations and after refusing 

treatments with biological agents because of possible side effects, she agreed to also take 500 mg of 

curcumin daily with 40 mg of prendnisone. After a year of treatment, improvements were evident to 

the extent that there were no marked ulcerations and biopsies showed a chronic inactive UC [163]. 

Considering the positive effects of curcumin obtained in these studies described above and others 

performed in patients suffering from IBD, curcumin could be an alternative and/or an additional 

treatment in controlling both CD and UC disease [151]. We report in Table 4 the main clinical trials, 

ongoing and concluded, evaluating the efficacy of curcumin in IBD. 

5. Curcumin and Inflammation 

The NF-κB transcription factor family plays a key role in several cellular functions (inflammation, 

apoptosis, cell survival, proliferation, angiogenesis and innate and acquired immunity) as well as in 

regulating the expression of more than 500 different genes involved in inflammatory and immune  

responses [155,164]. Many molecules are involved in the inflammatory response regulated by NF-κB 

pathway (e.g., TNF, IL-1, IL-6, IL-8, IL-10) as well as tissue destructive enzymes (e.g., matrix 

metalloproteinases and prostaglandins). TNF is the most promptly released cytokine upon injury  

and, through the interaction with its receptors, it regulates the production of pro-inflammatory and  

anti-inflammatory cytokines [165]. Therapies that target rate-limiting steps like TNF (such as 

infliximab), have markedly improved the autoimmune disease progression in IBD. Moreover NF-κB 

plays a pivotal role in the regulation of the adaptive phase and in the resolution of the inflammation 

through apoptosis mechanisms, including the pyroptosis IL-1β dependent one [166,167]. 

All these findings considered, the activity of curcumin in this context is very important, because it 

mediates its effects through modulation NF-κB and pro-inflammatory cytokines, such as IL-1β, TNF-α 

and IL-6 [168,169]. The transcriptional factors NF-κB as well as growth factor and growth factor receptors, 

protein kinases, adhesion molecules and enzymes are molecular targets for curcumin activity [170]. 
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Table 4. Clinical trials to assess the efficacy of curcumin in IBD. 

ClinicalTrials.gov Identifier 
Number of 

Patients (Age) 
Disease Doses of Curcumin Phase 

NCT01320436 
50  

(18 to 70 years) 

Ulcerative colitis (Disease activity score  
of >5 and ≤13 according to the Simple 
clinical colitis activity index (SCCAI) 

Patients allocated for this arm will receive 5ASA 
medication (as advised by their treating physician)  
+ 3 capsules (820 mg each) curcumin twice daily 
after meals. 

3 

NCT00889161 
11  

(8 to 18 years) 
Inflammatory bowel disease (mild 
disease or in clinical remission) [160] 

Initial dosage of 500 mg twice a day for 3 weeks. 
Using the forced dose titration design, dose will be 
titrated up to 1 g twice a day at week 3 for a total of 
three weeks and then titrated again to 2 g twice a 
day at week 6 for three weeks 

1 

NCT00793130 
30  

(18 to 75 years) 
Mild or moderate Ulcerative Colitis 

Dietary Supplement: Coltect 
Two tablets twice daily (BID) during the 2 months  
of the study. Each tablet contains 500 mg 
Curcumin, 250 mg Green tea and 100 μg 
Selenomethionine. 

Unknown 

NCT01647412 
40  

(10 to 17 years) 

Crohn’s Disease (Moderate to severely 
active CD, as defined by a PCDAI  
score >30 and <65) 

The experimental group will receive the exclusion 
diet and nutraceutical therapy (DNT) and daily 
subcutaneously administered recombinant human 
growth hormone (rhGH) for the first 26 weeks. 
After 26 weeks this group will continue on the 
exclusion diet nutraceutical therapy for the 
remaining 26 weeks of the study. 

2 

 
89  

(13 to 65 years) 
Ulcerative Colitis (patients in remission 
of disease) [148] 

Oral curcumin (2 g/day; 1 g morning and evening, 
after meals) 

Concluded 
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6. Curcumin Analogues and Nanoformulations 

This natural bioactive component has shown a wide range of biological properties and 

pharmacological actions, suggesting interesting clinical applications, but researchers must face the 

other side of the coin, that is all those factors contributing to the low bioavailability, the poor solubility 

(i.e., 0.4 mg/mL at pH 7.3) and absorption, and the rapid metabolic elimination by reduction and 

conjugation [171] causing limitations to the clinical applications. In order to solve this problem, there 

is a need to develop curcumin analogues and nanoformulations with higher metabolic stability than the 

original compound [172–174]. 

6.1. Curcumin Analogues 

Recently several studies, as those experimental in vivo evaluating the tumor cell viability, have 

demonstrated that compounds analogous to curcumin have the same beneficial properties of the original 

compound and, at the same concentration, even a better effect [175]. 

Curcumin analogues, such as dimethoxycurcumin or novel water-soluble curcumin derivatives have 

shown good pharmacological effects in metabolic disorders and in diabetes mellitus [176,177]. The 

major biochemical characteristics needed in analogues are stability, good pharmacokinetic properties, 

drug release in the correct site and decreased fluctuations [178]. Moreover recent studies support 

previous evidence that the biological activity of analogues of curcumin (as an example,  

2,5-bis(4-hydroxy-3-methoxybenzylidene)cyclopentanone) was better than that of curcumin: the 

antioxidant and anti-cyclooxygenase activities of this compound are 2- and 7-times higher, and the 

anti-inflammatory activity 5-times higher than those of curcumin at a dose of 20 mg/kg, p.o. This 

compound, indeed, potently inhibits histamine release by altering some intracellular signaling events in 

mast cells and will be a good candidate for an anti-allergic and anti-inflammatory drug [179–182]. 

6.2. Nanoformulations 

Furthermore, to overcome the low aqueous solubility of curcumin as a therapeutic agent, many 

technologies have been developed and applied. In particular several studies have described the positive 

results obtained from the design and the development of nano-sized delivery systems for curcumin, 

including liposomes, polymeric nanoparticles and micelles, conjugates, peptide carriers, cyclodextrins, 

solid dispersions, lipid nanoparticles and emulsions [183,184]. 

Literature data report preliminary promising results obtained by experimental in vitro and  

in vivo studies, through the development of specific curcumin delivery systems protecting against the 

fast degradation and targeting the inflamed colon. The compound was encapsulated in polymeric  

pH-sensitive nanoparticles to obtain a selective and specific delivery to the inflamed mucosa. Nano-sized 

drug delivery systems represent an efficacious strategy against the inflammatory system in IBD 

treatment [185,186]. In particular recent studies show the effective anti-inflammatory properties 

(myeloperoxidase activity, a measure of neutrophil infiltration, and TNFα secretion), in vitro and in vivo, 

obtained by curcuma encapsulated in polymeric pH-sensitive nanoparticles for a selective and specific 

delivery of curcumin to the inflamed mucosa [186,187]. 
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The nanoformulation that seems to be the better solution as methods to deliver the curcumin in IBD 

condition is cyclodextrin-curcumin complex: the results obtained in vitro and in vivo confirmed that 

hydroxypropyl-β-cyclodextrin-curcumin complex represents a valuable innovative therapeutic 

approach for IBD treatment [187]. Although the nanoformulations have shown a good level of safety it 

is necessary to pay attention to their potential toxicity, especially with repeated administrations at high 

dosage [176]. 

7. Conclusions 

Curcumin is a natural compound that reduces the development of chronic experimental colitis and 

alleviates the inflammatory response whose precise modes of action is still unclear, and it seems likely 

that its molecular targets differ according to cell and disease system. Several studies have 

demonstrated the promising role of curcumin as a novel therapy for children and adults with IBD. 

To date a precise understanding of the effective dose, safe regimental therapy, and mechanism of 

action for the use of curcumin in the treatment of IBD is unknown, but there is abundant evidence 

proving its effects on the NF-κB pathway and p38 MAPK in the intestinal mucosa. 

The key role played by curcumin in the diet and its implications for the quality of life of IBD 

patients should be studied because preliminary data obtained in clinical trials are very encouraging. 

The pleiotropic role of curcumin in IBD pathogenesis and range severity of phenotype is very remarkable. 

We conclude that large-scale, double-blind trials need to be conducted to establish the role of 

curcumin in the treatment of IBD. The parameters crucial to be included in the study are disease onset, 

age of patients, pharmacological assumptions and diet interaction, administration with respect to the 

inflammation phase (acute or in regression). In case of nanoformulations, clinical trials are also 

required to establish not only the efficacy, but also the safety in case of repeated use. In conclusion we 

think that it is necessary to deepen if, how and how much curcumin is useful for preventing the 

recurrence of IBD by modifying the patient’s diet in remission periods and/or for decreasing the 

mucosal inflammation in the acute phase. 
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