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Abstract: Kinetic Monte Carlo (kMC) methods have been used extensively for the study of crystal
dissolution kinetics and surface reactivity. A current restriction of kMC simulation calculations is their
limitation in spatial system size. Here, we explore a new and very fast method for the calculation of the
reaction kinetics of a dissolving crystal, capable of being used for much larger systems. This method
includes a geometrical approach, the Voronoi distance map, to generate the surface morphology,
including etch pit evolution, and calculation of reaction rate maps and rate spectra in an efficient way,
at a calculation time that was about 1/180 of the time required for a kMC simulation of the same
system size at one million removed atoms. We calculate Voronoi distance maps that are based on
a distance metric corresponding to the crystal lattice, weighted additively in relation to stochastic
etch pit depths. We also show how Voronoi distance maps can be effectively parameterized by kMC
simulation results. The resulting temporal sequences of Voronoi maps provide kinetic information.
By comparing temporal sequences of kMC simulation and Voronoi distance maps of identical etch pit
distributions, we demonstrate the opportunity of making specific predictions about the dissolution
reaction kinetics, based on rate maps and rate spectra. The dissolution of an initially flat Kossel
crystal surface served as an example to show that a sequence of Voronoi calculations can predict
dissolution kinetics based on the information about the distribution of screw defects. The results
confirm that a geometrical relationship exists between the material flux from the surface at a certain
point and the distance (or, when considering anisotropy, a function of distance) to the nearest defect.
In this study, for the sake of comparability, the calculations are made using input parameters directly
derived from the kMC models operating at the atomic scale. We show that, using values of v(rpit)
and weighting factors obtained by kMC, the resulting surface morphologies and material flux are
almost identical. This implies that discrete Voronoi calculations of starting and end points of the
dissolution are sufficient to calculate material flux maps, without the time-consuming overhead of
computing the interim reactions at the atomic-scale. This opens a promising new venue to efficiently
upscale full-atomic kMC models to the continuum macroscopic level where reactive transport and
Lattice Boltzmann calculations can be applied.

Keywords: fluid-solid reaction kinetics; kinetic Monte Carlo simulation; Voronoi distance; rate map;
rate spectra

1. Introduction

It has long been recognized that the material flux from a mineral surface during dissolution is
not homogeneous. Experimentally and analytically, fundamental information about the evolution of
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reacting surface topographies and their heterogeneity have been gained by using surface-sensitive
techniques such as atomic force microscopy, interferometry microscopy, or spectroscopy techniques
(e.g., [1–3]). Measured reaction rates in laboratory experiments differ significantly under otherwise
identical chemical conditions, often up to two to three orders of magnitude (e.g., [4,5]), indicating
intrinsic differences in crystal surface reactivity [6]. As yet, a consistent theoretical model based on a
purely mechanistic understanding of the heterogeneous distribution of surface reactivity is unavailable,
despite its critical importance in understanding processes of, e.g., mineral conversion [7] or the pore
evolution in geological structures [8]. Consequently, surface rate maps are used to analyze the spatial
heterogeneity of crystal surface reactions (e.g., [9]). Their analysis in the frequency domain by using
rate spectra shows the overall rate range and identifies important rate modes that reflect the existence
of multiple, concurrent reaction mechanisms [10,11]. Mechanistically, crystal defects such as screw
dislocations have been identified as the critical factor that constrains the surface evolution during
dissolution reactions. After the opening of the hollow cores of defect structures, the subsequent growth
of etch pits is dictated by the movement of step waves that ultimately results in complex surface
topographies [12].

Kinetic Monte Carlo simulation techniques have been used to analyze crystal surface reaction
kinetics and topography (e.g., [13–15]). The analysis of kMC simulation results using the rate spectra
concept towards an improved predictability of surface kinetics is promising [11]. However, the system
size of kMC simulations is partly limited by the time required for detailed calculations at each reaction
step. In order to overcome this restriction, we explored additional mathematical methods for the
simulation of crystal surface evolution during reactions.

The crystal surface morphology is a result of the surface reactivity pattern. Thus, a numerical
simulation method capable of predicting the evolution of crystal surface with improved efficiency
compared to classical kMC techniques would allow the prediction of surface reaction rates of
larger systems. Here, we explore Voronoi distance maps as a simulation technique for the numerical
analysis of reacting crystal surfaces (e.g., [16]). Using such maps, we evaluate the evolution of kinetic
parameters such as the material flux from the surface, the distribution and density of kink sites and
ledge sites, as well as the topography and roughness of the crystal surface. We further analyze the
correlation of Voronoi cell parameters such as the metrical distance with crystal surface parameters,
e.g., the surface height parameters, calculated using kMC techniques.

The mathematical concept of Voronoi diagrams aims at partitioning the space into space-filling
polyhedrons, based on an assemblage of generating points [17–19]. The resulting Voronoi cells are the
regions of minimum distance to those points. This concept was originally derived for the Euclidean
distance in three-dimensional space, but is not limited to it. Early crystallographic applications include
the analysis of crystal domains arising from regularly distributed sites, leading to an analysis of crystal
structure based on the identification of types of space-filling polyhedra [20]. Another crystallographic
concept using the Voronoi diagrams is the so-called Wigner–Seitz cell. Here, the lattice points of a
crystal structure serve as the generating points of such primitive cells [21]. In reciprocal space, this
type of cell is called Brillouin zone [22] and has many important applications, such as determining the
band-structure of a material and determining whether it is an insulator, semiconductor, or conductor.
While those Voronoi cell applications are based on a regular distribution of generating points and
Euclidean distance, more recent applications have focused on irregular spacing of generating points and
different metrics are used as distance. For example, Kobayashi and Sugihara [23] used multiplicatively
weighted crystal growth Voronoi diagrams and explored the example of crystal growth at different
rates. Interestingly, this study was then expanded to develop a collision-free path of a robot avoiding
enemy attacks by analysis of the boundary curves of the crystal growth Voronoi diagram. Additional
applications of Voronoi diagrams in material sciences include calculations to generate pore network
models for the simulation of the adsorption of gas in microporous materials [24], and to analyze the
melting dynamics of colloidal crystals [25].
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These applications share a common strategy of partitioning two- or three-dimensional space
into regions of influence using a so-called generator set, although different metrics and metric spaces
to operate upon are involved. Thus, the surface evolution of a dissolving crystal, impacted by the
distribution of crystal defects seems to be a promising target for the Voronoi method, given that
well-understood role of crystal defects as the “generators” of etch pits.

In this study, we explore a newly-developed Voronoi model. The crystal surface is covered by
Voronoi cells. Centers of such cells represent screw dislocations of the crystal structure. Furthermore,
the weighted Voronoi concept is used to implement reactivity contrasts into the model. For this first
kinetic evaluation of the Voronoi method, we apply a very simple crystal structure, a cubic Kossel
crystal [26,27]. We calibrate the Voronoi weighting factors by kMC results and analyze the kinetic
capabilities of the new model by using rate maps, rate spectra, and surface roughness parameters.
Using the calibrated Voronoi algorithm, we generate Voronoi distance maps of dynamic systems, such
as reacting crystal surfaces. Second, after calibration of Voronoi maps, we analyze the predictive
capabilities of the Voronoi approach. Are calibrated Voronoi systems able to provide kinetic information
similar to kMC simulation results? In order to answer this question, we compare new kMC results of
reacting crystal surfaces with Voronoi distance maps of identical reaction steps.

2. Materials and Methods

2.1. Examined System and Computational Resources

The model structure represents a simple Kossel crystal surface with a dimension of 100 × 100 atoms,
periodic boundary conditions, and a starting height of 600 atoms. The bond strength energy Φ,
normalized to the product of the Boltzmann constant kB and the temperature T, is the rate determining
parameter and was set to Φ/kBT = 5. This system does not correspond to a “real” mineral; rather it
was chosen as an example system because simple cubic Kossel crystals are the simplest imaginable
structure and thus well-suited to test a new simulation type on.

The new method needs only limited computational resources: all calculations, both kMC and
Voronoi, were carried out on the first-author’s laptop computer, a Samsung R540 notebook with Intel
Core i3 350M processor and 4 GB RAM, running under Windows 7.

2.2. Kinetic Monte Carlo Simulations

We investigated structures with screw dislocations and without point defects. The kMC simulation
considers first nearest neighbors of the atoms of the Kossel crystal. Thus, the dissolution rate R of the
Kossel atoms is solely dependent on the number of neighbors j, using the equation R(j) = exp(Φ/kBT).

Well-defined numbers of screw dislocations (ndefect = 4 and 40) are implemented as hollow cores
into the model structures with an orientation perpendicular to the surface. Hollow core positions
were randomly chosen, and defects were assumed to be infinitely long. Simulation run length was set
to 106 atoms removed in each initial simulation run. After removal of every 105 atoms, the surface
topography was stored for subsequent analysis (explained below).

A second simulation step focused on the analysis of the material flux during closing and opening
of defect structures. We applied again a defect number ndefect = 4. We utilized an already reacted
surface topography after the initial removal of 106 atoms, in order to provide a rough surface as a
starting point, since this situation reflects real systems more closely. Furthermore, we implemented a
defect structure of finite length and with varying starting height. Now, the overall number of removed
atoms was set to n = 105. This number enabled to track changes in surface topography and dissolution
flux during the transition period of deactivation of one vs. activation of another defect structure.
During the simulation runs, we analyzed the time-normalized material flux (removed atoms per time
unit) of any surface point, i.e., the rate map (a map of material flux at any position) [10] as well as the
occurrence of kink sites and ledge sites.
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2.3. Voronoi Diagrams and Distance Maps

Voronoi diagrams and distance maps are calculated using (x, y) coordinates of outcrops of screw
dislocations of the Kossel crystal surface as the generating points. While a Voronoi diagram shows
the boundaries between regions of influence of single pits, a distance map shows the actual distance
(or function of distance) to the nearest defect outcrop of each (x, y). Figure 1 shows an example of a
Voronoi diagram. In an unweighted Voronoi diagram like this, the Voronoi cell boundaries are defined
as the set of those points having the identical Euclidean distance to more than one generating point.
Our kMC calculations employ periodic boundary conditions. Thus, for a quantitative comparison,
the Voronoi cell calculations need to establish periodic boundary conditions as well. This condition was
met by providing eight copies of the model grid and arrange it in a matrix that consists of 3 × 3 model
grids in simple translation. Calculations of the Euclidean distances thus included all generating
points of the surrounding grid copies. In order to analyze the evolution of the crystal surface during
dissolution, we calculated 2D distance maps containing information about the distance of each surface
point (x, y) to the nearest defect outcrop to (x, y).

Figure 1. Visualization of a Voronoi diagram of a smooth and flat crystal surface with
four-screw dislocations.

2.4. Weighted Voronoi Diagrams

Isolated etch pits can be treated by using the simple approach of a distance map as explained above.
In this case, a simple distance function (metric) containing all the parameters that influence etch pit
shape must be obtained. In the more complex case of heterogeneous growth of multiple etch pits, an
improved Voronoi approach is required. This approach must describe the modification of Voronoi cell
shape and size to reflect the heterogeneity in behavior of the growth of etch pits. Thus, the concept
of “weighting” is applied. In addition, etch pit coalescence must also be considered. While the
opening of pits is tied to defects and hollow core opening [28], the growth of pits is a stochastic
process. kMC simulations reflect this stochastic behavior by the application of random numbers [10].
Voronoi simulations, however, implement the stochastic parameter by a range of weighting factors
(e.g., [29] and references therein). Usually, etch pits show variable distances of their cores, thus they
coalesce having different sizes [30]. This fact and the resulting variability in kink site density impact
the variability of the surface reaction rate, i.e., the variability of the material flux [31].

Weighting factors reflect this variability in Voronoi maps. Assigning a “weight” to the distance
to a certain defect means selectively modifying its distance function after some rule. It can be done
additively, multiplicatively, or any combination of both. In this case, acknowledging that it is only the
absolute depth—but not the overall shape—that distinguishes a given etch pit from others, an additive
weighting that alters only the depth at which the pit is formed is used. Here, an increase in depth
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and diameter of a pit is represented by a larger weighting factor. The respective defect length is also
parameterized in the Voronoi code. In this study, the weighting factors are obtained and calibrated
from kMC simulation results. The standard method to provide weighting factors by the kMC code is
as follows: (i) calculation of etch pit depths, (ii) calculation of average etch pit depth, (iii) compute the
ratio of etch pit depths to that of the average. The result is a set of normalized weighting factors. As a
result, the weighted Voronoi diagram is based on both the distance function and the weighting factors,
which are independent of each other.

In this study, the bond strength was chosen to be sufficiently large to generate mostly straight
steps, resulting in etch pits with essentially a square-shaped outline. To describe this shape
properly, the maximum norm was used instead of the Euclidean norm, as the latter would generate
circular iso-lines.

2.5. Surface Roughness Parameters Based on kMC vs. Voronoi Results

In this study, we apply standard roughness parameters such as the peak-to-valley depth Rt,
the root mean square roughness Rq, the interfacial area ratio F, and the average height z. For more
information about these well-established statistical parameters see [32]. We calculate these parameters
from surface topography data based on both kMC and Voronoi simulation results. We further
compare these results to quantify the differences in the evolution of surface topography using both
simulation methods.

The average height z is defined as:

z =
∑M

k=1 ∑N
l=1 z(xk, yl)

(MN)
(1)

Rt is defined as the height difference between the highest and the lowest point of the surface:

Rt = zmax − zmin (2)

Rq is defined as the standard deviation, in this case from the mean height µ of the surface:

Rq =

√√√√ 1
MN

M−1

∑
k=0

N−1

∑
l=0

[z(xk, yl)− µ]2 (3)

F is defined as the ratio of the curved surface area to the flat surface of identical field-of-view:

F =
Fm

F0
(4)

To determine the curved surface areas of both KMC-generated and Voronoi-generated surfaces, an
approximation was made using a triangulation method, summing the triangles spanned by an atom,
its right neighbor and its neighbor on the upper right and the triangles spanned by an atom, its upper
neighbor and its neighbor on the upper right.

2.6. Theoretical Considerations

To generate the height of a dissolving crystal surface by Voronoi calculations, the height H at a
given surface point (x, y) has to be plotted as a function H(r) of the distance r between (x, y) and the
nearest defect position (D1, D2). The nearest defect to (x, y) is identified as the one whose Voronoi cell
(x, y) belongs to.
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Although the exact distance functions are as yet unknown, the relationship between the stepwave
velocity and the distance from the hollow core center,

v(r)= vstep

(
1 − rcrit

r

)
(5)

can be computed from the stepwave model [12]. Here rcrit is the critical distance at which
the hollow core opens, and reflects the material, solution chemistry, saturation state and other
environmental parameters. We chose not to use the more accurate but also more complicated
formulations for the stepwave velocity also given by Lasaga and Luttge [15] including ∆G and strain
parameters, because the strain influence is largest close to the defects, where the Voronoi approach
does not make any statement anyway. This was deemed appropriate given the trial basis of this
Voronoi model.

The critical question, determining whether it is at all feasible to calculate absolute surface heights
at a given time t using kinetic parameters, is how to compute H(r) from v(r). To determine the height,
it is necessary to know how many atoms have been removed at position (x, y) after time t. Until some
critical arrival time arr(r), no steps will arrive. The critical time then denotes the initial appearance
at position (x, y) of a step generated by the defect. To compute the value arr(r), we compute the
sum of times the step spent traversing infinitesimally small intervals of the total distance traveled.
Mathematically, this corresponds to the area below the graph of the inverse values of v(r).

arr(r) =
∫ 1

v
dr (6)

As the whole velocity formula is only defined for r > rcrit, there is no validity problem and the
integral value taken between r and rcrit is

arr(r) =
rcrit × ln(r − rcrit) + r

vstep
(7)

with only positive values (r − rcrit > 0) as arguments to the logarithm. However, this treatment makes
no statement as to the behavior at very small distances, lower than rcrit. This can be deemed acceptable
under far-from-equilibrium conditions, as velocities in this region are so fast anyway that the hollow
core can be considered as opened almost immediately.

The height at time t can be calculated directly from the arrival time arr(r) as a function of the
distance r to the nearest defect, by

H(r, t) = H0 − ((t − arr(r))× v(rpit)) (8)

with H0 being the original height of the cleavage surface, and v(rpit) the global retreat rate after the
stepwave model [12], which is defined as the velocity of a single stepwave directly at the critical radius
of an etch pit. The stepwave model also assumes this to be the overall rate of step generation and,
directly following from this, also the overall velocity of surface retreat. It should be noted that the
“measured” global retreat rate in kMC simulations was not constant but showed a huge variance,
so for comparison, we fitted it instead on a case-by-case basis by changing the parameter in the
Voronoi software.

The distance r between a defect (D1, D2) and a surface position (P1, P2), as mentioned in
Section 2.4, was defined as the maximum norm.

r = max((abs(D1 − P1), abs(D2 − P2)) (9)

The resulting formula H(r,t) is now the distance function used throughout the Voronoi simulations.
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The following parameters from Table 1 were used for calibration of the distance function and
for weighting.

Table 1. Explanation of parameters used for the Voronoi calculations.

Parameter(s) Meaning Gained from Use of Parameter

a,b,c length in x, y, z directions input determine system size

α,β,γ angles between axes set to 90◦ in case of Kossel crystal matrix multiplication to be able to
depict non-cubic crystals

NumDis number of defects input
counting variable for various

calculations that have to be done for
each defect

XDis, YDis coordinates of defects input surface calculations

vstep straight step velocity manual fitting of a height function to
height data from kMC simulation

calculate critical time a step needs to
arrive at a certain point on the surface

v(rpit)

velocity minimum at the
critical radius of etch pit;
also rate at which new

stepwaves are generated

Theoretically kMC output: how many
stepwaves have been generated in a

certain timespan.
In this study: fitting parameter.

calculate surface morphology

r “distance” to nearest defect maximum norm
determine different site properties in

dependence on distance to the
nearest defect

rcrit

critical radius around a
defect. From this, stepwaves

travel outward.

manual fitting of a height function to
height data from kMC simulation determine etch pit shape and size

t
time that has passed from
the flat starting surface to

the current state

arbitrarily chosen; used for
comparison with kMC output calculate pit depths

arr(r)
time the first stepwave

needs to travel to a surface
point (x, y)

calculated from r, rcrit and vstep calculate surface morphology

H height in z direction for a
point (x, y)

calculated from c, t, arr and v(rpit) calculate etch pit shape

pitdepthavg average pit depth manual fitting of a height function to
height data from kMC simulation calculate single etch pit depths

G additive weighting factor
can be chosen arbitrarily; in this study

for comparability kMC output was
used

calculate single etch pit depths

depth depth of an etch pit c-(G × pitdepthavg) calculate surface morphology

2.7. Weighting of the Voronoi Distance Function

Voronoi distance maps are a mathematical method for the geometrical analysis of data. Using this
method for the quantitative analysis of the evolution of reacting crystal surfaces requires the
implementation of a kinetic term. Otherwise the Voronoi calculation would provide only a static
geometric description of the surface. More specifically, the introduction of the variability in etch pit
evolution of crystal surfaces into the Voronoi distance map approach depends on the weighting of the
distance map.

Here, we demonstrate different types of weighting and how they can influence a simple Euclidean
Voronoi diagram. Figure 2 illustrates the impact of weighting factors on the Voronoi cell shape and size.

As a starting point, Figure 2A shows an unweighted Voronoi diagram using Euclidean distance in
the plane. The Voronoi distance map is calculated simply by calculating the distance from each (x, y)
position in the plane to each defect, and choosing the minimum. The defect in question then defines
the Voronoi cell a point (x, y) lies in. The lines of the Voronoi diagram are theoretically defined as the
points having equal distance to at least two defects. In discretized (x, y) coordinates, boundary points
are defined as points (x, y) that possess a minimum of one direct neighbor (upper, lower, left, right)
residing in a different cell.
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An unweighted Voronoi diagram can be considered as a multiplicatively weighted Voronoi diagram
with all weighting factors set to 1, or an additively weighted Voronoi diagram with all weighting factors
set to 0.

Figure 2B shows a multiplicatively weighted Voronoi diagram of the identical crystal surface,
however, a weighting factor w = 1.1 has been assigned to the lower left defect, and w = 0.9 to the
uppermost one. These values were chosen arbitrarily for demonstration purposes. A multiplicative
weighting factor operates as a function of distance. More specifically, if a generating point P has a
given multiplicative weighting factor w then all distances to P are divided by w.

Figure 2C illustrates the additive weighting. If a generating point P has an additive weighting
factor of w in terms of Voronoi distances, then w is subtracted from all distances to P. In our example, an
additive weighting factor of 5 is assigned to the lower left generating point, resulting in the enlargement
of the corresponding cell. With this type of weighting, the variability in cell size reflects the stochastic
behavior of surface reactivity close to a defect. A small cell, generated with a low weighting factor,
reflects a defect with a small region of influence with respect to the material flux during dissolution, and
vice versa. As a consequence, the cell surrounding a defect with a larger weighting factor represents
faster (lateral and vertical) pit growth. This relationship illustrates how weighting factors encode the
variability observed in experimental and kMC studies.

Finally, Figure 2D shows results calculated using a combination of additive and multiplicative
weighting factors having a larger range compared to Figure 2B,C. This image illustrates the variation in
functions used for different types of weighting. Note that the lower left generating point in Figure 2D
has so much weight that the corresponding cell ranges across the entire system size.

Figure 2. Visualization of the impact of different types of weighting on the cell shape of a simple
Euclidean Voronoi diagram. (A) unweighted, (B) multiplicatively weighted, (C) additively weighted,
(D) a combination of additive and multiplicative weighting.

In this study, we use the maximum norm as distance. This means the distance between a point
(x, y) and a defect at position (d1, d2) is defined as max(|x − d1|, |y − d2|).

The weighting is then based on kMC results about crystal surface evolution and provides the
critical constraints to the kinetic significance of the Voronoi calculation results. We only use additive
weighting, reasoning that when etch pits evolve, only their depth changes, but not their overall shape
(which would be sensitive to multiplicative weighting). Thus, the weighting encodes the specific
reaction kinetics of the system, representing the variance in growth speed of particular etch pits. In this
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study, to gain a comparable dataset, weighting factors for the Voronoi calculations were gained from
kMC by setting the absolute depth of single etch pits relative to that of the average etch pit depth.

3. Results

To summarize the details of our approach, we analyze the capabilities of Voronoi diagrams in
terms of the quantitative analysis of crystal dissolution reactions. We utilize kinetic Monte Carlo (kMC)
simulation results for the kinetic parameterization of Voronoi diagrams. We apply kMC data of etch
pit depths after given reaction periods for the calibration of weighting factors of the Voronoi diagram,
generated from the Voronoi distance function. In so doing, we demonstrate that the prediction of the
inherently complex kinetics of surface reactions can be reduced to the problem of determining these
weighting factors. As a step forward, we show that the variability of etch pit growth and coalescence
can indeed be described by the weighting factors of Voronoi diagrams using a specific distance function.
This distance function thus encodes physicochemical and material properties of the crystal lattice and
its reacting fluid.

3.1. Comparison of Surface Topographies Simulated by kMC vs. Voronoi Techniques

Figure 3 illustrates the evolution of Kossel crystal surface topographies using kMC and Voronoi
techniques after dissolution of 1 × 106 atoms. The kMC simulation results (Figure 3A,C) were used
to calculate weighting factors for the Voronoi distance function from the depth of etch pits. Also,
the parameters of the distance function were fitted by comparison with kMC surface morphologies,
first roughly by visual comparison and then fine-tuned by comparing histograms. Figure 3B,D show
the corresponding surfaces generated by the Voronoi calculation using the weighting factors from the
kMC runs in Figure 3A,C, for relevant calibration parameters see Table 1. Figure 3E,F show the cell
boundaries of the corresponding Voronoi diagrams.

Visual comparison of kMC and Voronoi generated surfaces shows already that this parameter fit
of the distance function is able to correctly reconstruct the depth and width of etch pits, both in the
case of low versus high defect density (ndefect = 4; Figure 3A,B vs. ndefect = 40; Figure 3C,D). In the case
of high defect density, the kMC results indicate that not all defects produce etch pits. This has been
observed previously, and reflects the nature of kink site distribution. At a pit wall with high defect
density, the step velocity is comparably high, thus hindering the growth of new pits. This is illustrated
in Figure 3C where several defect outcrops without any significant pits are visible. The Voronoi model
deals with this phenomenon by assigning small weighting factors to those defects. The corresponding
Voronoi cells do not disappear but are relatively small. However, a defect may become “reactivated”
later, provided it is sufficiently long, and that growth of the corresponding pit (and Voronoi cell) are
kinetically feasible. A significant visual difference between kMC and Voronoi surface morphologies is
the smoothness of steps in the Voronoi results, reflecting the lack of stochastic events on the surface.

Due to the statistical nature of kMC simulations, no valid absolute correlation coefficients between
kMC and Voronoi calculation results can be calculated, as they would differ with each kMC run.
However, a slight tendency towards a dissimilarity in areas outside the immediate vicinity of an etch
pit at higher defect densities has been observed. Potential explanations include either an inaccuracy
in the chosen distance function or the dominance or stability of local surface plateaus related to step
bunching, complex interactions that are not yet explicitly implemented in our current Voronoi model.
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Figure 3. Comparison of Kossel crystal surface topographies after dissolution of 106 atoms using (A,C)
kMC simulation and (B,D) Voronoi techniques. Images illustrate the evolution of surface topography as
a function of screw dislocation defect density for both techniques. (A,B) four defects, (C,D) 40 defects.
The corresponding Voronoi diagrams (cell boundaries): (E) four defects, (F) 40 defects.

3.2. Defect Density, Etch Pit Coalescence and the Influence of Simulation Time

Figure 3A–D shows that the morphological similarity between kMC and Voronoi-based surfaces
decreases with higher defect densities, i.e., for more complex surfaces incorporating a higher number
of Voronoi cells and more influenced by the coalescence of etch pits. Because of this, etch pit coalescence
was treated separately, using a high bond strength to generate purely square etch pits.

Figure 4 shows coalescing square etch pits, Figure 4A for 4 defects and Figure 4B for 40 defects,
having otherwise the same parameterization as in Figure 3B,D. As there is no theoretical description
of the velocity of fast steps, in this case their velocity was assumed to be infinite (i.e., the time
required for their surface transit is zero). The actual surface will be somewhere between these and
Figure 3B,D respectively. For illustrative and statistical purposes, Figure 4C,D show the average values
of the coalesced and un-coalesced Voronoi surfaces. These images are imperfect in their representation
of step morphologies, but do define areas of etch pit coalescence observed in the kMC simulations.
It should be noted that the actual kMC results can vary significantly, so this approximation was
considered acceptable.
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Figure 5 shows an analysis of the Voronoi method’s applicability at different extents of reaction,
here represented by different numbers of removed atoms. We tested, for the system with 4 defects,
the timeframes of 105 removed atoms (Figure 5A,B) and 2 × 106 (Figure 5C,D) removed atoms, the
latter being identified as the largest possible value at which the kMC method still generally yielded
plausible results at the chosen system size and conditions. (Letting the simulation run longer sometimes
generated a feedback loop that caused artifacts. We thus avoided longer runtimes because we could
not guarantee the validity of the results).

Figure 4. Voronoi-generated surfaces with etch pit coalescence; (A) four defects, (B) 40 defects. Average
of coalesced and un-coalesced Voronoi surfaces; (C) four defects, (D) 40 defects.

Clearly, the visual similarity of kMC (Figure 5A,C) and Voronoi (Figure 5B,D) results is neither
better nor worse than the comparison for 106 removed atoms (Figures 3 and 4). This means the Voronoi
method is generally suitable at the very least for the range at which the kMC method at this system
size is valid.

All but one of the distance function parameters (disregarding the completely unrelated weighting
factors) were unchanged– except the very critical v(rpit), which seems to diverge, as seen in Table 2.
The other fitting parameters (rcrit and vstep) stayed the same, independently of simulation time.
The parameter v(rpit) is slightly different for each run (neglecting a complete variance analysis), and
becomes higher at longer simulation times. This result may indicate a change in surface reactivity
with surface roughness and kink site density. Although it is hardly surprising that reactivity, site
distribution, and topography change in lockstep with one another, the identification of a single model
parameter, whose variation can produce the spectrum of observed results while other parameters
remain fixed, is itself an interesting result warranting further examination.
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Figure 5. kMC (left) and Voronoi (right) surfaces after different numbers of removed atoms. (A,B) after
105 removed atoms, (C,D) after 2 × 106 atoms.

Table 2. The observed behavior of v(rpit) at different times, for kMC simulations of the system with
4 defects.

Number of Removed Atoms v(rpit) [Kossel Units Per Second]

100,000 3.55 × 10−9

1,000,000 3.83 × 10−9

2,000,000 3.96 × 10−9

No other irregularities or diverging parameters were observed, which means v(rpit), was the only
distance function parameter that must be re-fitted for each kMC run, which indicates a potential role
of v(rpit) as a potential “culprit” bearing responsibility for the large variation observed in simulated
and experimentally observed rates. Unfortunately, no way exists so far to predict this parameter and
its complex behavior. More work on this topic, including the generation of larger amounts of data and
variance analysis, is clearly needed for future work. The irregular behavior of the parameter itself,
however, is not intrinsic to the Voronoi method—the data here comes from kMC simulations.

Figure 6A shows the probability of a kink site being present at a certain location, expressed
as the distance to the nearest defect. Data were taken from the kMC simulation with 4 defects
and 106 removed atoms. Figure 6B shows the probability of a ledge site being present at a certain
location, plotted against the distance to the nearest defect. The diagrams show a clear tendency for
the occurrence of ledge sites: it is more likely for a ledge site to occur in close vicinity of a defect
versus some distance away. This result reflects the spatial heterogeneity of reaction rates. The kink
site statistics do not show this kind of trend when considering a pre-reacted surface. As dissolution
begins, kink sites occur more frequently near a screw dislocation. With continued reaction progress,
this trend disappears. Rate is not independent of kink site density; instead, local rate differences as a



Minerals 2018, 8, 133 13 of 25

function of distance to defect centers are small compared to overall retreat and variations in surface
normal retreat linked to the appearance and disappearance of etch pits.

Figure 6. Probability of finding (A) a kink site or (B) a ledge site at a certain location, in relation to
the Euclidean distance in (x, y) plane to the location of the nearest defect. Data gained from kMC
simulation with four defects, removal of 105 atoms from the pre-reacted surface of Figure 3A.

Both kink and ledge site distributions determine how fast a material dissolves. A correlation
between the kink and ledge site probabilities, together with their corresponding local reaction rates,
as a function of defect proximity offers insight into the relationship between reaction rate and
defect distribution. The difference in ledge site probabilities shows that etch pit shape is sensitive to
surface retreat.

3.3. Evolution of Etch Pits at Defects with Well-Defined Lengths

We now analyze systems having defects with varying length. Here, the results from the kMC run
from Figure 3A were taken (4 defects, topography after dissolution of 106 atoms). One of the defects in
the upper left has run out, thus is no longer source of step waves. After a new hollow core opened in
the middle of the right side, the simulation was continued for a period of dissolution that includes
removal of additional 105 atoms. To produce the corresponding Voronoi diagram, new weighting
factors were applied, using calculations previously described in Section 2.4.

Figure 7 shows kMC and Voronoi simulation results after removal of 105 atoms, as in Figure 6.
The etch pit in the upper left section has flattened, because the defect does not persist with depth
(Figure 7C,D). The pit grows laterally but no new step waves are generated, so during dissolution,
the pit does not grow into depth anymore and the morphological impact of the pit will disappear as
soon as the higher parts of the crystal topography get dissolved.

Another situation is the formation of new etch pits when a new defect outcrop becomes accessible
to surface dissolution. For example, in Figure 7D (middle right of the image), a new etch pit appearing
at the newly exposed screw dislocation defect is still smaller compared to the surrounding older
etch pits. Both simulation techniques illustrate the formation and evolution of new step waves
emanating from this defect. The new step waves are still small compared to those from the existing pits
but will travel over the surface and their interaction with other step waves will result in the evolution
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of a rather complex topography at this surface section. Our point here is that the current Voronoi
calculation is capable of representing the complex interaction of multiple defect structures of variable
finite length, a basic requirement for the calculation of flux, rate maps, and rate spectra.

Figure 7. Sequence of two kMC (A,C) and Voronoi (B,D) simulation results of a Kossel crystal topography.
This sequence illustrates the local impact of a ceased etch pit (upper left figure section) and of a newly
opened etch pit (middle right) on the crystal’s topography.

3.4. Comparison of Material Flux and Rate Maps

Figure 8 shows a comparison of material flux maps of the reaction period equivalent to the
removal of 100,000 atoms, starting from the surface situation of Figure 3A,B, in 5 steps that log the
removal of 20,000 atoms each. Figure 8A (A1–A5) shows the material flux map of the kMC simulations
and Figure 8B (B1–B5) shows the corresponding Voronoi simulations, using v(rpit) data obtained from
the kMC results. The newly opening etch pit is also observed in both kMC and Voronoi calculations.

The resulting overall rate maps (Figure 8A,B) have in common that they identically identify the
identical areas of high or low material flux, respectively. They both identify the lowest material flux in
the upper left, which is the position of the closing pit. They also both see the highest material flux in
the vicinity of the lower two still active etch pits and the newly-opened hollow core and associated etch
pit (see Figure 7 for comparison). Interestingly the shorter-time kMC simulation sequences (A1–A5)
do not look all too similar to their Voronoi counterparts (B1–B5)—A1 looks nothing like B1, and A4
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looks nothing like B4—however, the overall flux “averages out” so the resulting images (Figure 8A,B)
look very similar again.

Due to the distance function used (the maximum norm), the Voronoi rate map shows mostly
straight lines separating areas of different material flux. These boundaries are rougher in the kMC flux
map due to the statistical nature of that method.

Any edges in the Voronoi flux map that are not completely straight are a result of averaging the
simulation results with and without incorporating etch pit coalescence. Interestingly, this simple
method is already able to reproduce the position, and at least roughly the shape, of irregularly shaped
surface features like e.g., the green “wedge” in the lower left.

The main statistical difference between the different types of simulation is that the Voronoi
approach appears to systematically overestimate the spatial extension of extremes (areas of particularly
high or low flux) and underestimate the extension of plateau areas (yellow areas in Figure 8A) that
are not close enough to a defect position to be considered as lying inside an etch pit. This might be
partially due to a misfit of the distance function used; however, more likely it is a result of using a
simplistic kMC model that only considers first neighbors.

Figure 8. Material flux maps, given in removed layers per time unit, based on kMC (A) and Voronoi
(B) simulation calculations. Total timespan for both simulation calculations is equivalent to 100,000
removed atoms. Detailed results of five short reaction periods that form the overall reaction time of A
and B (each equivalent to 20,000 removed atoms) are shown in A1–A5 and B1–B5, respectively.

Also, when looking at shorter reaction periods (Figure 8A,B (A1–A5 and B1–B5)) the differences
between the flux maps of kMC and Voronoi simulations become more pronounced. This is mainly
because the Voronoi calculations only allow for the simulation of the retreat of etch pits of constant shape.
The kMC simulation, however, produces fluctuations in etch pit shape, as well as the development of
step roughness, heterogeneously distributed over the surface. Over a shorter time span, the statistical
influence of those fluctuations obviously must be more pronounced. Also, there are sometimes
differences in the total surface retreat (esp. comparing Figure 8 A4 and B4) that depict a fluctuation
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in overall surface retreat. This rate variance cannot be reproduced in detail by Voronoi calculations.
We thus conclude that the larger the time interval is chosen, the higher will be the similatity of kMC
and Voronoi flux map.

3.5. Comparison of Rate Spectra Results

Analyzing the material flux or reaction rate maps (Figure 8) in the frequency domain leads to the
histogram of rate contributors, i.e., the rate spectrum.

Figure 9 shows a comparison of the kMC- vs. Voronoi-based rate spectra after removal of 105 atoms,
starting from the pre-reacted surface in Figure 3A. The crystal structure includes four screw dislocation
defects, as shown in Figure 7C,D. The Voronoi peak is sharper due to the lack of randomness inherent
to stochastic methods like kMC—so although the exact surface heights are not exactly reproduced
in their inherent randomness, rate contributors are correctly identified. The slight difference in peak
position of one atomic layer might be due to the still rather rough treatment of etch pit coalescence and
the as yet inaccurate reconstruction of the material flux on plateaus, as seen in Figure 8A,B, or due to
different modes.

Figure 9. Material flux spectra calculated from by KMC (blue) and Voronoi (orange) simulations, using
the average of coalesced and non-coalesced surfaces. Calculations after removal of 105 atoms, starting
from the pre-reacted surface in Figure 3A.

3.6. Kink Site Density

Figure 10 shows the kink site density (Figure 10A) and ledge site density (Figure 10B) during the
run of a kMC simulation, from the same dataset as Figures 6 and 7, plotted against the distance to the
nearest defect. Figure 10B shows it is far more likely for a ledge site to occur near a defect than far
away from it.

The kink site density does not show such a clear pattern—the only visible feature in Figure 10A is
a patch of apparently lower than usual kink site densities in the upper left, which is the area where an
etch pit disappeared. The pit that was widening but not deepening any more shows far lower kink site
density than the dissolving plateaus. Otherwise, the positions of defects are not clearly discernible
from simple inspection of kink site density.
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Figure 10. Kink site density (A) and ledge site density (B); data gained from KMC simulation with four
defects, removal of 105 atoms from the pre-reacted surface of Figure 3A.

3.7. Parameter Variation and Sensitivity Test of the Fitting Function

We analyze how the distance function impacts the calculation of the rate range of the Voronoi-based
rate spectra. In general, the fitting function describing the general shape of etch pits in the examined
example system depends primarily on the parameters described in Table 1, using the distance function
in Equation (8) with H0 set to 600 as an input parameter, and t taken from the kMC simulation result.

In this case, we consider the example of one single etch pit in the middle of a 101 × 101 Kossel
surface with periodic boundary conditions, after a dissolution of 105 atoms. This fairly short period
was chosen to prevent step bunching phenomena. The kMC heights at a certain distance r to the defect
(51, 51) were calculated by using the mean value of the heights at the positions (51 + r, 51), (51 − r, 51),
(51, 51 + r) and (51, 51 − r). These values were then used to fit the distance function. Three parameters
were manually varied for the fit are: the rate of generation of new stepwaves v(rpit), the straight step
velocity vstep, and the critical radius rcrit.

The “optimized” parameters were gained by manual testing of the changes occurring when
iteratively changing parameters. This could be done directly in Excel by varying the function
input—the three varied parameters could in this case be treated independently of each other because
their effect on the overall function differed not only quantitatively but also qualitatively. It was thus
possible to incrementally change parameters and record results. The fit was considered “best fit”, when
small changes in one of the three fit parameters caused visible deviations of the fit function values
from the kMC results.

The best fit (Figure 11A) for this particular kMC run was obtained with rcrit = 1.9 Kossel units,
vstep = 2.9 × 10−8 Kossel units per second, and v(rpit) = 2.98 × 10−9 Kossel units per second, although it
should be noted that the stepwave generation velocity v(rpit) not only showed a high variance when
repeating the kMC simulation with identical starting surface, but also appeared to depend in some yet
unknown way on defect density. A tendency towards higher v(rpit) at higher defect densities (with rcrit

and vstep staying the same) was observed.
Varying the fitting parameters yields different results. To illustrate this, starting from the best fit,

the following Figure 11B−G demonstrate the outcome of arbitrary changes in fit parameters from their
optimal “best fit” value.

Decreasing rcrit to 0.9 (Figure 11B) flattens the graph of the distance function; increasing it to 2.9
(Figure 11C) yields a misfit close to the core and makes the graph appear steeper. Decreasing vstep to
1.9 × 10−8 Kossel units per second (Figure 11D) steepens the pit walls, increasing vstep to 3.9 × 10−8

Kossel units per second (Figure 11E) flattens them. Decreasing v(rpit) to 2.43 × 10−9 Kossel units per
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second (Figure 11F) raises as well as flattens the fit function, increasing v(rpit) to 3.75 × 10−9 Kossel
units per second (Figure 11G) lowers it.

Figure 11. Variation of parameters of the fitting function: (A) Best obtained fit; (B) decreasing rcrit,
(C) increasing rcrit, (D) decreasing vstep, (E) increasing vstep, (F) decreasing rcrit and (G) increasing rcrit.

3.8. Comparison of Surface Roughness Parameter Results

We compare Voronoi and kMC based roughness parameter results as a measure of similarity
versus dissimilarity between surfaces generated by kMC and Voronoi methods, see Table 3. The data
are taken from removal of 106 atoms from a 100 × 100 surface. Voronoi calculations are again the
resulting surface of the average of coalesced and un-coalesced surface as described in Section 3.2.

Table 3. Comparison of surface roughness parameters.

Defects
z [Unit Cell Lengths] Rt [Unit Cell Lengths] Rq [Unit Cell Lengths] F [Square Unit Cell Lengths]

kMC Voron. kMC Voron. kMC Voron. kMC Voron.

4 499.9585 499.7817 8 7 1.2322 1.4398 1.0603 1.0598
40 499.5944 499.5350 8 7 1.0663 1.2625 1.0692 1.0757

The average surface height z is in both cases almost identical for Voronoi and kMC calculations.
The z value must be close to 500, because starting height was 600 and 1 million atoms were removed
over a 100 × 100 surface. (It is not exactly 500 due to the presence of hollow cores (kMC), and in the
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Voronoi case, a slightly different rate spectrum.) The reacted surfaces have roughly the same height,
meaning a very similar amount of total removed atoms. This is not surprising, considering the v(rpit)
values, which determine the overall surface retreat, were taken from kMC for the Voronoi calculations.
The roughness parameter z is reproduced best. The small difference is most likely due to inexact
identification of plateaus, as also observed in Figure 9. The parameter z affords no control over the
spatial distribution of material flux.

The roughness depth Rt data (Equation (2), Methods chapter) show a clear tendency towards
lower values in the Voronoi simulation. This is because the Rt value, the difference between the highest
and the lowest points on a surface, is very sensitive to minima and maxima. Voronoi simulations can
reconstruct the general topography of a surface. However, misfit of the lowest valleys inside the pits,
which affected very few atomic positions, was found. Single (x, y) point surface peaks are difficult to
reconstruct by the current Voronoi simulations, as shown by the Rt deviations. An improvement of the
fitting function, maybe also using more parameters, might be able to correct such deviations, although
the algorithm will never be able to calculate the lowest values inside the critical radius of etch pits.

Systematically different results were found for the Rq parameter data (see Equation (3)), which
means that although the general topography in terms of “hills and valleys” is constructed correctly,
the distance function still shows some inaccuracy in describing the general pit wall shape. Because of
the square term in Equation (3) the Rq value would be very sensitive to maladjustments of the
distance function. Also, as observed in Figure 8, the tendency of the Voronoi calculations to
underestimate the spatial distribution of plateaus and overestimate the size of areas with especially
high or low material flux will systematically support too high Rq values.

The comparison of surface factors F yields a critical property of the Voronoi approach. Results
of F based on Voronoi surface data without coalescence are always smaller compared to KMC results
(see Figure 3A,B as an example). Voronoi simulations do not consider step roughness, thus smoothing
the topography of pit walls. The values are similar when comparing the averaged Voronoi surface
(see Section 3.2) to the kMC-generated F value; however, this is most likely due to artifacts. It is not
possible to draw any conclusions about similarities from a similar F value. Small-scale roughness is
not part of the calculation that focuses on the height values as a function of the distance to a defect.

Overall, the comparison of these surface roughness parameters as a plausibility check shows a
good correlation. The areas of higher or lower reactivity are correctly identified, so are the overall
surface structures. However, the Voronoi approach does not consider the smallest-scale phenomena,
such as kink sites or single steps moving over the surface—phenomena like step roughness cannot
be described with this method, which becomes obvious especially when looking at the material flux
sequences of Figure 8.

4. Discussion

4.1. Comparison of the Run Time of the Voronoi and kMC Methods

The main advantage of Voronoi calculations is their efficiency and simplicity. For our examples,
when measuring simulation times of 1 million removed atoms, the ratio of simulation time of Voronoi
and kMC methods is about 1/180, i.e., the Voronoi method calculation requires about 0.5% of the
computational power used for the kMC calculations. Voronoi simulation will always be faster because
it only needs to calculate the surface morphology at the final stage of dissolution that needs to be
observed, without having to simulate all the steps in between. The speed of Voronoi algorithms can be
attributed mainly to two factors:

(i) Calculations do not require additional calculation time for removing more atoms, i.e.,
simulation longer periods of reactions. For the kMC method, it is necessary to make lists of all
possible events that can happen at every step of dissolution (every removal of one atom), as well as
their rates and the total rate sum (see e.g., [33]). This is a time-consuming process that grows linearly
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with longer dissolution time. The Voronoi algorithm only considers geometrical defect positions, but
not lists of events and rates. It is thus completely independent of temporal scale.

(ii) KMC calculations become significantly slower if one considers more parameters, e.g.,
the solution chemistry, because this requires more possible types of events to be considered in
the simulation. A key decision for kMC simulations of large, complex systems is the choice of
which types of events to include (see [14]). In an ideal case, the potential energy surface (PES) after
any possible transition would be known [33]—however, practically, that is not feasible. In Voronoi
calculations, however, any such parameters are considered within the distance function, even though
the parameters for this function must come from KMC calculations. The required computational
power is little impacted by the complexity of the distance function—in any case, only the distance map
pertaining to one single etch pit will have to be calculated once, and then stored and re-used.

The size of systems that can be observed via kMC simulations is rather limited due to the
necessity of treating a large number of possible events in the system and storing information specific
to each lattice site. Although kMC programs can be sped up and the system size can be increased,
for example by parallelizing the code, the parallel algorithms have a number of efficiency and scalability
drawbacks [34], as well as theoretical issues, such as obeying detailed balance principle [35]. Kossel-type
kMC models in the literature have typically sizes up to 4000 × 4000 atoms [15]. State of the art kMC
simulations (usually using a cluster or computation center) of real minerals typically have the size of a
few hundred units in each direction. As an example, Kurganskaya and Luttge [36] recently used a
model having 600 × 600 × 300 CaCO3 units for the simulation of calcite dissolution. However, these
simulations already require large-capacity computers or compute clusters.

Initially, kMC calculations are required to calibrate the distance function of the Voronoi software.
However, this calibration can be performed using a relatively small system size. A challenging problem,
however, is the accommodation of interaction between the pits, requiring appropriate adjustments
of the time-dependent weighting parameters. This problem requires further methodological and
algorithmic development.

In the Voronoi calculations, the practical limiting factor on an ordinary laptop computer proved
to also be system size, namely, the size and number of Fortran arrays that could be stored in the
computer’s RAM. In this study, the simulated systems were chosen small on purpose: the aim was to
create a simulation method that does not depend on access to specialized hardware like a cluster or a
computation center. At this point, no detailed analysis of computational requirements has been done,
although clearly a larger system needs more resources, and as the number of defects increases, the
number of distances requiring calculation also grows. The Voronoi code could be made more efficient
by optimizing the Voronoi segmentation algorithm. Lastly, code parallelization could be considered in
the simulation of larger systems.

4.2. Advantages and Disadvantages of the Voronoi Approach

The main disadvantage of Voronoi calculations is their inability to account for
smallest-scale phenomena. The Voronoi model only yields straight steps, so clearly some
information is lost. If information about step roughness is needed, a kMC simulation must be run,
and the Voronoi model does not offer an alternative in this case. Also, the Voronoi model makes
absolutely no statement about the reactivity of a certain site at a particular time. Any information
pertaining to kink site and ledge site distributions is lost. Surface reactivity in the Voronoi model
is treated only as height retreat. The single mechanisms leading to the removal of atoms during
dissolution are not examined. Any smallest-scale phenomena, as well as roughness parameters
pertaining to smallest-scale structures, must be simulated with kMC.

The main advantage of Voronoi simulations compared to kMC simulations is speed. In fact, Voronoi
calculations will always be faster than kMC due to the elimination of the memory and expensive
bookkeeping required for each site configuration, as well as reactivity and recalculation of event
probabilities at each simulation step as discussed in Section 4.1.
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Another obvious advantage of the Voronoi approach is the possibility of having a way to determine
the regions of initial influence single defects (as generating points, see e.g., [29]) can exert over a surface.
Although kMC cannot directly do this as no partitioning of the surface is done, the partitioning comes
out naturally as a simulation outcome. Over time etch pits compete for the space, coalesce and
annihilate each other. This process is captured by the KMC method and observed in microscopic
experiments. Since the partition technique offered by the Voronoi approach is static, the temporal
changes of the etch pit dominance fields and etch pit interaction should be taken into account from the
relevant KMC studies and experimental observations.

The full potential of this new possibility has not been realized yet, however, there are future
possibilities to predict major trends in surface-controlled larger-scale reactivity behavior solely from
analyzing the defect distribution of the crystal.

4.3. Plausibility of Voronoi Data

Experimental observations on crystal dissolution far from equilibrium identified two types of etch
pits: short-lived ones attributed to nucleation at point defect clusters or impurities, and longer-lived
ones attributed to screw dislocations [37]. The current Voronoi approach completely ignores the first,
but calculates the latter.

As seen above, the gained morphology data, gained simply by calculating an overall shape of
etch pits and then superimposing several etch pits over each other as described in the methods section,
correlate well with kMC models and can thus be considered plausible on larger scale. Comparison of
surface roughness parameters (see Section 3.8) also demonstrates the correct identification of larger
surface features, although smallest-scale features like single steps are lost.

When comparing material flux sequences, it should be noted that while all other parameters stayed
identical, v(rpit) varied even in this relatively short timespan of 0.27 × 1010 s, from 3.83 × 10−9 atoms/s
to 3.77 × 10−9 atoms/s. Repeating the simulation several times also yielded completely different
results again. This points into the direction that the huge rate variance of crystal dissolution measured
experimentally in many minerals, e.g., calcite [4] is not only due to extrinsic factors, but a property of
the dissolution process itself. No deterministic process of predicting this is known—see Table 2 for the
interesting behavior of v(rpit).

When it comes to material flux and histograms, however, the Voronoi data can be considered
reliable. Material flux maps are obtained by subtracting two surface morphologies from each other.
In that process, smallest-scale structures like single steps will disappear anyway. This means that if
you don’t need the smallest-scale information, the method is valid.

4.4. Potential Future Applications of Kinetic Voronoi Calculations

Voronoi calculations, in combination with analytical and experimental techniques, have the
potential of offering new predictive properties. The two most important main goals in the future
are the application of the new Voronoi method to real-world systems with existing minerals, and the
development of an upscaling strategy that allows to link pore scale and continuum scale for the
purpose of Lattice Boltzmann and reactive transport modeling.

Simulation of real minerals clearly must be done not only in combination with kMC, but also with
laboratory techniques like atomic force microscopy (AFM) or vertical scanning interferometry (VSI).
These methods can provide essential data about defect densities and defect distributions as well as
reaction kinetics under a certain set of conditions.

When upscaling, Voronoi methods could then be used to connect the different scales at which
dissolution is examined. The overall aim must be a coupled model of mineral-water interaction
including surface evolution as well as fluid dynamics at a surface that is not flat and changes its
morphology during the course of the simulation. The analysis of the velocity field at the mineral surface
provides meaningful boundary conditions to solve the hydrodynamics part. This, however, requires a
fast way to generate a surface, run a fluid dynamics simulation, and re-generate a slightly different
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surface that implements changes in reaction rates stemming from changes in flow, which change
material transport and influence dissolution rates that way. Simple averaging of surface reactivity
and reaction rates may lead to results that do not provide sufficient predictive power. The versatile
system sizes of Voronoi approaches, however, provide the opportunity to connect simulation concepts
focusing on either crystal surface and pore scale and the continuum scale. First, the kMC-based
parameterization of Voronoi simulations facilitates the meaningful information about surface reactivity
based on mechanistic constraints, i.e., no simple averaging of surface reactivity. Second, the quantitative
analysis of Voronoi-based rate spectra results provides input data for the continuum scale. A critical
point in such strategies is the statistical analysis of histogram modes of the material flux maps that are
controlling the evolution of the reactivity model at the continuum scale.

Both Lattice Boltzmann (LB) and reactive transport solvers give solutions for concentrations of
an element at a space-time point (x, y, z, t), taking into account dissolution-precipitation processes.
LB solvers have explicit grain boundaries and can take into account porosity and space geometry
changes, while reactive transport solvers rely on pure differential equations with boundary and
initial conditions. Both methods need a space-time resolved information about mass fluxes that are
typically derived from an analytical kinetic equation linking environmental parameters, e.g., saturation
state or pH, to the dissolution and precipitation rate:

R = k × (1 − S)n (10)

where n is a “rate order” parameter, S is saturation state, k is the “rate constant”. Attempts to measure
rate constant at the laboratory settings keeping all the environmental parameters controlled, lead to
the well-recognized intrinsic rate variance problem [6]. A thorough quantitative investigation of that
problem on carbonate minerals [10] showed that the variance indeed is related to the intrinsic variance
of crystal defect distributions, grain sizes and crystal faces exposed.

The direct implementation of the rate variance concept into the reactive transport and LB solvers
is a challenging problem due to several reasons:

(1) the ranges of variance at given environmental conditions (e.g., saturation state) are
a-priori unknown;

(2) there is no available methodological tool allowing us to predict and incorporate rate variance
ranges into the solvers;

(3) even when such a tool becomes available, the issue of calculation speed and spatio-temporal
resolution of that tool becomes a critical and limiting issue.

The KMC method showed its efficiency in explaining and predicting surface topography and
reactivity, and, given the molecular reaction rates correctly, kinematics of reactive features, such as
steps and etch pits [15] and material flux rates [36,38]. Running a KMC solver, however, at any required
(x, y, z, t) point can be very time consuming and overall challenging and impractical.

On contrast, parameterized Voronoi solver shows a great promise of solving this problem in a fast
and efficient way, since it is capable to build surface topography and material flux maps from a simple
analytical equation. This tool might be used as a new promising link between the microscopic models
of surface reaction processes and pore scale models of material transport.

Key question in that scenario is the so far unsolved question of generating a set of completely
synthetic, but plausible, weighting factors for the Voronoi diagram. So far, the rules governing weighting
factor distributions are largely unknown. A dynamic approach simulating the distribution by adding
a stochastic element to the weighting factor set seems feasible—as in kMC simulations the results are
aleatoric, this inherent randomness should indeed be also included in the Voronoi simulation.

So far, only random distributions of synthetic weighting factors were tested, however, it should
be noted that the actual weighting factor distribution will likely not be completely random but depend
on defect density, defect distribution and maybe other chemical parameters in still unknown ways.
The distribution from which weighting factors would have to be drawn to produce statistically
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similar results to repeated kMC simulations is so far unknown and one of the important questions for
future work.

Considering the possible additional information about surface behavior that can be gained from
the Voronoi approach, and the upscaling potential, the method shows a lot of promise and needs
further investigation.

5. Conclusions

KMC-parameterized weighted Voronoi diagram simulations show the evolution of reacting
(dissolving) crystal surfaces with sufficient detail. Specifically, the general similarity of surfaces
generated via kMC and Voronoi simulations allows for a meaningful quantitative analysis of
rate maps, rate spectra, and surface roughness data using the new Voronoi approach. Particularly,
the implementation of stepwave model parameters allows for a mechanistic analysis of Voronoi
simulation results.

Future work will address more specifically the process of etch pit coalescence in order to
improve the rate spectra results of reacting surfaces with a strong coalescence of pits. So far etch pit
coalescence was implemented algorithmically as the interaction of nearest neighbors sharing a Voronoi
diagram segment. While only nearest neighbors of defects have been considered in the present code,
further improvement will focus on coalescence also of defects that are further apart, starting with
second-nearest neighbors.

As a general conclusion, the efficiency of kMC-parameterized Voronoi simulations provides an
opportunity for the reactivity analysis of larger systems. Thus, the upscaling of reaction rates in
larger systems could benefit from the application of Voronoi techniques. The application to real-world
mineral-water interfaces could help close the gap between meso-scale simulation methods, e.g., kMC,
and pore and macroscopic scale simulations, e.g., Lattice Boltzmann and reactive transport. This will
open the great opportunity to create a multi-scale modeling technique capable to capture variance and
complexity of mineral-water and rock-water systems across the scales.
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