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Abstract: The effect of hot-mounting for metallographic studies of as-quenched low-carbon martensitic
steels has been studied. Hot-mounting is typically carried out at 150–200 ◦C, i.e., a low-temperature
tempering regime. Cold- and hot-mounted specimens from an as-quenched low-carbon auto-tempered
steel were examined using a scanning electron microscope and their hardness levels were also
compared. It was found that hot-mounting causes additional tempering that manifests as
the appearance of new precipitates in those regions that are free of auto-tempered cementite.
The observations were rationalized using DICTRA simulations to calculate the potential growth of
cementite. Hot-mounting was also shown to cause a small but statistically significant increase in the
hardness of the martensite.
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1. Introduction

High-strength steels are utilized in weight-critical structures to save energy and to decrease
the carbon footprint through, for example, reduced fuel consumption in transport applications [1,2].
Low-carbon high-strength steels (<0.2 wt % C) are particularly important as structural steels as they
have good weldability, unlike carbon-rich steels. Production lines involving reheating and subsequent
quenching are the conventional way to produce high-strength steels [3]. Another approach to the
production of tough high-strength steels is by the direct quenching process [1–3], where the quenching
is integrated into the thermomechanical processing stage, avoiding the need for reheating the steel.
The resultant microstructure of these steels is important as it determines the final mechanical properties.
The morphology of as-quenched martensite in low-carbon steels is of the lath type [4–7]. The martensitic
start (Ms) temperatures in low-carbon steels are high enough to promote tempering of martensite
during the quenching—a phenomenon known as auto-tempering [6]. For auto-tempering to occur,
carbon in solid solution in the martensitic matrix diffuses to, and precipitates at high-energy sites, such
as dislocations [8]. Competing with this is the partitioning of carbon into the interlath regions which can
stabilize the austenite to room temperatures [9]. Auto-tempering was found to improve the ductility
by increasing the work-hardenability during straining of high-strength steels [3]. Auto-tempering
was also found to improve the upper-shelf impact energy and lower the ductile to brittle transition
temperature [10]. Electron microscopy is used for the characterization of auto-tempered carbides as
they are not visible under conventional light optical microscopes.

In metallography, the specimen is cut, and the area of interest is ground and polished to remove the
deformed layer and to attain a mirror-like finish. Finally, the polished specimen is etched with a suitable
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reagent to reveal the microstructure. Samples are usually mounted in a polymeric material before the
grinding and polishing stage. One important advantage with mounting is that a flat surface can be
maintained during grinding and polishing [11]. A flat surface is vital as it allows for easy scanning
without changing the focus continuously in microscopes [11]. The mounting material can be classified
broadly into two categories, namely, hot mounts and cold mounts. Hot-mounting is performed under a
temperature and pressure cycle in a mounting press using thermosetting materials [11]. Cold-mounting
is done by curing a castable mounting material around the specimen at room temperature. The curing
process can take about a day. Thermosetting materials are widely used as the mounting operation is
short, which is advantageous especially in a production metallographic laboratory [11].

In the case of high-carbon steel containing 1 wt % C, which is free of auto-tempering, it has
been shown that the heat treatment involved in hot-mounting produces visible tempering effects [11].
However, in the case of as-quenched low-carbon martensitic steels that contain significant fractions of
auto-tempered carbides, it might be expected that hot-mounting would not lead to any significant
additional tempering if the carbon has already either precipitated as carbides or diffused into the
interlath regions. This paper demonstrates that this is, in fact, not the case, and that the use
of hot-mounting does indeed produce visible tempering effects that can cause incorrect electron
microscopical characterization of the microstructure. In addition to this, atom probe tomography
samples prepared from hot-mounted specimens could lead to inaccurate 3D imaging and chemical
analyses. The experimental observations have been rationalized with the aid of Thermo-Calc and
DICTRA (version 2017b, Thermo-Calc Software AB, Solna, Sweden) calculations [12]. Hardness tests
were conducted and the results between the hot- and cold-mounted specimens were compared.

2. Materials and Methods

A low-carbon steel supplied in the form of 12 mm-thick hot-rolled plate, having the composition
shown in Table 1, was used for the experiments. The bulk composition was determined using glow
discharge optical emission spectroscopy (GDOES Spectruma GDA 750 Analyser) (Spectruma Analytik
GmbH, Hof, Germany). Cylindrical specimens 6 mm in diameter and 9 mm in length, were machined
from the plates with their long axes along the rolling direction. The specimens were austenitized
and water-quenched using the Gleeble 3800 thermomechanical simulator (Dynamic Systems Inc.,
Poestenkill, NY, USA) as described by Ramesh Babu et al. [13]. The steel cylindrical specimens were
held between two copper anvils located in massive aluminum jaws. Electric current passing through
the specimen from the jaws generates the heating, and the temperature is controlled by a K-type
thermocouple spot-welded onto the surface at the mid-length of the cylinder. The cylinders were
heated at a rate of 10 ◦C/s to 950 ◦C held for 2 min to ensure austenitization, and then immediately
quenched into a beaker of water below the anvils. The thermocouple data, as seen in Figure 1, revealed
that the quenching rate was approximately 2000 ◦C/s after the Ms (435 ◦C). The cooling rate at the
center of the specimen was calculated to be approximately 1000 ◦C/s using ELTA (version 6.0, NSG,
St. Petersburg, Russia), which is a software designed for solving electromagnetic and thermal problems
using a 1D finite difference method [14].

Table 1. Mean chemical composition (wt %) (Spectruma GDA 750 Analyzer) of the steel.

C Si Mn Cr Ni Ti V Al

0.126 0.72 1.66 0.27 0.038 0.027 0.047 0.054

For field emission scanning electron microscopy (FE-SEM) analysis, cross sections from the
heat-treated cylindrical specimens were cut transverse to the long axes of the cylinders at the position
of the thermocouple. One set of the steel samples were molded into a conductive thermosetting
hot-mounting plastic resin (Struers PolyFast) (Struers ApS, Ballerup, Denmark) in a Struers CitoPress-1
(Struers ApS, Ballerup, Denmark) machine using a pressure of 300 bar and a temperature of 180 ◦C for
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4 min with subsequent water circulation cooling for 2 min. Another set of samples was cold-mounted
with an epoxy resin (Struers EpoFix Resin) (Struers ApS, Ballerup, Denmark) mixed with a hardener
(Struers EpoFix hardener) (Struers ApS, Ballerup, Denmark). It was cured and left to harden for 24 h.
The mounted samples were ground, polished to a mirror finish using 0.04 µm colloidal silica, and
subsequently etched with 2% Nital. Before etching, the samples were rinsed with water and ethanol to
remove any remaining debris after the grinding and polishing stages. Microstructures were examined
from the center of the specimens with a FE-SEM (Zeiss Sigma) (Carl Zeiss AG, Oberkochen, Germany)
using 5 kV acceleration voltage and an InLens secondary electron detector.
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Figure 1. Thermocouple data obtained from the surface of the specimen during quenching of the steel
after austenitizing with the Gleeble.

Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM)
were used to characterize the precipitates present after quenching and mounting using a JEOL 2200FS
STEM/TEM (JEOL Ltd., Akishima, Kantō, Japan) at an accelerating voltage of 200 kV. The samples
were prepared using a FEI Helios DualBeam Focussed Ion Beam system (FEI Company, Hillsboro, OR,
United States). A rough lamella (15 × 10 × 2 um3) was milled with a voltage of 30 kV and currents
between 90 pA and 9 nA. The samples were then lifted using an OmniProbe and placed onto a copper
grid. The lamella was then thinned and polished with an ion beam (30 kV at 90 pA and then at 5 kV
at 44 pA) prior to TEM and STEM examination. STEM was used to image the surface of the sample
and nanobeam selected area diffraction (NB-SAD) was used for identifying the precipitates. NB-SAD
patterns and zone axis were verified using CrystBox (version 1.10, Institute of Physics of the Czech
Academy of Sciences, Prague, Czech Republic) [15], which is an open source software for MATLAB
(version 2018b, MathWorks, Inc, Natick, MA, United States). Each NB-SAD pattern was identified
using the lattice parameters of either α-Fe (a = b = c = 2.860 Å) or cementite (a = 5.09 Å, b = 6.74 Å,
c = 4.53 Å).

Hardness measurements were made using a Struers Duramin A300 hardness tester (Struers ApS,
Ballerup, Denmark) with a Vicker’s indenter and a 10 kg load applied for 10 s. For statistical reliability,
20 measurements were done on both the hot- and cold-mounted specimen.

3. Results

Auto-tempered carbides can be seen distributed throughout the microstructures both in the cold-
(Figure 2a) and hot-mounted (Figure 2b) specimens. In both cases, the size and number density of
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carbide precipitates varies from place to place. There are regions that appear relatively dark due to the
fact that they contain a low area fraction of carbides resolvable in the SEM. However, comparing the two
figures, the darker regions of the cold-mounted specimen show negligible to no precipitation. The dark
regions in the hot-mounted specimen contain a denser distribution of precipitates compared to the
cold-mounted specimens. Point counting revealed that roughly 10% of the martensite corresponds to
the dark regions with negligible precipitation.
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Figure 2. Scanning Electron Microscopy (SEM) secondary electron micrographs of specimens austenitized
and quenched in the Gleeble: (a) cold-mounted (b) hot-mounted. Insets are magnified images of areas
showing the least auto-tempering. Both images were obtained from the centers of transverse cross
sections through the specimens.

The auto-tempered precipitates were resolved in the STEM/TEM images (Figure 3), which shows
that the precipitates in a coarse martensite lath are plate-like or rod-like with a crystal structure
consistent with that of orthorhombic cementite; see the nanobeam diffraction patterns from the
precipitate and the matrix in Figure 3c,d. No epsilon or Hägg carbides were found to be present.

Table 2 shows hardness values for the hot- and cold-mounted specimens. Using the software
StatPlus [16], a standard two-tailed t-test was implemented to compare the values. The resulting p value
0.03855 (p < 0.05) showed, with 95% certainty, that there is a difference between the hardness values of
the hot- and cold-mounted specimens (despite the overlapping of the 95% confidence intervals for the
means). Hardness was slightly increased by the hot-mounting process.

Table 2. HV10 hardness after hot- and cold-mounting.

Mounting Hot Cold

Mean 443.65 432.55
Standard deviation 16.71 16.03

Number of measurements 20 20
Lower 95% confidence limits for the mean 435.83 425.05
Upper 95% confidence limits for the mean 451.47 440.05
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Figure 3. Transmission and Scanning transmission electron microscopy (TEM/STEM) micrographs
of hot-mounted specimens austenitized and quenched in the Gleeble. (a) STEM image of cementite
precipitates in a coarse martensite lath; (b) TEM image of cementite precipitate, where yellow dots
mark the location of nanobeam selected area diffraction (NB-SAD) patterns; (c) NB-SAD pattern with
cementite diffraction spots indexed, zone axis [110]; (d) NB-SAD pattern with ferrite matrix spots
indexed, zone axis close to [111].

4. Discussion

From the SEM micrographs in Figure 2, it can be seen that the martensite comprised both thin
and thick laths with widths of around 0.5 µm and more than 1 µm, respectively. Such mixtures
of coarse and fine laths are commonly found in as-quenched low-carbon steels, e.g., as shown by
Morsdorf et al. [17,18], who suggested that the coarse laths are the first laths to form just below the
Ms temperature, where the resistance to their growth into the austenite is small due to the effect of
temperature on the strength of the austenite.

The high density of carbide precipitation in the coarse regions suggests that the auto-tempering
process accompanies the early coarse martensite formation, which has transformed from austenite
at temperatures just below Ms (435 ◦C). The TEM observations revealed that the rod- or plate-like
precipitates are cementite. No epsilon or Hägg carbides were found in either the cold-mounted or
hot-mounted specimens, even though tempering at 180 ◦C has sometimes been found to lead to the
precipitation of epsilon carbide in steels with more than 0.2 wt % C [18]. The present finding agrees with
the observations of Speich [19], i.e., that tempering martensite in steel containing less than 0.2 wt % C
below 150 ◦C results in carbon segregation, whereas rod-shaped cementite or Hägg carbides form in
the temperature range 150–400 ◦C.

A radial temperature gradient develops between the surface and the center due to the fast
quenching conditions. As a result, the cooling rate is higher at the surface compared to the center of
the specimen. The temperature gradient means that martensite forms first near the surface, but the
auto-tempering at any location depends on the cooling rate after martensite starts to form and not on
the temperature gradient. Despite the temperature gradient and variation of cooling rates through
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the cylinders, there were dark areas with negligible to no precipitation throughout the cold-mounted
specimen, both near the center and the edge. In the hot-mounted specimens, the comparatively darker
regions showed a discernible amount of precipitation throughout the specimen. Therefore, the effect
of hot-mounting is due to the additional tempering and not due to a variation in the location of the
areas studied.

DICTRA [12] calculations were made to qualitatively explore the potential growth of cementite
precipitating in the martensite formed at various stages of the quenching process and any
subsequent hot-mounting. To avoid convergence errors, a binary Fe–0.126% C system was selected.
This approximation should not amount to significant errors as the early growth of cementite is expected
to occur without appreciable diffusion of substitutional alloys [20,21]. The validity of using the binary
approximation was also checked by making some calculations for the ternary Fe–0.126% C–1.66 Mn
system as shown below. The simulation was set up as a closed cylindrical cell as seen in Figure 4. From
the TEM observations (Figure 3) the distance between the cementite precipitates was approximately
100 nm. Therefore, the cementite was assumed to grow from the center of a cell surrounded by a ferrite
matrix of radius 50 nm. The ferrite matrix was considered as it was the most suitable representation
of the martensitic phase in DICTRA. It was pointed out by Bhadeshia [22] that the lattice diffusion
in body-centered tetragonal (bct) ferrite is predicted to be slower than body-centered cubic (bcc)
ferrite. After the formation of a martensite lath, the ferrite lattice may change from bct to bcc due to
auto-tempering. On the other hand, the high dislocation density of martensite should increase the rate
of diffusion due to more pipe diffusion than in ferrite. For these reasons, the DICTRA calculations
can only be considered approximate. The cell was then discretized into a geometric series with the
points being denser near the interface of the ferrite matrix. The simulation was run using a trapezoidal
integration method. The Thermo-Calc [12] thermodynamic database TCFE9 and mobility database
MOBFE2 was utilized. The initial composition of the ferrite matrix was assumed to be uniform at
0.126 wt % C. Upper-bound growth calculations were made by assuming that the precipitates nucleated
with zero incubation time as soon as the martensite lath was formed, irrespective of the temperature.
The calculations assume diffusion-controlled growth, i.e., local equilibrium across the cementite–ferrite
interface and capillarity effects were ignored.
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Figure 5 shows the calculated upper-bound radii of the cementite rods as a function of the
martensite lath formation temperature and the volume fraction martensite for a cooling rate of 1000
and 2000 ◦C/s, which correspond to the cooling rates near the center and the surface of the specimens,
respectively. These are, of course, upper-bound values, since it is assumed that incubation time is zero.
Also, the inclusion of capillary effects would reduce the predicted initial growth rate by increasing the
concentration of carbon in the ferrite at the interface with the cementite. Even at these high cooling
rates and low temperatures, the high mobility of interstitial carbon should allow substantial growth
of the cementite rods. In the first martensite formed at temperatures just under Ms, the cementite is
predicted to grow to a radius of 6.66 nm after quenching to room temperature. It is interesting that the
predicted radius is very close to the half-thickness of the cementite precipitate in the TEM image in
Figure 3b. The predicted radius corresponds to a cementite volume fraction of 1.77% at the center and
1.76% at the edge of the specimen, which is close to the calculated equilibrium volume fraction at room
temperature of 1.93%. As expected, the cementite precipitating in laths formed at temperatures lower
than Ms have smaller radii. The simulations with the Fe–C–Mn system for laths formed at Ms and at
260 ◦C gave almost identical cementite radii as the calculations for the binary Fe–C system: the final
radius of the cementite precipitated in laths formed at Ms was 6.65 nm for the Fe–C–Mn calculations
and 6.66 nm for the Fe–C calculations. For laths forming at 260 ◦C, the final radius was 1.50 nm for the
Fe–C–Mn system and 1.44 nm for the binary system. Therefore, it appears that the introduced errors
are probably very small when ignoring the effects of alloying elements other than carbon.
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The predicted upper-bound radius of cementite precipitated in martensite laths formed at various
temperatures through the quenching process is shown with orange lines. The solid orange line
represents the radius of cementite near center of the specimen where the cooling rate was about
1000 ◦C/s. The dashed orange line represents the radius of cementite formed near the edge of the
specimen where the cooling rate was about 2000 ◦C/s. The black line represents the predicted radius of
cementite after the hot-mounting stage.

Another set of DICTRA simulations was run with an additional thermal cycle simulating the
hot-mounting (180 ◦C for 4 min). The result was that cementite precipitated at any temperature during
quenching grew to a radius of 6.66 nm. The simulation results, therefore, show that the hot-mounting
thermal cycle can cause sufficient diffusion of carbon to enable almost the full precipitation of the
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equilibrium volume fraction of cementite around pre-existing precipitates or nuclei on the assumption
that the distance between the cementite rods is of the order of 100 nm.

The negligibly tempered regions in the cold-mounted SEM micrographs, as seen in the Figure 2a,
amounted to roughly 10% of the microstructure. Correspondingly, as seen in Figure 5, the last 10% of the
transformation of martensite occurs below the temperature of 300 ◦C. From the DICTRA calculations,
the maximum of carbide radii precipitating below 300 ◦C is less than 3 nm at the center of the specimen
and less than 2 nm near the edge of the specimen. Although a few carbides of these dimensions could
be seen in the darker regions of the martensite, these regions mostly appeared to contain no resolvable
precipitates. This could also be an indication that the DICTRA-calculated radius are upper-bound
values. Especially as the lath formation temperature drops ever further below Ms, the actual sizes
might become much smaller than the upper-bound dimensions. Notwithstanding the above reasoning,
it is an experimental fact that hot-mounting changes the appearance of the dark precipitate-free regions
of the auto-tempered martensite, and the diffusion calculations show that the thermal cycle associated
with hot-mounting can indeed lead to significant carbide growth.

The hardness results (Table 2) also show that there is a small but statistically significant increase
in the measured martensite hardness as a result of hot-mounting. The explanation for this is beyond
the scope of this paper, but it is an important fact to bear in mind when investigating the mechanical
properties of martensite.

5. Summary

This paper explored the effect of hot-mounting (180 ◦C for 4 min) on the microstructure of
as-quenched, martensitic, (0.126 wt % C) low-carbon steel containing auto-tempered carbides visible in
FE-SEM images after etching with 2% Nital. It was shown that there is a clear effect of hot-mounting on
the apparent distribution of auto-tempered cementite carbides due to the additional low-temperature
tempering resulting from the hot-mounting stage. In cold-mounted specimens, regions free of
auto-tempered carbides are seen, whereas after hot-mounting, precipitates appear in these regions.
Additionally, hot-mounting causes a small, but statistically significant, increase in the measured
martensite hardness. The feasibility of significant cementite growth during the hot-mounting process
can be rationalized on the basis of carbon diffusion kinetics. DICTRA simulations also show that after
quenching, the hot-mounting profile can cause the diffusion of almost all carbon in the ferrite into the
cementite, thereby promoting its growth.
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