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Abstract: An advanced model-based control method for the integrated fuel processing and a fuel cell
system consisting of ethanol reforming, hydrogen purification, and a proton exchange membrane fuel
cell is presented. For process identification, a physical model of the process chain was constructed.
Subsequently, the simulated process was approximated with data-driven control models. Based on
these control models, a hierarchical control framework consisting of model predictive controller and
a global optimization algorithm was introduced. The performance of the new control method was
evaluated with simulations. Results indicate that the new optimization concept enables resource
efficient and fast control of the studied energy conversion process. Fast and efficient fuel cell process
could then provide sustainable power source for autonomous and mobile applications in the future.

Keywords: advanced control; model-based control; differential evolution; steam reforming; hydrogen
purification; proton exchange membrane

1. Introduction

The energy sector is continuously aiming at more sustainable methods, saving the environment
and fuels. The future energy production will be decentralized involving variety of energy conversion
methods, energy storage capabilities, and smart grids. Fuel Cell (FC) technology is one key alternative
to the existing technology burning fossil fuels. Its popularity in distributed energy systems origins from
high efficiency, low risk to the environment, and flexibility in different applications [1]. The Proton
Exchange Membrane (PEM) fuel cell has been found to be suitable for both residential and mobile
applications, because it can operate at relatively low temperatures, it has relatively high power density
and its maintenance is simple [2]. However, it requires a reliable source of pure hydrogen. Therefore,
in situ fuel production from liquid hydrocarbons, such as methanol and ethanol, or from renewable
sources, like biomasses, is preferable in autonomous fuel cell power systems.

There are several well-known techniques for hydrogen production, such as steam reforming,
partial oxidation, and autothermal reforming [3]. Despite the conversion technique, also a purification
stage is required prior to the fuel cell. Hence, the integrated fuel processing and fuel cell system
consists of several unit processes targeted for hydrogen production, syngas cleaning and fuel cell
system. Examples of possible process routes can be found from [4,5]. The overall efficiency increases
with membrane technologies [6–10].

Apart from process design, the operational issues of the integrated systems may have a substantial
effect on the overall efficiency. Three major objectives for the process control in such systems have
been identified [11]: (1) to avoid fuel cell hydrogen starvation, (2) to keep reaction temperatures
close to set-points, and (3) ensure high overall system efficiency. Conventional approaches with
Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) systems and standard
Proportional-Integral (PI) controllers have been considered for the control problem [11–17]. The

Materials 2019, 12, 21; doi:10.3390/ma12010021 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-7577-7218
https://orcid.org/0000-0003-4447-9861
http://www.mdpi.com/1996-1944/12/1/21?type=check_update&version=1
http://dx.doi.org/10.3390/ma12010021
http://www.mdpi.com/journal/materials


Materials 2019, 12, 21 2 of 14

main challenge preventing the abovementioned objectives arises from the time delay between the
hydrogen demand and supply. To avoid stack hydrogen starvation, a rapid and robust response after
the set-point changes in the stack current is required [4]. Otherwise, the stack might be permanently
damaged. As noted in the same reference, the oversupply of hydrogen easily leads to fuel losses.
Compensation for this delay requires model-based control techniques. Hierarchical and model-based
control approaches have been taken in several studies [3,18–22]. The overall system efficiency is
typically described with the conversion efficiency of the reformer unit. High conversion leads to a
cost-effective production of hydrogen, with minimized raw material consumption and energy usage.
This goal can only be achieved with model-based control approaches, where the operational set-points
of fuel processing system are optimized based on the hydrogen demand and conversion efficiency.

This study uses a modular dynamic model for the integrated fuel processing and fuel cell system
consisting of ethanol reforming, hydrogen purification in a membrane Water-Gas Shift (WGS) reactor,
and a PEM fuel cell stack. This model is used in testing the applicability of a two-layer control hierarchy
utilizing an intelligent optimization method. The fuel feed is controlled with a Model Predictive
Controller (MPC) in order to minimize the time delay and avoid fuel starvation. The Differential
Evolution (DE) algorithm is applied for the upper level control to optimize the steady-state operation
point of the system. Hence, the proposed control structure aims to maximize the conversion efficiency
with respect to the required level of hydrogen production and constraints. To authors’ best knowledge,
this is the first time evolutionary/intelligent optimization is applied for the control of an integrated
fuel processing and fuel cell system.

This paper is organized as follows: In Section 2, a simulation model for the integrated fuel
processing system is presented, accompanied with the process identification, control, and optimization
methods utilized in this study. The process identification results and the comparison of different
control strategies is presented in Section 3. Finally, Section 4 contains the discussion and conclusions
from this study.

2. Materials and Methods

The simulated system consists of an integrated process of ethanol steam reforming, followed
by WGS separation and a PEM fuel cell stack. The modeling approach and the control structure are
described in the following subsections.

2.1. Integrated Model of a Fuel Cell System

2.1.1. Steam reforming

The steam reforming is modeled as a Continuous Stirred-Tank Reactor (CSTR) with ideal operation
(constant reactor volume, pressure, and temperature). The reaction mechanism adopted utilizes Ni-Al
catalyst and is described with two competing reactions in Equations (1) and (2) [23]. The reaction rates
are calculated with the kinetic model presented in Equation (3), also adopted from Mas et al. [23].

C2H5OH + H2O→ 2CO + 4H2 (1)

C2H5OH + 3H2O→ 2CO2 + 6H2 (2)

retOH,j = k0,j exp
[
−
(Ea,j

R

)(
1

TR
− 1

873

)]
pα,j

etOH (3)

Here, retOH,j is the ethanol conversion in reaction j (mol/min·mg), k0,j is a kinetic constant for
reaction j (mol/min/mg/atmα), Ea,j is the activation energy for reaction j (J/mol), R is the universal
gas constant, TR is the reactor temperature, α,j is a stoichiometric constant for reaction j, and petOH is the
partial pressure of ethanol. Therefore, the steam reforming model comprises five components: ethanol,
water, hydrogen, carbon dioxide, and carbon monoxide. The material balance for the ethanol is:
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dnetOH
dt

= netOH,in − netOH,out −mcatretOH,j (4)

In Equation (4), netOH,in and netOH,out are molar flows of ethanol in and out of the reactor (mol/min),
mcat is the mass of the catalyst (mg), and retOH,j is the reaction rate (mol/min/mg). The material
balances for the other components are constructed similarly taking into account the stoichiometric
constants in Equations (1) and (2). The kinetic model parameters are listed in Table 1 and the process
model parameters in Table 2.

Table 1. Kinetic model parameters for ethanol reforming [23].

Parameter Reaction (1) Reaction (2)

ko (mol/min/mg/atm) 5.74 × 10−4 1.85 × 10−4

Ea (J/mol) 1.44 × 105 2.07 × 105

α (-) 0.75 0.8

Table 2. Simulation parameters.

Parameter Value Comment

Ntot,in 0.0457 Reformer nominal input molar flow rate, mol/min
TR 898 Reformer temperature, K
PR 3 Reformer pressure, atm

W/E 0.1–0.25 Reformer nominal input water/ethanol-ratio, -
mcat 11400 Mass of catalyst in reformer, mg
nm 5000 Number of membrane fibres, -

Nsweep 1.6698 × 10−5 WGS shell side sweep gas molar flow rate, mol/s
Twgs 453 WGS temperature, K
Pwgs 303975 WGS tube side pressure, N/m2

ρb 1395 WGS catalyst bulk density, kg/m3

R 8.314 Universal gas constant, J/Kmol
Vwgs 4.7909 × 10−7 WGS total volume, m3

nwgs 120 Number of CSTR elements in WGS, -
Ps 101325 WGS shell side pressure, N/m2

Kp,CO2 1.3392 × 10−12 1 WGS CO2 permeability, mol m/m2s Pa
Kp,H2 3.3480 × 10−14 2 WGS H2 permeability, mol m/m2s Pa
dmem 5 × 10−6 WGS membrane thickness, m

d 1× 10−3 WGS inner diameter of fibre, m
l 0.61 WGS length of fibre, m

nO2,in 0.0177 FC oxygen feed, mol/s
F 96,487 Faraday constant, s A/mol

nfc 35 FC number of cells, -
Tfc 345 FC temperature, K
Vc 0.01 FC cathode volume, m3

Va 0.005 FC anode volume, m3

Pbpr 3 FC oxygen pressure at the outlet, atm
kc 0.065 FC cathode flow constant, mol/s atm
Aa 232 FC anode active area, cm2

dmea 0.0178 FC membrane thickness, cm
Cdl 8.12 FC equivalent capacitance, F
imax 300.1 FC limiting current, A

1 Equals to 4000 barrels, 2 Equals to 100 barrels.

2.1.2. Membrane Water Gas Shift Reactor

The WGS reaction is a reversible reaction aiming to increase the hydrogen content in syngas with
the following reaction:

CO + H2O↔ CO2 + H2 (5)
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The model assumes a commercial Cu/ZnO/Al2O3 catalyst and the volumetric reaction rate rwgs

(mol/cm3/s) can be calculated as [24]:

rwgs = 1.0× 10−3 ρbPwgs

nwgs,totRTwgs
exp

(
13.39− 5557

Twgs

)
nwgs,CO ·

(
1−

nwgs,H2nwgs,CO2

KTnwgs,COnwgs,H2O

)
(6)

where ρb is the catalyst bulk density (g/cm3), Pwgs is the total pressure, nwgs,tot is the total molar flow
(mol/s) and Twgs is the reaction temperature, and KT is:

KT = exp
(
−4.33 +

4577.8
Twgs

)
(7)

The modeled reactor is a hollow-fiber membrane WGS. The model is adopted from [9,25] with
the following assumptions:

(1) the hollow-fibers are CO2-selective;
(2) only CO2 and H2 are able to permeate through the membrane;
(3) system is operated in countercurrent with Argon sweep;
(4) system is isothermal;
(5) there is no axial mixing; and,
(6) the pressure drops on both feed and sweep sides are negligible.

This is basically a distributed parameter model, but here WGS membrane reactor has been
modeled as a series of CSTRs. It consists of four interconnected modules: molar balance on the feed
side, molar balance on the sweep side, calculation of the permeation flux, and calculation of the
reaction rate. The one-dimensional molar balances for the feed side and sweep side are written as
Equations (8) and (9), respectively.

dnwgs,k

dz
= βk

1
4

πd2
inrwgs − πdin Jk (8)

dnshell,k

dz
= πdin Jk (9)

where nwgs,k is the molar flow of species k in the feed side (mol/s), βk is the stoichiometric constant
according to reaction in Equation (5), din is the inner diameter of the hollow fibre (cm), rwgs is the
volumetric reaction rate (mol/cm3/s), Jk is the permeation flux (mol/cm2/s), and nshell,k is the molar
flow in the sweep side (mol/s).

The permeation flux, Jk, for each gas species i is calculated from the equation

Jk = KP,k
pwgs,k − pshell,k

dmem
(10)

where KP,k is the permeability, pwgs,k and pshell,k are the differential pressures of species k in feed and
sweep sides, respectively, and dmem is the membrane thickness (cm). The model parameters are given
in Table 2.

2.1.3. PEM Fuel Cell

The ability of a PEM fuel cell to produce electricity is based on catalytic anode and cathode
reactions in Equations (11) and (12), respectively.

H2 → 2H+ + 2e− (11)

1
2

O2 + 2H+ + 2e− → H2O (12)



Materials 2019, 12, 21 5 of 14

A simple dynamic model of the fuel cell comprises the electro-chemical behavior as a parameterized,
semi-empirical model and molar balances of hydrogen and oxygen in anode and cathode,
respectively [26]. The governing equations are adopted from Khan & Iqbal [26] and they are presented
in Equations 13–27, with two exceptions; (1) In the electro-chemical model, a term for the concentration
overpotential (ηconc in Equation (19)) is added. (2) In the studied integrated fuel processing system,
the hydrogen is fed to fuel cell directly from WGS instead of using a hydrogen tank. Therefore, the
balance equation for the hydrogen (Equation (13)) deviates slightly from the presentation in [26].

Va

RT
dpH2

dt
= nH2,in − nH2,out − nH2,consumed (13)

Vc

RT
dpO2

dt
= nO2,in − nO2,out − nO2,consumed (14)

dVact

dt
=

i
Cdl
− Vact

RactCdl
(15)

nH2,consumed =
n f ci
2F

(16)

nO2,consumed =
1
2

n f ci
2F

(17)

nO2,out = kC

(
pO2 − pbpr

)
(18)

Vf c = n f c · (E0 − ηact − ηohm − ηconc) (19)

E0 = 1.229− 0.85× 10−3(T − 298.15) + 4.3085× 10−5T ln
(

pH2 p0.5
O2

)
(20)

ηact = −0.948 + T
(
0.00286 + 0.0002 ln(Aa) + 4.3× 10−5 ln(cH2)

)
+ 7.6× 10−5T ln(cO2)− 1.93× 10−4T ln(i) (21)

ηohm =

181.6 ·
[

1 + 0.03
(

i
Aa

)
+ 0.062

(
T

303

)2( i
Aa

)2.5
]

12.5− 0.634− 3
(

i
Aa

)
· exp

[
4.18

(
T−303

T

)] dmea

Aa
i (22)

ηconc = −
RT
2F

ln
(

1− i
imax

)
(23)

cO2 = pO2 · 1.97× 10−7 exp(
498
T

) (24)

cH2 = pH2 · 9.174× 10−7 exp(
−77

T
) (25)

Vact = −ηact (26)

Ract =
Vact

i
(27)

In equations above, Vfc is the output voltage of single cell, i is the cell current, ENernst is the
thermodynamic potential, ηact, ηohm and ηconc describe the activation, Ohmic, and concentration
overpotential of the fuel cell, respectively. The fuel cell specific model parameters (Vc, Va, Cdl, ppbr, kC,
Aa, dmea, imax) are given in Table 2. The fuel consumption that is described in Equations (16) and (17) is
dependent on nfc, the number of cells in the fuel cell system.

2.2. Control Framework

In the simulated fuel processing system, the control objective is to stabilize the fuel cell power
output with fast response to load changes. However, the system shows large delays between the inputs
and outputs which stem from the complexity of the process, and especially from the slow dynamics of
the hydrogen purification stage in the WGS reactor. From the control point of view, it then forms a stiff
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system having a reactor with slower dynamics compared to other two process stages. Thus, the control
strategy should focus on compensating for the long delay time with predictive model-based methods.

The proposed method involves two-layer control hierarchy presented in Figure 1. The control
framework includes a base layer controller that is facilitated by PI-controller or MPC and a higher
level intelligent optimizer established with Differential Evolution. The MPC is here constructed as a
SISO system or an alternative MIMO system with linear autoregressive models. In the former case,
the MPC utilizes the desired cell current (and therefore the desired hydrogen feed flow to the fuel cell)
as a reference signal, the hydrogen molar flow to the fuel cell as a measured output, and the steam
reforming feed W/E-ratio as a manipulated variable. In the latter case, the total molar feed flow to
steam reforming is manipulated as well. A hierarchical optimization approach can be adopted in
order to maximize the conversion efficiency in the reformer unit. The higher level optimizer provides
optimal set-points for the lower lever controller. The process optimization is based on the DE algorithm
utilizing predictive control model of the studied process. The optimizer was launched every time
when the hydrogen set-point is changed, and a new steady state was reached. After the optimization
routine, the maximum conversion efficiency found was introduced as a set-point to the MPC.

Materials 2018, 11, x FOR PEER REVIEW  6 of 15 

 

stages. Thus, the control strategy should focus on compensating for the long delay time with 
predictive model-based methods. 

The proposed method involves two-layer control hierarchy presented in Figure 1. The control 
framework includes a base layer controller that is facilitated by PI-controller or MPC and a higher 
level intelligent optimizer established with Differential Evolution. The MPC is here constructed as a 
SISO system or an alternative MIMO system with linear autoregressive models. In the former case, 
the MPC utilizes the desired cell current (and therefore the desired hydrogen feed flow to the fuel 
cell) as a reference signal, the hydrogen molar flow to the fuel cell as a measured output, and the 
steam reforming feed W/E-ratio as a manipulated variable. In the latter case, the total molar feed 
flow to steam reforming is manipulated as well. A hierarchical optimization approach can be 
adopted in order to maximize the conversion efficiency in the reformer unit. The higher level 
optimizer provides optimal set-points for the lower lever controller. The process optimization is 
based on the DE algorithm utilizing predictive control model of the studied process. The optimizer 
was launched every time when the hydrogen set-point is changed, and a new steady state was 
reached. After the optimization routine, the maximum conversion efficiency found was introduced 
as a set-point to the MPC. 

 
Figure 1. A control framework for the simulated fuel cell process. 

2.2.1. Model Predictive Control 

MPC utilizes an identified process model to predict and optimize the behavior of the controlled 
system according to some cost function [27]. In this study, Matlab’s built-in Model Predictive 
Control Toolbox is utilized. The empirical process models (control models) are identified from the 
open loop simulations with the integrated model of fuel cell system. 

2.2.2. Model identification 

The process dynamics for the MPC design are here described with linear input-output models. 
A general structure for a linear model is: 

)()()()()()( teqCtuqBtyqA +=  (28)

where A(q) denotes the parameters of q-1 output delays, B(q) is the same for inputs u(t), and C(q) 
for the approximated unmeasured disturbance e(t). The model identification is performed with 
Matlab’s built-in System Identification Toolbox, utilizing the prediction error method and the 
input-output data obtained from the integrated simulation model that is described in Section 2.1. 

2.2.3. Differential Evolution 

DE is an optimization method with basis in evolution theory [28]. The DE algorithm has several 
preferable properties; it is a global optimizer, which can be configured to avoid local minima. The 
algorithm operates with floating-point numbers (real values), making the optimization simple and 
fast. Also, the number of design parameters is low—the parameters to be set are related to the 

Fuel cell process

Control models

Parameter 
identification

Model Predictive 
Controller

Process optimization 
(Differential Evolution)

Disturbances
Set-points

Figure 1. A control framework for the simulated fuel cell process.

2.2.1. Model Predictive Control

MPC utilizes an identified process model to predict and optimize the behavior of the controlled
system according to some cost function [27]. In this study, Matlab’s built-in Model Predictive Control
Toolbox is utilized. The empirical process models (control models) are identified from the open loop
simulations with the integrated model of fuel cell system.

2.2.2. Model identification

The process dynamics for the MPC design are here described with linear input-output models.
A general structure for a linear model is:

A(q)y(t) = B(q)u(t) + C(q)e(t) (28)

where A(q) denotes the parameters of q-1 output delays, B(q) is the same for inputs u(t), and C(q) for
the approximated unmeasured disturbance e(t). The model identification is performed with Matlab’s
built-in System Identification Toolbox, utilizing the prediction error method and the input-output data
obtained from the integrated simulation model that is described in Section 2.1.

2.2.3. Differential Evolution

DE is an optimization method with basis in evolution theory [28]. The DE algorithm has several
preferable properties; it is a global optimizer, which can be configured to avoid local minima.
The algorithm operates with floating-point numbers (real values), making the optimization simple
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and fast. Also, the number of design parameters is low—the parameters to be set are related to
the population size, minimum and maximum allowed initial values of the population members
and crossover probability. The main difference between the DE and genetic algorithms is in the
mutation operation. In genetic algorithms, the mutation is randomly performed, whereas DE uses the
differences of chromosomes and their arithmetical combinations to generate new population members.
The parameters that were used in this study are presented in Table 3. Here, the implementation is
performed with a custom-made Matlab function utilizing the DE variant with the best base vector
selection for mutation, one difference vector and exponential crossover (DE/best/1/exp).

Table 3. Algorithm parameters for Differential Evolution (DE).

Convergence Criterion Initial Population
Bounds

Population
Size

DE Step
Size

Crossover
Probability

CF ≤ 10−6 or itermax = 500 is
reached

W/E = [2.5 9]
Ntot,in = [0.01 0.09] 20 0.2 0.4

2.2.4. Objective Function

Two manipulated variables, namely the W/E-ratio and the total molar flow to reformer, were
selected for optimization. Also, two outputs, the conversion efficiency and the hydrogen flow rate after
the WGS reactor were included in the analysis. The general form of the cost function to be minimized
in this case was

CF = min{h1 · (100− y1,SS) + h2 − u1(k) + h3u2(k) + h4 · |r2(k)− y2,SS|} (29)

where constants h1–4 are the tuning parameters, u1(k) and u2(k) are the manipulated W/E-ratio and
the total molar flow at time instant k, respectively, y1,SS and y2,SS are the steady state values of the
conversion efficiency and hydrogen flow rate after an input change, and r2(k) is the set-point for the
hydrogen flow rate.

The steady state equals to the estimated future value after 200 s. The cost function is designed to
penalize deviations from the set-point and to favor high conversion. In addition, the low total flow and
high W/E-ratio are preferable, and therefore they minimize the cost function. The tuning parameters
h1–4 utilized were 1, 5, 50, 100, respectively.

3. Results

The simulation model and the control framework presented above were formulated into a
Matlab/Simulink®model illustrated in Figure 2. First, the control models were identified with open
loop simulations, followed by the comparison of the base control strategies, and finally the hierarchical
control strategy was tested. The results are presented in the following subsections.

3.1. Identification of the Control Models

First, the hydrogen flow rate was approximated with an autoregressive moving average model
with exogenous input (ARMAX). The W/E-ratio was used as a model input based on its strong
effect on hydrogen production [29]. The magnitudes of both the input and output was synchronized
by removing the mean values from the model variables. Figure 3 depicts the identification results.
The model parameters were selected based on the fit index describing the percentage of the output
variations that is reproduced by the model over the training and testing data. In this case, the fit index
was 57.13. The resulted model parameters are presented in Equation (30).

A(q) = 1
B(q) = −0.005027q−158 − 0.0002274q−159 (30)
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The resulted model has no poles and it includes two delay terms at time lags of 158 and 159 s.
Thus, according to the model, it seems that simulated process exhibits large dead time and delay from
input to output.

The second model candidate used two inputs; the W/E-ratio and the total molar flow to reformer.
The selected model structure was an autoregressive model with exogenous input (ARX). In this case,
model parameter identification resulted in a model with one pole (one lagged output as an input),
together with two other inputs both with delays of 220 s. The model identification results in this case
are presented in Figure 4 and the model parameters are given in (31).
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A(q) = 1− 0.996q−1

B(q) =

[
−3.549× 10−5q−220

−0.008549q−220

]
(31)

Materials 2018, 11, x FOR PEER REVIEW  9 of 15 

 

Figure 3. Modeling results of the autoregressive moving average model with exogenous input 
(ARMAX)-model for the water-ethanol ratio as input and hydrogen flow rate as modeled output 
(mean removed). Solid line: the modeled hydrogen flow rate, dashed line: simulated true output, 
dotted line: division of training (on right) and testing data (on left). 

The second model candidate used two inputs; the W/E-ratio and the total molar flow to 
reformer. The selected model structure was an autoregressive model with exogenous input (ARX). 
In this case, model parameter identification resulted in a model with one pole (one lagged output as 
an input), together with two other inputs both with delays of 220 s. The model identification results 
in this case are presented in Figure 4 and the model parameters are given in (31). 













−
⋅−=

−=

−

−−

−

220

2205

1

008549.0
10549.3)(

996.01)(

q
qqB

qqA
 (31)

 
Figure 4. Identification results of the autoregressive model with exogenous input (ARX)-model with 
two inputs: the water-ethanol ratio and total feed to reformer unit. Solid line: the modeled hydrogen 
flow rate, dashed line: simulated true output, dotted line: division of training (on right) and testing 
data (on left). 

According to Figure 4, the ARX-model with two input variables can smoothly follow the 
simulated true output. The fit index in this case was 67.67, outperforming the ARMAX model (57.13) 
with a moderate cost of calculation power. However, the more critical model property was its ability 
to capture the process dynamics; in preliminary testing, the ARX-model lead to an unstable 
controller behavior, whereas the simpler ARMAX-model seemed to capture the process dynamics 
better. 

A control model was also needed in this application for the MPC controller and for cost 
function calculation during optimization. For this purpose, an open loop simulation was performed, 
where the two manipulated variables (W/E-ratio and total molar flow to reformer) were randomly 
changed and the response in hydrogen flow rate and conversion were recorded. As in the former 
cases, the mean values of the model variables were removed prior to identification. The modeling 
results are depicted in Figure 5. The best performing model was found to be an ARX-model with 
eight free parameters and 100 s delays: 









+
















=








)(
)(

)(
)(
)(

)(2
)(1

)(
)(

2

1

2

1

2

1

te
te

qC
tu
tu

qB
qB

ty
ty

 (32)

Figure 4. Identification results of the autoregressive model with exogenous input (ARX)-model with
two inputs: the water-ethanol ratio and total feed to reformer unit. Solid line: the modeled hydrogen
flow rate, dashed line: simulated true output, dotted line: division of training (on right) and testing
data (on left).

According to Figure 4, the ARX-model with two input variables can smoothly follow the simulated
true output. The fit index in this case was 67.67, outperforming the ARMAX model (57.13) with a
moderate cost of calculation power. However, the more critical model property was its ability to
capture the process dynamics; in preliminary testing, the ARX-model lead to an unstable controller
behavior, whereas the simpler ARMAX-model seemed to capture the process dynamics better.

A control model was also needed in this application for the MPC controller and for cost function
calculation during optimization. For this purpose, an open loop simulation was performed, where the
two manipulated variables (W/E-ratio and total molar flow to reformer) were randomly changed and
the response in hydrogen flow rate and conversion were recorded. As in the former cases, the mean
values of the model variables were removed prior to identification. The modeling results are depicted
in Figure 5. The best performing model was found to be an ARX-model with eight free parameters
and 100 s delays:

[
y1(t)
y2(t)

]
=

[
B1(q)
B2(q)

][
u1(t)
u2(t)

]
+ C(q)

[
e1(t)
e2(t)

] B1(q) =

[
−0.003q−100 −0.0082q−101

−0.0235q−100 1.1938q−101

]

B2(q) =

[
0.002231q−1 −0.001066q−2

−0.2112q−1 0.08326q−2

] (32)

The fit index for the modeled hydrogen flow rate (y1(t)) with training and testing data was 53.4
and for conversion (y2(t)) 21.2. According to the results in Figure 5, the conversion values are
underestimated but with an almost constant bias. On the other hand, the model captures the direction
and magnitude of the changes. Therefore, the model should be able to provide a feasible estimate for
prediction and optimization purposes.
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3.2. Comparison of PI and MPC

The performance of a MPC as a base level controller was tested and the results were compared to
conventional PI control. A SISO system was concerned with the hydrogen consumption (based on the
FC current, see Equation (16)) as a reference, the measured hydrogen flow from the WGS reactor as a
controlled variable, and the reformer water-ethanol ratio as a manipulated variable.

The optimal tuning parameters for the MPC were as follows; control interval (1 s), prediction
horizon (400 s), control horizon (1 s), input rate weight (0.05), output weight (1), and the magnitude
gain of the input disturbance model (0.001). Input and output constraints of the MPC controller
were set so that any non-ideal behavior of the controller could be observed without restriction from
the optimizer algorithm. For MPC simulation, the removed mean value in model identification
(0.04 kmol/min) was added for scaling the control model to the actual output values. The PI controller
had a proportional gain of −9.46 and an integral gain of −0.50.

Both PI and MPC controllers were then run with the same random seed of the noise source and
the stepwise 12% increase of hydrogen consumption (from 0.0365 to 0.041 kmol/min) in the simulation.
The observed hydrogen flow rates with both controllers are presented in Figure 6.

According to Figure 6, a new steady-state with a variation of ± 0.0015 kmol/min (4% of the
set-point value), is reached after 900 s with the PI. The rise time (50%) was approximately 300 s.
In comparison, MPC controller has a rise time of 150 s and it reaches the set-point only in 200 s with
a variation range of ± 0.001 kmol/min (2.4% of the set-point value). Hence, MPC shows a better
performance, both in terms of the reduction of process variation and dynamics.
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3.3. MPC with a Higher Lever Optimizer

The optimization capability of the presented method was demonstrated by simulating the
integrated fuel processing model and the controller, with a step change in the hydrogen flow rate at
time instance 1100 s. After the new steady state at time instance 1400 s, the higher level optimizer was
launched to calculate the maximum reachable conversion efficiency for the current state. This value
was further applied to MPC as a set-point. The simulation results are presented in Figure 7, where the
values of the hydrogen flow rate and conversion efficiency have been scaled to the same magnitude.Materials 2018, 11, x FOR PEER REVIEW  12 of 15 
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According to the results in Figure 7, the higher level optimizer resulted in MPC increasing the
W/E-ratio, which was eventually seen as a 2% increment in the conversion efficiency. The hydrogen
flow rate was kept within the limits of ± 1.25% from the set-point. However, a spike can be observed
due to the fast process dynamics related to conversion calculation in the process model. The simulation
was repeated without the optimizer (dashed line Figure 7). In this case, the step change in the hydrogen
flow rate results in a slight decrease in the conversion efficiency.

4. Discussion and Conclusions

A simulation model for an integrated fuel processing system consisting of ethanol reformer, WGS
membrane reactor, and PEM fuel cell was developed. The presented model was then applied for
process control and optimization. For this purpose, empirical input-output models were developed
from the simulation data and then utilized in a model-based control framework.

It was found that an ARMAX-model for the hydrogen flow rate was sufficient to capture the delay
dynamics of the process and the magnitude of the changes when the W/E-ratio was altered. It was also
indicated during process identification that the dynamics of the integrated system varied depending
on the processing stage. This kind of a stiff system motivated the application of MPC method.

Indeed, the traditional PI controller was outperformed by MPC in the simulations where the
set-point of the hydrogen flow rate was changed stepwise. By applying MPC, a reduction of
approximately 30% in process variation was achieved in comparison to PI. The settling time with MPC
was 200 s compared to that of 900 s with the PI controller.

The operation of the most critical part of the simulated process chain, namely production
of hydrogen in the reformer, was further optimized by combining a DE algorithm with MPC
and forming a two-level hierarchical control system. A case example was presented, where
the optimization framework was applied to maximize the conversion efficiency in the reformer.
In simulations, the optimized conversion was 2% higher without violating the required hydrogen flow
rate. The hierarchical control system, where the higher level optimizer calculated the set-point to an
MPC, has a potential to reduce the consumption of raw materials used for energy production, namely
the ethanol feed.

The following conclusions can be drawn based on the simulation results:

(1) In the integrated fuel processing system, the hydrogen production and purification steps play a
major role in process dynamics. From the control point of view, these are more critical parts than
the PEM fuel cell with fast dynamics.

(2) Load changes in the hydrogen flow require a long settling time. This property limits the
applicability of the integrated fuel cell process.

(3) The empirical linear models are suitable to describe the simulated hydrogen production process
in the tested operating range. Such models may simplify and increase the robustness of the
model-based control system in a real-world application.

(4) Hierarchical control strategy can simultaneously affect the economy of the hydrogen production
and the regulation of the flow rate. The increased conversion efficiency can potentially be
achieved with a small control effort.

The control framework and the conversion efficiency optimization of the reformer were based
on the manipulated variables that most influenced on process outputs. Alternatively, the selection of
variables could be based on controllability analysis; for example, in Pravin et al. [30], the pairings for
the single-loop controllers in an integrated fuel processing system were based on the Relative Gain
Array method. The simulations in this study involved a limited range of operating conditions. It should
be noted that the influence of other adjustable model parameters in the integrated fuel processing
system could be profound in different operating conditions. This may influence the straight utilization
of the results and conclusions. In addition, it would be interesting to study the optimization of similar
energy conversion systems with varying fuel types. By taking advantage of the recent modeling efforts,
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the control framework presented could also be extended to integrated systems consisting, for instance,
an autothermal reforming [30] or microchannel reactors [31].
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