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Abstract: The time scaling exponent for the analytical expression of capillary rise ` ∼ tδ for several
theoretical fractal curves is derived. It is established that the actual distance of fluid travel in self-
avoiding fractals at the first stage of imbibition is in the Washburn regime, whereas at the second
stage it is associated with the Hausdorff dimension dH. Mapping is converted from the Euclidean
metric into the geodesic metric for linear fractals F governed by the geodesic dimension dg = dH/d`,
where d` is the chemical dimension of F . The imbibition measured by the chemical distance `g is
introduced. Approximate spatiotemporal maps of capillary rise activity are obtained. The standard
differential equations proposed for the von Koch fractals are solved. Illustrative examples to discuss
some physical implications are presented.

Keywords: capillary rise; spontaneous imbibition; Hausdorff dimension; geodesic distance; Euclidean
distance; von Koch curve

1. Introduction

Fractal geometry studies shapes, which are scale invariant, have fractional dimen-
sions and self-similar properties, so their Hausdorff dimensions exceed the corresponding
topological dimensions, i.e., dH > dt [1]. Fractal theory is widely applied to the fields
of physics, chemistry, biology, medicine, geology and computer science (see Refs. [2–6]).
Specifically, it is used to model transport phenomena in porous media [7–12] due to the
fractal features [13,14].

Capillary-driven fluid flow is the main transport mechanism in many natural systems.
Capillarity was observed for the first time by Leonardo da Vinci [15]. Washburn [16]
derived a relation for the fluid moving through a small cylindrical capillary or porous
medium, which showed a time dependence of the imbibing fluid distance as ` ∼ t1/2.

The complexity of pore structure plays an important role for the determination of the
properties of porous media. This heterogeneity is related to the value of the time exponent,
so that the imbibition speed is slower than for the Washburn regime, as the imbibition path
is not a straight line as in the Washburn capillary tubes. Therefore, the capillary rise can be
estimated as:

` ∼ tδ, (1)

where δ < 0.5 is the time scaling exponent. In this sense, Launghlin and Davies reported an
exponent δ = 0.41 for capillary imbibition in fibrous textile [17]. The effect of the capillary’s
roughened path was shown in [18] by making experimental tests on glass bed, where
δ = 0.25. Lam and Horváth carried out their capillary imbibition studies on paper as the
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porous media and they obtained an exponent δ = 0.382 [19]. Whereas in 2006, Li [20]
and Balankin et al. [21] reported exponents equal to 0.32 and 0.38 on chalk and paper
studies, respectively. In [22] it was proved that the capillary rise does not behave according
to the Washburn law, and concluded that the time exponent δ = 0.49 for a newspaper
sheet depends on the swelling of paper fibers and the non-Newtonian character of the
liquid. Paper wetting experiments using displacement of air by black Chinese ink was
developed in [23] and introduced a new time exponent with the value of δ = 0.41. Recently,
Zhu et al. [11] reported values of δ = 0.34, 0.38, 0.42 in several tight reservoirs. However,
none of the above-mentioned references provide details regarding the fluctuations of the
time exponent δ < 0.5 or the relations that explain the anomaly of δ.

On the other hand, it has been proved that the pore and fracture networks are almost
always fractal [24–27] and they are well-described by fractal geometry rather than tradi-
tional geometry [28–30]. Therefore, many approximate models of spontaneous imbibition
are based on the fractal ramification of pores and channels that form tortuous capillaries
through which liquid is imbibed.

Thereby, Li and Zhao [31] proposed a fractal model for the prediction of spontaneous
imbibition where the time exponent is linked to the Hausdorff dimension of the porous ma-
trix using different core samples (glass-bed pack, chalk, Geyser rock and Berea sandstone),
such that δ = dH − 2. This model is efficient for a fractal reservoir of the three-dimensional
Cantor tartan type and later it was modified in [32] as δ = dtH − 2, where dtH is the
topological Hausdorff dimension of the medium, which quantifies the ramification of a
fractal matrix and its transport properties. Thereafter, a revolutionary method to compute
the time exponent was deduced by Cai [33], which explains the anomality of δ with respect
to the Washburn model. The model establishes the relation between the tortuosity path of
the capillary tube and the fractality of a porous medium. At first, the concept of the fractal
dimension of tortuosity of capillary dτ is introduced, so that δ = 1/2dτ . It is well-known
that, dτ can be obtained both for a single capillary using the box count method [34], and for
tortuous streamtubes in porous media using Equation (8) from Ref. [6].

In this work we introduce a relation that allows the determination of the time exponent
in order to compute the prediction of the imbibed volume in fractal capillaries for any
fractal curve such that it is only necessary to calculate the Hausdorff dimension of the
capillary. It also allows to understand the physical nature of the fluctuations of the time
exponent (0.25 ≤ δ ≤ 0.5) given in [11,17–23]

The tortuous flow paths may be similar to the triadic Koch curve, which is a self-similar
fractal [35,36]. In this regard, the standard von Koch curve plays an important role to model
processes with fractal structures, such as: diffusion [37,38], stresses and strains [39], motion
and vibrations [40,41], antenna design [42], stationary heat equation [43], among others.

The 3-adic von Koch curve can be constructed as follows. The initiator F0, is a straight
line that is partitioned into three equal parts. The middle part is replaced by an equilateral
triangle. This is the basic step and the reduced figure has four equal lines joined with each
other. This new figure is known as a generator denoted by F1. We construct F2 by applying
the same operation to each of the four lines in F1 and so on. Its Hausdorff dimension is
defined as: [44]

dH =
log 4
log 3

. (2)

The path-connected Koch curve is a finitely ramified fractal whose fractal features
are characterized by a set of dimension numbers [36,45,46]. The Hausdorff dimension dH
characterizes the degree to which a set fills the Euclidean space in which it is embedded [47],
so that dH is associated to a measure with respect to the Euclidean metric; while the chemical
dimension d` characterizes the fractal topology, which is measured with respect to the
geodesic metric on the fractal [36,45,46]. In addition, the geodesic dimension is given by
dg = dH/d` [36]. It is known that d` = 1 on self-avoiding curves [48], so for the von Koch
fractal we have dg = dH.
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Therefore, the analytical expression of the time scaling exponent δ for capillary rise on
fractal curves can be obtained by mapping from the Euclidean metric to the geodesic metric
on the von Koch curve using the ordinary calculus, and we obtain `g ∼ `dH . This allows us
to establish the lower and upper bounds for the time scaling exponent characterizing the
capillary rise. Thereafter, the exact values of distances of fluid travel `, `g and Euclidean
distance (`ε) are obtained.

The manuscript consists of five sections: following the “Introduction”, we review the
geodesic metric `g and the basic tools required in Section 2. In Section 3, we apply `g for
the von Koch curves and the standard differential equations of spontaneous imbibition as
geodesic distance function are introduced. In Section 4 the capillary rise activity on Koch
fractal is studied. In Section 5 the main findings and conclusions are outlined.

2. Terminology and Notations

In this section, some theoretical considerations about spontaneous imbibition and
concepts of self-avoiding fractal curves are reviewed and defined.

2.1. Classical Differential Equation for Immiscible Imbibition

In spontaneous imbibition the pressure is similar at both ends of the capillary and
the penetration of a wetting liquid into the capillary or porous media is influenced by
the interface curvature, which takes place due to the capillary pressure, illustrated by the
following equation:

pc =
2σ cos θ

rc
, (3)

where σ is the surface tension, and rc is the capillary radius. Many methods have been
developed to investigate the capillary effects in unconventional reservoirs in order to
characterize the capillary pressure (see for example [49–52] and references therein).

Imbibition arises when the contact angle (θ) between the liquid and the capillary
surface is less than π/2. The physics of imbibition is governed by the Bond and capillary
numbers [53,54]. The first of them is Bo =

(
ρw − ρg

)
gr2

c /σ that represents the ratio of
gravity and capillary forces, and the second one is Ca = µv/σ, which is the ratio of viscous
and capillary forces; where g is the gravity constant, ρw is the wetting liquid density, ρ0 is
the gas density, µ is the fluid dynamic viscosity and v is the fluid velocity.

Furthermore, the viscosity ratio M = µw/µ0 is an important parameter since the
viscous forces can either stabilize or destabilize the fluid–fluid interface. Depending on the
flow conditions and pore radius, extremely different flow regimes occur. When M � 1,
Bo � 1 and Ca � 1, the capillary forces are dominant, and the inertial effects can be
neglected. If in the capillary tube only the laminar flow exists, the liquid penetration is
governed by the balance of the capillary, viscous ((8µ`/r2

c )(d`/dt) ) and hydrostatic (ρwg`)
effects as pc = pµ + pg, with ` being the straight-line distance (vertical) of fluid penetration
(see the iteration k = 0 of von Koch curve in Figure 1). Therefore, the capillary rise is
given as:

d`
dt

=
κ

µ
ρwg

(
`eq

`
− 1
)

, (4)

where κ = r2
c /8 is the intrinsic permeability of the tube and `eq = pc/ρwg is the equilibrium

height of the liquid–air interface, at which the capillary and hydrostatic pressures are
balanced.

The solution of Equation (4) has two stages determined by the equilibration time
teq = `eqµ/κgρ2

w [55]. On the one hand, for t� teq, which corresponds to `� `eq or to the
absence of gravity (a horizontal cylindrical capillary) when `eq = ∞, the advancing liquid
is given by the Washburn regime:

`(t) = Ωt
1
2 , (5)
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where Ω = (2κpc/µ)1/2. On the other hand, when t � teq the equilibrium height is
approached exponentially as:

`(t) ∼ `eq

(
1− e−t/teq

)
. (6)

2.2. Euclidean and Geodesic Metric on Fractal Curves

The Hausdorff dimension is defined with respect to the Euclidean metric in the
embedding Euclidean space via the scaling relation [56]

Nε ∼ εdH , (7)

where Nε is the number of n-dimensional covering elements of size ε needed to cover the
fractal. The Hausdorff dimension can be treated as the degree to which a set “fills” the
Euclidean space in which it is embedded. Note that for d-dimensional Euclidean patterns,
the Hausdorff dimension defined by Equation (7) is equal to the topological dimension dt.
On the other hand, for fractals living in n-dimensional space dt < dH ≤ n.

Nevertheless, there always exists the intrinsic geodesic metric associated with the
fractal topology [57,58] characterized by the chemical dimension d`, which is independent
of the embedding [36]. The chemical dimension of a fractal F is defined as [48] the
Hausdorff dimension with respect to the intrinsic geodesic metric on the fractal by fractal
covering for the d`-dimensional balls with diameter not smaller than ε`, such that [48]

N` ∼ ε
d`
` . (8)

It is a straightforward matter to see that the mass of fractal scales with the ball’s
diameter is

M∼ ε
d`
` ∼ εdH , (9)

where ε` and ε denote the ball diameter with respect to the geodesic and Euclidean metrics,
respectively [36]. The mapping from the geodesic metric on the fractal into the Euclidean
metric in the embedding space implies that the geodesic distances between two points on
the fractal denoted by `g = `ε` scales with the Euclidean distance between these points in
the embedding Euclidean space `ε as follow

`g ∼ `dH/d`
ε ∼ `

dg
ε , (10)

where dg = dH/d` ≥ 1 is the geodesic dimension. Note that the geodesic dimension is
equal to the Hausdorff dimension of the minimum path dmin on the fractal.

2.3. Geodesic Dimension Dg and Distances on Self-Avoiding Fractals

It was established that the Hausdorff dimension of the minimum path for self-avoiding
Koch curves is equal to the Hausdorff dimension, i.e., [36,48]

dmin = dg = dH, (11)

meanwhile the chemical dimension is equal to one (d` = 1) [36,45,46]. The geodesic distance
from the origin of fractal F to an arbitrary point x (see Figure 1) can be obtained as: [59]

`g = m1(`ε)
dH , (12)

where 1 ≤ dH < 2 and m1 is a proportionality constant. The values of m1 are discussed in
detail in Ref. [59]. At Figure 2 the relation between chemical and Euclidean distances for
the standard von Koch curve is presented.
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Figure 1. First four iterations of classical von Koch curve [44]. The initiator is equal to Washburn
capillary with dH = 1 [16]. The last drawing (blue color) shows the three travel distances of the fluid
(for an example of the experimental setup in a vertically straight capillary see [55]).
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Figure 2. Relation between `ε and `g for the standard von Koch fractal.

Moreover, in [60] it was established that for statistical fractals or single-valued func-
tions, the geodesic distance `g is the actual distance that fluid travels in a heterogeneous
porous medium, which is as a function of the straight-line distance `, between the starting
and ending points of the fractal path given by the following equation:

`g = m2`
dH , (13)

where

m2 = ε1−dH (14)

being ε the lower cutoff of fractal F (for the standard von Koch curve ε = 1/3k, where k is
the iteration number).

3. Standard Differential Equation of Capillary Rise with Geodesic Metric

In this section, differential equations of capillary rise for capillaries with fractal path
are suggested, denoted by F in order to describe the fractal imbibition under the analogous
assumptions to those in Ref. [33].



Fractal Fract. 2022, 6, 332 6 of 12

Differentiating Equation (13) with respect to the time t for a single capillary results in:

vg = m2dH`dH−1v, (15)

where vg = d`g/dt is the actual velocity of liquid traveling through the geodesic pass of a
capillary; v = d`/dt is the imbibition velocity for the Euclidean pass (straight-line `); where
the Euclidian distance ` is such that dH = 1, and we have that vg = v. The scaling ratio
between both velocities can be rewritten as:

d`g

dt
= m2dH`dH−1 d`

dt
. (16)

In [61] it was shown that when a wetting liquid contacts with a capillary of any shape
(Euclidean or fractal), the capillary rise is described as:

d`g

dt
=

κ

µ

`

`g
ρwg

(
`eq

`
− 1
)

. (17)

The capillary rise in fractal curves is obtained substituting Equations (13) and (16)
in (17), and we obtain:

d`
dt

=
κ

µm2
2

ρwg
`2(dH−1)dH

(
`eq

`
− 1
)

. (18)

Integrating Equation (18) neglecting the gravitational force, we obtain the capillary
rise in the first stage of imbibition as:

`(t) = ΩF t
1

2dH (19)

where ΩF =
(
2κpc/µm2

2
)1/2dH , and the time scaling exponent is bounded as 0.25 ≤

δ = 1/2dH ≤ 0.5. Equation (19) implies that the real travel distance of a fluid during the
capillary rise in a porous media is a power law time function that depends on the Hausdorff
dimension of the fractal capillary (which can be estimated more easely than the tortuosity
dimension as in [61]). The behavior of Equation (19), shown in Figure 3, matches with
previous experimental tests (see Refs. [62–64]) Meanwhile, when dH = 1, the fractal curve
is a straight line and the axial (or unidirectional) imbibition into a cylinder is obtained (see
Equation (5)), as for dH = 2 the fractal curve is a highly tortuous line, so irregular that it
fills a two-dimensional space.
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Figure 3. Time scaling δ = 1/2dH of the capillary rise in the first stage of imbibition on generalized
von Koch curve. (a) Fluctuations of time scaling exponent 0.25 ≤ δ ≤ 0.5 depend on the Hausdorff
dimension of medium, and (b) Experimental results on capillary imbibition in porous media, where
δ = 1/2dH holds, see Refs. [62–64].
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The second stage of imbibition can be modeled according to Equation (18). The
equilibrium height is reached at different times (Figure 3a), which depends on the Hausdorff
dimension of the capillary (exponential trendline shown in Figure 3b).

Moreover, the geodesic distance that corresponds to the real path that a fluid travels
during a capillary rise is governed by the following equation:

d`g

dt
=

r2
c

8µ

1
`g

(
2σ cos θ

rc
− ρwg

(
`g

m2

) 1
dH
)

, (20)

and for the first stage of imbibition the expression for `g is:

`g(t) = Ωgt
1
2 , (21)

where Ωg =
(
2κpc/µm2

2
)1/2. Therefore, the geodesic distance of fluid in the first stage of

imbibition is in the Washburn regime (see the upper red curve in Figure 3).

4. Results Obtained on Capillary Rise on Von Koch Curves

In this Section we describe the capillary rise on standard von Koch fractal in order to
show some physical implications.

Consider a rough capillary triadic Koch’s type curve presented in Figure 1, whose
geodesic distance is:

`g = n∆x, (22)

for

∆x =

(
1
3

)k
, (23)

where n is the site number on the fractal and `ε = 1 is the Euclidean distance. We study the
capillary rise for a glass capillary and distilled water with the following properties θ = 0◦,
ρ = 0.998 g/cm3, µ = 0.01 dina s/cm2, σ = 724 dina/cm and ` = 64 cm.

The capillary rise activity for the first stage of spontaneous imbibition is presented
in Figure 3. Note that the imbibition height (`) depends on the Hausdorff dimension of
capillary F (Equation (19)) and the geodesic distance of imbibition is in the Washburn
regime δ = 0.5 given by Equation (21), so that δ(`g) > δ(`) as is shown in Figure 3a.

The values of δ in Figure 3a are in the range of [0.25, 0.5] and correspond to all possible
values of the capillary rise `(t) ∼ tδ as a function of time exponent, which in its turn
depends on the Hausdorff dimension δ = 1/2dH of the fractal capillary. Therefore, δ has
the following range:

1
4
≤ δ ≤ 1

2
. (24)

The above mentioned result follows from the fact that dH characterizes the capacity of
the fractal to fill the embedded space, so that for self-avoiding curves embedded in <2 the
Hausdorff dimension dH is such that 1 ≤ dH < 2. In the case when dH = 1 the capillary
tube is straight (one-dimensional Euclidean case), and the exact Washburn regime with
δ = 1/2dH = 0.5 is obtained. Meanwhile for dH = 2 the capillary tube is a highly tortuous
line so irregular that fills a two-dimensional space and δ = 1/2dH = 0.25.

If a generic von Koch capillary is analyzed with several Hausdorff dimensions 1 ≤
dH(F ) ≤ 2, so that [65]:

dH =
log 4

log 2(1 + cos γ)
, (25)
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where γ is the indentation angle (γ = 60◦ for 3-adic von Koch fractal), then it is possi-
ble to find the time scaling exponent for any tortuous capillaries in the range given by
Equation (24).

Many experimental results of capillary rises obtained for different porous media
proved that they do not have the behavior given by the Washburn equation `(t) ∼ t1/2.
Experimental works showed that the imbibition speed for some porous media can be
slower than that of the Washburn regime, i.e., δ < 0.5 as it is plotted in Figure 3b. This
anomaly of the time scaling exponent cannot be explained by the gravity or inertial effects.
Some researchers have suggested that this phenomenon is attributed to the fractality of the
porous medium [21], explaining it with different approaches [31,61].

However, the above-mentioned anomaly is explained by Equations (19) and (24)
obtained in the previous section, which characterize the irregular path of a liquid through
a porous medium such as a fractal curve using its Hausdorff dimension that defines the
value of the scaling exponent. Thus, the delta values can be found once the Hausdorff
dimension of the porous medium is calculated.

The calculated Hausdorff dimensions of porous media corresponding to the previous
works are shown in Figure 3b and they are in the range given by Equation (24).

The following remarks and outlooks may be drawn based on the results obtained:

1 The validation of the introduced formulation was performed by comparison of the
calculated theoretical values with the experimental results of other authors mentioned
above.

2 The formulation can be applied to highly tortuous capillaries. It is adaptable to fractal-
curve-like capillaries and it does not depend on their tortuosity (for example, in the
case when the capillary is a generalized fractal Koch curve, Weierstrass curve, or any
linear fractal with Hausdorff dimension between 1 and 2).

3 The “effective” volume of imbibed liquid can be computed directly using the geodesic
distance instead of the imbibition height distance.

4 The developed method is an optimization of the formulation proposed in [61], where
δ = 1/2dτ . In the proposed method, it is not necessary to calculate neither the
tortuosity nor the tortuosity fractal dimension of capillary tubes, it is enough to
simply determine their Hausdorff dimension.

5 The time scaling exponent deduced by Li and Zhao δ = dH − 2 [31] is highly accurate
in fractal matrix-type three-dimensional Cantor tartan. However, Equation (24) can be
used to fit the experimental data once its dH is determined (by its porosity rate [13])
instead of the Li–Zhao formulation.

From Equation (18) follows that the equilibrium distance `eq for several Hausdorff di-
mensions of von Koch curves in the second stage of imbibition are plotted in Figure 4a, and
the corresponding time data versus Hausdorff dimension of F are presented in Figure 4b.
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Figure 4. Time equilibrium distance as a function of Hausdorff dimension of capillar for a generic
von Koch curve with the indentation angle 0◦ ≤ γ ≤ 90◦. (a) Imbibition time vs imbibition Height or
straight-line distance of fluid penetration. (b) Hausdorff dimension vs imbibition time for 1 ≤ dH ≤ 2.
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Note that, the time that fluid requires to reach the equilibrium height `eq directly
depends on the Hausdorff dimension as:

t(`eq) ∼ e7.791dH . (26)

Moreover, the geodesic length `g in the second stage of imbibition is a function of
the Hausdorff dimension of the capillary tube (see Figure 5a). These lengths exceed the
Euclidean and vertical distances, `g > `ε > ` (see Figures 4 and 5). The equilibrium
distances calculated using Equation (20) (see Figure 5b), imply that, for a capillar with any
Hausdorff dimension, the geodesic distance can be computed as:

(`g)eq ∼ tη , (27)

where η = 0.36, and it is bounded by the indentation angles from Equation (25) as 0◦ ≤
γ ≤ 90◦ (see Figure 5b).
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Figure 5. Geodesic distances for the second stage of imbibition, (a) as a function of Hausdorff
dimension and (b) equilibrium distances.

5. Conclusions

Analytical expressions (Equations (18) and (20)) in standard calculus sense that char-
acterize the capillary rise for spontaneous imbibition on generic Koch’s curve-like capillary
tubes were derived.

It was established that the geodesic `g and Euclidean `ε travel distances of fluid on
capillary type self-avoiding fractals are linked to their Hausdorff dimensions. Specifically, the
time scaling exponent in the first stage of imbibition is a function of the Hausdorff dimension
`(t) ∼ t1/2dH and its fluctuation range is given by Equation (24). By contrast, in the second
stage of imbibition, it was found that the time a fluid needs to reach the equilibrium height
`eq on fractal curves is a function of the Hausdorff dimension and the equilibrium geodesic
distance of fluid travel is a time function given by Equations (26) and (27), respectively.

Comparing the estimations of capillary rise derived using the developed approach
versus the experimental data obtained by different researchers (see Figure 3b), it can be
concluded that the formulation obtained can reproduce the global trend of variation of the
time exponent with respect to the fractal capillary path.

New analytical expressions involving generalized von Koch fractal curves have been
suggested, which can be used as mathematical models for many physical problems such as:
fluid–fluid displacement in petroleum engineering, water penetration into cement pastes in
construction industry, behavior of garments in the presence of liquids in textile production,
among others.

We expect that the results obtained in this study will provide useful information for
further experimental studies of porous media, for example, samples with capillary tube



Fractal Fract. 2022, 6, 332 10 of 12

types of von Koch or Weierstrass fractals and, as a future work, we plan to perform the
sensitivity analysis of the model.
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Abbreviations
List of Symbols and Greek Letters

Symbols
Bo = Bond number
Ca = Capillary number
ε = Ball diameter with respect to the Euclidean metric
ε` = Ball diameter with respect to the geodesic metric
dg = Geodesic dimension
dH = Hausdorff dimension
d` = Chemical dimension
dmin = Hausdorff dimension of the minimum path
dmin = Hausdorff dimension of the minimum path
dt = Topological dimension
F = Fractal curve
` = Height imbibition
`ε = Euclidean distance
`g = Geodesic distance
Nε` = Number of ε`
M = Viscosity ratio
M = Fractal mass
m1 = Constant of proportionality 1, as defined in Equation (12)
m2 = Constant of proportionality 2, , as defined in Equation (14)
pc = Capillary pressure
pg = Hydrostatic pressure
pc = Capillary pressure
rc = Capillary radius
t = Imbibition time
teq = Equilibration time
`eq = Equilibrium height
Greek letters
σ = Surface tension
µ = Viscosity
δ = Time scaling exponent
κ = Intrinsic permeability of the capillary tube
γ = Indentation angle for generalized von Koch curve
η = Exponent, as defined by Equation (26)
ρw = Wetting liquid density
ρg = Gas density
Ω = Constant associated with rock/fluid properties
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