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Abstract: The weakness of the population matrix models is that they do not take into account the
variation inside the class. In this study, we introduce an approach to add height variation of the
trees to the diameter-structured matrix models. In this approach, a new sub-model that describes the
height growth of the trees is included in the diameter-structured model. We used this height- and
diameter-structured matrix model to maximize the net present value (NPV) for the remaining part of
the ongoing rotation for Scots pine (Pinus sylvestris L.) stand and studied how the height variation
affects to the results obtained through stand-level optimization. In the optimization, the height
variation was taken into account by setting the lower saw-log price for the short trees. The results
show that including the height variation into the optimization reduced the financial outcome by
16–18% and considerably changed the structure of optimal management (e.g., timings for thinnings,
rotation period and intensity of thinnings). We introduced an approach that can be applied to include
not only height variation but also variation of other tree properties (such as branchiness or the amount
of heartwood and sapwood) into the matrix models.
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1. Introduction

Structured population models (either size-, stage- or age-structured) provide the connection
between the population-level dynamics and individual level vital rates [1]. In brief, for stage- or
age-structured populations a specific model is constructed to describe reproduction, growth and
mortality [2] with the probabilities that population in one age or stage (size) class transfers to another
between two sequential periods in time [3,4]. Growth is modeled as a transition from a class to upper
classes, survival (opposite to mortality) as the cumulated transitions from a class to other classes and
recruitment (reproduction) as a transition into the first class [5]. Particularly in forestry size-structured
models (e.g., interchangeably transition matrix model, matrix population model, matrix growth model
or matrix model) are thriving with applications covering a wide range of areas [6,7]. For instance,
transition matrix models have been applied in discovering biodiversity dynamics [8], in studying the
impacts of climate change [9], in biomass carbon stock studies (e.g., [10]) and in assessing optimal
forest management [11–14]. For optimal forest management, there are also other approaches widely
applied for predicting tree growth—such as process-based [15–18] and statistical-empirical growth
models [19–21]. One argument favoring matrix models over e.g., individual-based statistical–empirical
models is the fact that they in most cases require distinctively less amount of information [22].

Despite the extensive application of matrix growth models they have been criticized for their
inability to incorporate variation among the individuals consisting of a particular size or age category [23].
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Since matrix models operate on size- (or age-, or stage-) structured populations differences among
individuals due to size (age or stage) might be an incomplete predictor of actual growth [7]. Further, the
outputs of the matrix models are sensitive to the dimension of the matrix, or equivalently to the width
of the size classes. This dependence of elasticities on matrix dimensionality has been criticized to lead
possible fast pathways which in turn may result in biologically and/or physically impossible growth
rates [7]. However, there are methods to circumvent this problem [7]—nevertheless, they are tedious, and
require more information which to some extent violate Occam’s razor principle to apply parsimonious
models [24].

For modeling tree breeding with a matrix model, it is a problem that variation between individuals
within the same size (age or stage) class is not taken into account. Namely, a recent study [25] suggests
that branch properties (i.e., branch angle, branch thickness and branch multiplicity) are statistically
significantly better in improved trees (i.e., genetically improved by tree breeding methods) than in
unimproved trees. However, there is considerable variation between individuals. Stated differently,
valuable branch traits (flat branch angle, thin branches and fewer branches in a whorl) are more
common with improved material than with unimproved, and this can further be converted into
monetary value [26]. Currently, more studies focusing on combining branch traits with lumber grading
and further pricing [27,28] are called for. Further, more research on branch characteristics associated
with unimproved and improved seed material [29,30], and their effect on timber grade distribution is
needed. However, before such results exist, one can estimate the effect of fluctuating tree characteristics
on financial performance by conducting simulations.

This study introduces an approach that enables us to take into account the height variation
between individuals within a particular diameter class in population matrix models. It applies state
constrained optimal control problems related to forest management. The state is described with a
diameter-structured population matrix model, where is included the new sub-model describing the
height growth of the trees. The computational methods of this research are based on the numerical
methods of nonlinear, constrained optimization and differential equations, which previously followed
by Pyy et al. [14]. The main aim of the study is to demonstrate possible effects of height variation on
financial performance when a diameter-structured matrix model is applied in stand-level optimization.

2. Material and Methods

2.1. The Optimization Problem

Typically, the optimization helps in solving the forest stand management policy that maximize
the net present value (NPV) of the ongoing rotation. In order to formulate the control problem
we define the following notations. We divided trees into non-overlapping diameter and height
classes with uniform class widths ∆x and ∆z, respectively. The diameter of the trees in the
diameter class i = 1, . . . , N is denoted by xi and the height of the trees in the height class
j = 1, . . . , K by zj. Time was divided into subintervals [tk−1, tk), k = 1, . . . , M, with the length
of the time step ∆t. We denoted a tree in the diameter class i and the height class j tree (i, j).
Denoting number of trees (i, j) and number of removed trees (i, j) per unit area at time step
k by yk

ij and hk
ij, respectively. We denoted yk = (yk

11, . . . , yk
1K, yk

21, . . . , yk
2K, . . . , yk

N1, . . . , yk
NK)

> and

hk = (hk
11, . . . , hk

1K, hk
21, . . . , hk

2K, . . . , hk
N1, . . . , hk

NK)
>. By y and h are denoted vectors (y1, . . . , yM)>

and (h1, . . . , hM−1)>, respectively.
The optimization problem is in form

max
(y,h)∈Y×H

J(y, h) :=
N

∑
i=1

K

∑
j=1

(
M−1

∑
k=1

wk
ijh

k
ij + wM

ij yM
ij

)
, (1)

where wk
ij is the discounted revenues of a tree (i, j) at time step k. The clearcut is done at time step

M. We solved the optimization problem with different values of M (time step ∆t remains same so
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final time tM changes) and chose that which gave the maximal value for the problem (1). Every tree
is divided into two quality classes: saw log and pulpwood denoted by subindexes q = 1 and q = 2,
respectively. Further, if the height of a tree in diameter class i, is less than µi − 0.5 m then the unit
price of the saw log for the tree is lower than the original saw log price, where µi denotes the mean
height of the diameter class i. Technically, the term µi − 0.5 m is a sanction which degrades the saw
log price for trees which are shorter (by 0.5 m) than the mean height of the particular diameter class i.
The rationale is that the smaller the tree the less allowance there is for bucking, which in turn has a
negative effect on a saw log price [31]. In this connection it should be highlighted that although the
height variation does not have a direct correspondence to wood quality it has bearing on the saw log
recovery. The discounted price is

wk
ij =


1

(1 + r)tk (c̃1Vij1 + c2Vij2) if zj < µi − 0.5 m

1
(1 + r)tk (c1Vij1 + c2Vij2) else,

(2)

where Vijq is the volume of that part of the tree (i, j) that belongs to quality class q, c1 and c2 are the
price of saw log and pulpwood per volume, respectively, and c̃1 is the saw log price for trees shorter
than µi − 0.5 m. Technically, three alternative unit prices for saw logs were applied for trees shorter
than µi − 0.5 m. The applied unit prices were: (a) c̃1 = c1, (b) c̃1 = 0.8c1 and (c) c̃1 = c2. Price for saw
logs (c1) was 58.44 em−3 and for pulpwood (c2) 16.56 em−3.

State yk depends on number of removed trees hk via matrix population model [13]

yk+1 = Akyk − hk+1, k = 0, . . . , M− 1, (3)

yk
11 = Rk, k = 1, . . . , M (4)

y0 = y0, (5)

where Rk is number of new trees at time step k and y0 is a size distribution of trees at time t0. The sets
of constraints for y and h are

Y = {y|y ≥ 0 : y is a solution for Equations (3)–(5)}, (6)

H = {h|0 ≤ h ≤ hmax : ||hk||1 ≥ B or hk = 0, k = 1, . . . , M− 1}, (7)

respectively, where hmax is the upper limit of removed trees and B = 50 m3 ha−1 denotes the lower
limit of making a thinning at time step k.

The matrix Ak is in form

Ak =


ak

1H 0 . . . 0 0
bk

1H ak
2H . . . 0 0

...
...

. . .
...

...
0 0 . . . bk

N−1H ak
NH

 , (8)

where 0 ≤ ak
i ≤ 1, i = 1, . . . , N, and 0 ≤ bk

i ≤ 1, i = 1, . . . , N − 1, k = 1, . . . , M. The coefficients ak
i and

bk
i are assumed to depend on basal area Pk =

N

∑
i=1

π
( xi

2

)2
yk

i of the stand. The details about model

was described by Pyy et al. [13]. The matrix H is a K× K-matrix that describes how the trees move
from a height class to another. We wanted to choose a small height class width ∆z so we assumed that
trees from the height class j can remain in the same class or grow to every upper height class j′ (j′ ≥ j).
So the matrix H is in form
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H =


e11 0 . . . 0
e21 e22 . . . 0
...

...
. . .

...
eK1 eK2 . . . eKK

 , (9)

where 0 ≤ ej′ j ≤ 1, j′, j = 1, . . . , K are proportions of trees that move from the height class j to the
height class j′. We assumed that H does not depend on time step k or diameter class i. The parameters
are fitted on the data described in Section 2.2 below followed by other study [13]. The projected
gradient method was used to solve the optimization problem (1) in accordance with other study [14].

2.2. Model Estimation and Data

The data used to estimate the parameters for the population model were derived from two long-term
experiments (i.e., HARKAS series; for detail see, e.g., [32]). The two experiments were established in the
1978 and 1984 in even-aged, pure commercial Scots pine (Pinus sylvestris L.) stands located on mineral
soil in Muhos municipality, Ostrobothnia region, Finland (26◦06′05′′ E and 64◦46′02′′ N, asl 60–70 m).
The data were based on 8 360 tree records from 20 sample plots. The stand management among the
sample plots fluctuated considerably: from control plots (no thinnings) to very intensive thinnings
(60% of the basal area removed). The stand age in the data set was on average 25 years, indicating
that establishment costs and costs of precommercial thinning are sunk. Further, we did not apply any
modeling for the time period between stand establishment and 25 years.

We fitted the tree height data (2205 trees, heights between 2.7 m and 19.3 m) to follow Näslunds
height curve [33]

x√
z− 1.3

= b0 + b1x. (10)

Parameters b0 and b1 were estimated by least-squares method. We assumed that at time t0 height
of the trees in the diameter class i follows normal distribution [33] with mean

µi =
x2

i
(b0 + b1xi)2 +

3x2
i

(b0 + b1xi)4 σ2 + 1.3 (11)

and standard deviation

si = σ
2(µi − 1.3)

3
2

xi
, (12)

where σ2 is the variance of the variable
xi√

z− 1.3
.

The minimum diameter of quality class q is denoted by xmin,q, q = 1, 2. For saw log xmin1 = 15 cm
and for pulpwood xmin2 = 5.5 cm [28]. Let lijq denote the height, where the tree (i, j) has the diameter
xmin,q. Then for the tree (i, j), the saw log part is from ground to the height lij1 and pulpwood part
from height lij1 to the height lij2. The height lijq = (1− s)zj, where 0 ≤ s ≤ 1. The unknown s was
solved from the equation [34]

xmin,q f (sj)

xi
= f (s). (13)

In the equation sj = 1− 1.3
zj

and f (s) is taper curve

f (s) = b1s + b2s2 + b3s3 + b4s5 + b5s8 + b6s13 + b7s21 + b8s34, (14)

where the form and the values for parameters b1, . . . , b8 were taken from [34]. We solved s from the
Equation (13) by using MATLAB function SOLVE.
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The volume of a tree (i, j) is

Vij =
1

1000
v1xv2

i vxi
3 zv4

j (zj − 1.3)v5 , (15)

where the form and the values for parameters v1, . . . , v5 were taken from [34]. For a tree (i, j) the
area under the taper curve (14) on the intervals (0, zj), (lij0, lij1) and (lij1, lij2) are Aij0, Aij1 and Aij2,
respectively, where lij0 = 0. Then the volume

Vijq =
Aijq

Aij0
Vij. (16)

In the population model (3) the parameters ai and bi of the matrix Ak were estimated similarly as in
explicit approximation of continuous diameter structured population model (see [14]). The parameters
ejj′ , j, j′ = 1, . . . , K, of matrix H were estimated with the proportion estimator [6]. The recruitment
model (4) is based on the average stand conditions in the 7th National Forest Inventory [35]:

Rk =

{
0 if k = 1, . . . , d

Ppineck−d
BA (Sre f − Sk−d) if k = d + 1, . . . , M,

(17)

where Ppine = 0.5581 is relative proportion of pines, Sre f = 4009.5 is average number of trees per
hectare, S = ∑N

i=1 ∑K
j=1 yk

ij is actual number of trees per hectare and d is number of time steps before
the new trees are big enough to the first size class. Coefficient

ck
BA =


0.01 + 0.2475 · BAk if BAk < 3.9 m2,

1.0 if 3.9 m2 ≤ BAk < 8.0 m2,

1.471− 0.05882 · BAk if 8.0 m2 ≤ BAk < 25.0 m2,

0 if BAk ≥ 25.0 m2,

(18)

describes the density effect at time step k as a function of stand basal area BAk.
Finally, in the simulations, the time step was set to 5 years with width of diameter class ∆x = 3 cm

and width of the height class ∆z = 0.5 m. Minimum diameter and height were set to 2 cm and 2 m,
respectively. Then, a minimum of 15-yr growth was assumed to new trees to achieve the first size class,
d = 3 cm.

3. Results

The simulations revealed that height variation combined with pricing had a considerable effect
on both financial performance as well as on the optimal management schedules (Table 1, Figure 1).
For instance, when saw log unit price was set equal to pulpwood price for trees shorter than µi − 0.5 m
the optimal rotation period was shortened. Especially when discounting with 4%, the optimal rotation
period was shortened 20 years (Figure 1). Further, when discounting with 3%, the structure of thinnings
changed drastically with saw logs price set to equal pulpwood price for trees shorter than µi − 0.5 m,
compared to the other two price options (Table 1). The financial performance (expressed as maximum
net present value, MaxNPV) decreased significantly, ranging from 16% to 18% (depending on the
interest rate) when height variation with pricing was taken into account (Table 1). Regardless of the
discount rate (3% or 4%) height variation with pricing shortened the optimal rotation period but also
reduced the financial outcome. When sawlog unit price was set equal to pulpwood unit price the
MaxNPV reduced 409–477 e. However, the impact of height variation and pricing to mean annual
increment (associated with stand-level optimum) was minor: approximately 1% difference among the
pricing options (Table 1).
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Table 1. Optimal stand-level managements when initial stand density is 1000 stems ha−1 (seeded trees).

Thinning Stand
Age (a)

Removal
(m3ha−1)

Thinning
Intensity (%

of Basal Area
Removed)

Saw Log
Proportion

(%)

MaxNPV
(eha−1)

MAI
(m3ha−1a−1)

c̃1 c1/0.8c1/c2 c1/0.8c1/c2 c1/0.8c1/c2 c1/ 0.8c1/c2 c1/0.8c1/c2 c1/0.8c1/c2

Interest rate r = 3%
1st 45/45/50 77.3/72.1/62.9 54/50/35 60/61/67

3059/2872/2582 2.93/2.94/2.902nd 70/65/75 59.8/52.3/78.5 33/27/42 64/64/72
clearcut 95/95/90 141.4/155.1/120.0 100/100/100 39/42/50
total 278.5/279.5/261.4 50/51/61

Interest rate r = 4%
1st 40/40/50 60.9/61.9/50.6 61/62/28 53/52/71

2169/2036/1760 2.80/2.79/2.762nd 65/65/55 60.1/58.4/50.0 32/31/32 64/64/60
clearcut 90/90/70 131.0/130.5/92.4 100/100/100 35/35/38
total 252.0/250.9/193.0 46/46/52
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Figure 1. Volumes in stand managements with different saw logs pricing, m3/ha.

As an example of how height variation develops in a diameter class, we will consider the case
where the interest rate is 3% and the price of saw log for short trees is the price of saw log. Figure 2
presents the height variation at different time steps in diameter class 14–17 cm.
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Figure 2. Height variation in diameter class 14–17 cm evolving in time, when stand management is
optimized with 3% discount rate. On y-axis is number of stems (per hectare) and on x-axis height (in
meters, m).

4. Discussion

Forest growth and yield models and optimization models are both needed in order to achieve the
goals set for forest management [36]. There are, of course, several alternatives for both growth and yield
models [37] and optimization models [36,38] to be applied. Currently, traditional empirical-statistical
models have made way to e.g., process-based models [36] and to matrix models [6]. Despite the
fact that matrix models have been applied to almost all subject areas of forestry [6], they have been
criticized for their inability “to incorporate variation among individuals within a size category” [7].
This deficiency associated with matrix models is particularly troublesome regarding tree breeding since
it has recently been shown that improved reforestation material tends to have a different distribution
with respect to e.g., wood properties (such as branchiness) than unimproved material [25]. Since
distributional properties are likely to be different among improved and unimproved reforestation
material, this leads to a question of whether that might have an impact on financial performance as
well. To study this, the constraint of homogeneity associated with individuals within a particular
size category (cf. [2]) needed first to be relaxed. The main objective of this study was to introduce a
variation between individuals into a matrix model, and further to demonstrate its effect on financial
performance assessed according to stand-level optimization (cf. [39]).

Technically, the height variation between individuals was included in the financial analysis
(stand-level optimization) by setting a penalty. In brief, a tree shorter than an arithmetic average tree
height within a size category was labeled with a lower unit price of saw logs. The rationale was that
the shorter the tree the less allowance there is for bucking, which in turn has a negative effect on a
saw log price [31]. Our results indicated that including variation into the matrix model has a notable
impact on financial performance. Interestingly, the MaxNPV changed by approximately 16–18% when
height variation with pricing was included in stand-level optimization. Although the variation was
here set to tree height (and further linked to saw log pricing by specific penalty function), it does
not matter which variation is eventually included in the matrix model. One can choose variation in
any stem property, for instance branchiness [40] as long as the variation can be linked to financial
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valuing. Further, the ideal case would be to include variation in some of the key indicators of timber
quality—such as the size and type of knots or the amount of heartwood and sapwood [37]—into the
matrix model, and to examine this effect in monetary terms with and without the genetic gains [26].
However, such an analysis strongly depends on available data sets, and thus it is conditional to status
quo—whether such data had been gathered until now or not.

Finally, it should bear in mind that this study excludes any consideration of sustainability (cf. [41])
or ecosystem services (cf. [10]), solely focusing on the financial performance of timber production.
Since this study introduces a new method to include the variation between individuals in a matrix
model, and further to assess it in monetary value, the authors consider this contribution to be the first
step, and further steps in the near future would cover more than merely timber production.

5. Conclusions

Including height variation of trees in a diameter-structured matrix model changes the optimal
solutions compared to the case without height variation. Differences (with respect to rotation period
and intensity as well as the timing of thinnings) are clear, regardless of the applied discount rate.
This simply indicates that variations in tree characteristics (e.g., in-branch traits) within the same size
class needs to be taken into account more systematically than has been done earlier in population
matrix models (e.g., [7]). The approach used in this study enables including any property relevant to
timber grading and further pricing and maximizing financial performance.
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