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Abstract: Due to the ever-growing importance of rechargeable lithium-ion batteries, the development
of electrode materials and their processing techniques remains a hot topic in academia and industry.
Even the well-developed and widely utilized active materials present issues, such as surface reactivity,
irreversible capacity in the first cycle, and ageing. Thus, there have been many efforts to modify the
surface of active materials to enhance the electrochemical performance of the resulting electrodes
and cells. Herein, we review the attempts to use polymer coatings on the anode active materials.
This type of coating stands out because of the possibility of acting as an artificial solid electrolyte
interphase (SEI), serving as an anode protective layer. We discuss the prominent examples of anodes
with different mechanisms: intercalation (graphite and titanium oxides), alloy (silicon, tin, and
germanium), and conversion (transition metal oxides) anodes. Finally, we give our perspective on
the future developments in this field.

Keywords: polymer coating; anode materials; lithium-ion batteries; artificial solid electrolyte interphase

1. Introduction

The development of rechargeable lithium-ion batteries (LIBs) began in the early 1990s
and received remarkable attention, as they are employed in many modern portable elec-
tronic devices, as well as hybrid electric vehicles (HEVs) and electric vehicles (EVs) because
of their high energy densities [1]. The progress is very fast regarding the development of new
active anode and cathode materials, electrolyte formulation, electrode composition, and cell
design with consideration of safety and costs [2,3]. The interest in developing active materials
for LIBs has been considerably increasing to enhance specific capacity and enable higher
rate capability and long cycle life stability—the critical parameters for practical applications.
Various material modification methods have been introduced in academia and industry to
improve the general properties of active materials without changing the elemental or crystal
structure, and thereby, the intrinsic properties. One of the well-known methods is surface
architecture, which represents surface coating and etching, which protects the active mate-
rial particles from direct contact with the electrolyte. In LIBs containing liquid (or polymer)
electrolytes, the electrode surface is covered by a passivating layer called the solid elec-
trolyte interface (SEI) on the anode materials and the cathode electrolyte interface (CEI) [4]
on the cathode particles. The SEI in particular has been regarded as a crucial interface in the
battery related to the capacity fade, cycle life, and other key performance parameters. The
SEI has a protective role, blocking the electrons that could further reduce the electrolyte,
but it also consumes the valuable electrolyte and Li-ions, leading to irreversible capacity
loss [5,6]. During the first few cycles, the SEI film forms from electrolyte decomposition
and reduction reactions with the lithium salts on the anode particle surface [7]. However,
the SEI film is usually not stable, particularly for anode materials with massive volume
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expansion during the lithiation step. Therefore, the electrolyte ions are consumed over the
cycles, resulting in capacity degradation [8].

Coating the thin layer of “protective” material onto the active material particle can in-
crease its micro-structure stability, resulting in improved electrochemical properties. Many
modifications to the electrode [9–13] and active material particles have been investigated,
such as surface modification by carbon, metal oxides, and polymers [14–24]. Coatings con-
sisting of inorganic materials, such as Al2O3, MgO, ZrO2, SiO2, TiO2, and others, commonly
provide a Li+-conducting protective layer on the active material, which reduces the chem-
ical reaction between the active material and the electrolyte. However, their deposition
usually requires a high-temperature treatment, and the formation of uniformly distributed
coating is very challenging.

The SEI should allow the rapid Li-ion transfer between the electrolyte and the electrode
without blocking the electron pathway on the electrode current collector interface. Ideally,
this layer should self-heal when the changes in the electrode surface occur due to volume
expansion. A thin polymer layer on active anode materials can theoretically fulfill these
criteria and could act as an artificial SEI. The properties of this layer, such as its thickness,
ion-diffusion capability, chemical composition, and mechanical properties, are vital for
having a stable electrode. In this review paper, we attempt to analytically address the
progress of polymer coating on anode electrodes/particles to enhance the electrochemical
performance of LIBs.

2. Polymer Coating on Anode Materials

In the following sections, we discuss the effect of polymer coating on the electrochemi-
cal performance and morphology of different anode materials with mainly three different
electrochemical (de)lithiation mechanisms, the advantages and drawbacks for these anode
materials are summarized in Table 1:

− Intercalation anodes, such as Graphite (Gr) and Titanium oxides.
− Alloy anodes, for instance, Silicon (Si), Germanium (Ge), and Tin (Sn).
− Conversion anodes, for example, transition metal oxides (Fe3O4, Co3O4, CuO, etc.).

Table 1. An overview of the (dis)advantages of different types of anodes.

Types of Anodes Benefits Drawbacks

Intercalation-type anodes
Low-cost materials, high electronic conductivity, good

safety for Ti-based anodes, long cycle life,
high power capability

Low specific capacity, safety issue for
Gr, low energy density

Alloy-type anodes High specific capacity, good safety, low-cost materials
and abundance for Si, high energy density

Large volume changes, low electronic
conductivity, poor CE, poor cycling

Conversion-type anodes High specific capacity, low-cost materials, low
operation potential Poor CE, unstable SEI, poor cycling

Figure 1 illustrates the advantages and drawbacks of these three types of materials
and the connection between working potentials and the specific capacity of the anode
materials [25]. Generally, depending on the anode active material, polymer coating on
the particles could help resolve some critical challenges, such as poor cycle life and C-rate
capability, low Coulombic efficiency (CE), unstable SEI, and high irreversible capacity,
which will be addressed here in detail for the specific polymers and anode materials.
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DOT:PSS) [31], and polythiophene (PT) [33], but also other polymers, such as polyvinyli-
dene fluoride (PVDF) [12,32] and Polydopamine (PDA) [56], have been used as attractive 
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Figure 1. Anode active materials with three different primary electrochemical (de)lithiation mecha-
nisms: (a) Radar plot comparing five critical categories of capacity, cost, cycle life, safety, and power.
(b) Schematic illustration comparing potential vs. capacity of certain anode materials.

A thin polymer layer on active anode materials could act as an artificial SEI. This layer
can be fabricated for mechanical flexibility to maintain the passivation of active anode
materials. The polymer film could be synthesized via different techniques [26–39]. Gener-
ally, thin polymer films could accommodate volume expansion (unlike glass or ceramic
layers) while simultaneously demonstrating good chemical and structural stabilities during
(de)lithiation processes. The polymer film thickness is typically about 2–25 nm [10,40–53].

Conductive polymers are attractive additive materials for LIBs because of their out-
standing electrochemical properties: enhancing the electronic conductivity, inhibiting the
phase transition, increasing structural stability, decreasing active material dissolution, lead-
ing to a remarkable improvement in reversible capacity, rate capability, and cycle stability.
Conductive polymers, such as polypyrrole (PPy) [44], polyaniline (PANi) [54], poly(3,4-
ethylenedioxythiophene) (PEDOT) [55], PEDOT:poly(styrenesulfonate) (PEDOT:PSS) [31],
and polythiophene (PT) [33], but also other polymers, such as polyvinylidene fluoride
(PVDF) [12,32] and Polydopamine (PDA) [56], have been used as attractive coating agents
for active anode materials to improve the mechanical flexibility and the electrochemical
performance of LIBs. Figure 2 demonstrates the contribution of polymers reported in the
literature chosen here for coating active anode materials. The category “others” comprises
the literature using polyvinylpyrrolidone and polyacrylonitrile [49], poly(1,3,5,7-tetravinyl-
1,3,5,7-tetramethylcyclotetrasiloxane) [51], poly(vinyl alcohol) [52,57], polyether, polyethy-
lene glycol tert -octylphenylether and polymer polyallyl amine [17], poly(diallyl dimethy-
lammonium chloride) and poly(sodium 4-styrenesulfonate) [58], polyacrylic acid and
polymethacrylic acid [9], PVDF [12,32], 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane [13],
PEDOT:PSS [31,59], PDA [56], poly(dimethyldiallylammonium chloride) and poly(methyl
methacralate) (PMMA), poly(sodium-p-styrenesulfonate) [60], 1,3,5-trimethylcyclotrisiloxane
(V3D3) [13] and poly(ethylene oxide) [61]. These polymers may serve as a host for Li-ion
(de)intercalation and enhance the electron transfer in the electrode, particularly with the
electrodeposition method. In the following sections, we will discuss the effects of polymer
coating on the electrochemical performance of anode materials.
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Figure 2. The percentage of various polymers (PPy, PEDOT, PT, PANi, and others) that have been
used to coat anode materials so far reported in the literature.

3. Intercalation Anodes
3.1. Graphite (Gr)

Gr, as a state-of-the-art anode material of LIBs, has been investigated [62–64], and it has
been on the market for almost three decades, since the beginning of the commercialization
of LIBs. Although Gr has a low capacity, it is a reliable and stable anode material, but some
significant challenges still remain:

• Rate capability: safety issues because of lithium (Li) plating on the electrode surface.
• First cycle irreversible capacity, or initial CE towing to the electrolyte decomposition,

and therefore, the consumption of Li-ions as the charge carrier.
• Ageing, prompted by cycling and calendar ageing, and the resulting safety concerns

because of the low (de)lithiation potential close to the Li plating.

These challenges potentially result in accelerated capacity fading. During recent years,
many improvements have been made to Gr morphology and particle sizes, but there
have also been extensive investigations into the functionalization of Gr-based anodes via
polymer, carbon, and nano-oxide coating layers [9,12,13,38,39,65–72]. Surface modification
of the Gr particles is one strategy to enhance the electrochemical performance and solve
some of the challenges mentioned earlier [68]. The reported studies about polymer coating
on Gr particles/electrodes of LIBs are discussed in the following paragraphs.

When an ethylene carbonate (EC)-based electrolyte is used, the stable SEI is formed
during the first charging, enabling the reversible Li (de)intercalation [9,69,73]. However,
these electrolytes are unsuitable for low operating temperatures. Propylene carbonate (PC)
with low freezing temperature (−49 ◦C), higher ionic conductivity at low temperatures than
EC electrolytes, and a high melting point (37 ◦C) is one of the alternatives for EC-based elec-
trolytes and could be used in LIB applications. However, PC-based electrolytes experience
a major drawback, since Li-ions solvated with PC molecules co-intercalate into crystalline
Gr; this causes the exfoliation of graphene layers and the continuous decomposition of the
electrolyte, low Columbic efficiency, and finally, capacity fading due to lack of a suitable
SEI [74,75]. To address this issue, many electrolyte additives are studied to improve the elec-
trochemical performance and formation of a stable SEI to only pass Li-ion without solvents [9].
Another approach to suppress the decomposition and co-intercalation of PC molecules is
the surface modification of Gr using polymers [9,69,73]. Komaba et al. [9] have studied
Gr electrode modification using polyacrylic acid (PAA), polymethacrylic acid (PMA), and
polyvinyl alcohol (PVA) as binders to modify the electrode surface. The electrochemical
properties of polymer-coated Gr as anodes of LIBs were investigated in LiClO4 dissolved
in PC (Figure 3). The sample using PAA did not show visible exfoliation of Gr after the first
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cycle in LiClO4 in PC, whereas for the sample with PVDF, a partial exfoliation of Gr was
confirmed (Figure 3a,b). The polymer-coated Gr particles showed a thin SEI layer due to
the enhanced SEI formation process caused by the interaction of oxygen in the polymers
and Li-ions, resulting in a much better electrochemical performance (Figure 3c,d).
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ing to achieve promising electrolyte/A-SEI/electrode interfacial properties. The coated NG 
electrode demonstrated a capacity of 336 mAh g−1. It showed 95% of full capacity even at 
a 10 C rate, which was one of the highest rate capabilities reported for an NG electrode. 
The A-SEI was designed via binary polymeric coating (P&P), including polyallylamine 
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robust adhesion on the Gr surface was enabled by π−π attractive interaction of aromatic 
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Figure 3. SEM images of Gr electrodes with (a) PVDF after the first cycle in LiClO4 in PC. The
partial exfoliation of Gr was confirmed. (b) PAA after the first cycle in LiClO4 in PC. (c) First
charge/discharge curves of Gr electrodes with different binders in LiClO4 in PC. The discharge
curves have different behaviors for the PVDF electrode, and a noticeable plateau can be seen around
0.8–0.6 V because of enormous co-intercalation causing decomposition of PC molecules, which caused
the exfoliation of Gr. (d) Cycling stability of Gr electrodes with various binders in LiClO4 in PC
electrolyte. The weight % of polymers in the electrodes: PVDF (10%), PAA (15%), PMA (15%), or PVA
(5%) in N-Methyl-2-pyrrolidone (NMP). Charge/discharge cycles of the Gr electrode at 50 mA g−1

between 0.0 and 2.0 V vs. Li/Li+ at 25 ◦C. Reproduced from Ref. [9] with permission from Elsevier.

The Wu group [17] has developed an artificial SEI (A-SEI) on the surface of natural Gr
(NG) and artificial Gr (AG) particles via the design of a multifunctional polymer coating
to achieve promising electrolyte/A-SEI/electrode interfacial properties. The coated NG
electrode demonstrated a capacity of 336 mAh g−1. It showed 95% of full capacity even
at a 10 C rate, which was one of the highest rate capabilities reported for an NG electrode.
The A-SEI was designed via binary polymeric coating (P&P), including polyallylamine
(PAAm) and polyethylene glycol tert-octylphenyl Ether (PEGPE). The achievement of a
robust adhesion on the Gr surface was enabled by π−π attractive interaction of aromatic rings
in the PEGPE structure and NH2 in PAAm, creating strong hydrogen bridge bonding with O in
the PEGPE, and nitrogen electrons of the amin groups were utilized to direct Li+ ions, resulting
in an outstanding rate capability of P&P coating Gr electrodes [17] (Figure 4). In another
study [76], this group demonstrated β-phase PVDF coating on Cu and Li substrates in ether-
based electrolytes, which effectively mitigated Li dendrite formation. They took advantage
of using β-phase PVDF and applied it for coating on the Gr electrodes [12] containing a
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Li dendrite suppression under severe lithiation conditions in a typical carbonate-based
electrolyte and under Li-plating conditions (either 20% over-lithiation or fast lithiation at
up to 10C). The polymer-coated Gr electrodes demonstrated good cycling stability with
high Coulombic efficiencies (Figure 5) and also offered a new approach to improving the
battery safety of LIBs. The PVDF coated on the Gr anode also reduced the charge-transfer
resistance due to over-lithiation [12].
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Figure 4. Schematic illustrations of (a) the designed A-SEI via binary polymeric coating (P&P)
and (b) the normal SEI. SEM images of (c) bare natural Gr; (d) P&P coated natural Gr particles;
(e) bare Si@Gr particles; (f) P&P coated Si@Gr particles. Cycling stability plots at various C-rates for
(de)lithiation-specific capacities of (g) natural Gr and (h) artificial Gr electrodes after lithiation at 0.1
C rate. Gr electrodes: Gr/carbon black (Super-P)/PVDF: 92/3/5 wt%. Electrolyte: 1 M LiPF6 in a
mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC)
(1:1:1 in volume) + 1 wt.% vinylene carbonate. 1 C = 372 mA g−1. Reproduced from Ref. [17] with
permission from Wiley.
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Figure 5. (a) CE and (b) specific capacity during cycling with various extents of over-lithiation.
The coated Gr electrode displayed significantly enhanced cycling stability with high Coulombic
efficiencies under the Li-plating conditions. SEM images and corresponding voltage profiles of
(c) natural Gr electrode and (d) PVDF@ natural Gr electrodes under high-rate charging at 10 C for
48 min. Three formation cycles at 0.1 C considering 0.0–1.5 V vs. Li/Li+. Additional charging for 30,
60, and 150 min at 0.2 C after the cell voltage reached 0.0 V was used to compel over-lithiation cycling,
corresponding to 10%, 20%, and 50% of theoretical capacity, respectively. Electrolyte: 1 M LiPF6 in
a 1:2 (v/v) mixture of EC/EMC) with 2 wt.% vinylene carbonate (VC) additive. 1 C = 372 mA g−1.
Reproduced from Ref. [12] with permission from Elsevier.

Initiated chemical vapor deposition (iCVD) is a low-energy thin film processing tool
without using any solvent, which produces thin polymeric films by directly converting one
or more monomer vapors to a polymer film on a substrate [77,78]. Thin polymer layers
of 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3) were coated on the surfaces of Gr
electrodes via iCVD [13]. Due to a more steady interface between the active Gr surface and
liquid electrolyte and lower charge-transfer resistance, the poly(V3D3) coated Gr electrodes
with a coating thickness of about 40 nm acted as a uniform SEI layer consisting of desirable
Li-containing compounds, showing higher cycling stability and CE and remaining more
steady than the uncoated electrodes. Recently, Seo et al. [39] developed and optimized the
thickness of coated PDA on the surface of Gr particles using a wet-based coating method
to form a uniform PD layer on the Gr particles as an ion-conducting path for Li-ions.
The PD-coated Gr particle improved the electrochemical stability of Gr for both the rate
capability and cycling life.
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3.2. Titanium Oxide Anodes

Titanium-based anode materials include TiO2, [79] Li4Ti5O12 (LTO), [80] and MLi2Ti6O14
(M = 2Na, Sr, Ba, Pb) [81] as a group of alternative materials to the conventional Gr. As their
operation potential is above 0.8 V vs. Li+/Li, there is consequently no issue in having a stable
SEI layer on the active particles [81]. Additionally, a significant safety advantage and superior
thermal stability compared to the Gr anode make them attractive and interesting anode
materials for LIB applications [81]. However, polymer coating on titanium-based particles
could improve rate capability. For instance, Yan Liu et al. [31] have developed a synthesis
method to coat LTO particles with a layer of PEDOT:PSS with an average thickness of 3 nm,
resulting in an amount of about 1 wt.% of the composite particles. The polymer-coated LTO
particles efficiently enhanced electrical conductivity, and the fabricated electrodes were more
homogeneous, resulting in a better reversible capacity and rate capability than the pristine
LTO electrode. The PEDOT:P PSS-coated LTO delivered a reversible capacity of about
177 and 161 mAh g−1 at 0.1 C and 10 C. Nevertheless, LTO particles coated with conduc-
tive PTh [33] via an in situ oxidative polymerization method demonstrated a reversible
discharge capacity of 172 and 151 mAh g−1 at 0.1C and 10C. By adding nitrogen-doped
graphene nanosheets to the LTO coated with 10 wt.% PPy anode composites, capacities of
about 186 and 152 mAh g−1 at 0.1C and 10C were delivered [48]. Slightly lower capacity
was achieved for PTh and PPy coated LTO composite anodes compared to the PEDOT:PSS
due to the larger amount of PTh or PPy (about 10 wt.% and thickness of 10 to 12 nm) in the
composite. Generally, the excellent rate performances for the polymer-coated LTO anodes
could be attributed to the conductivity of polymers, which can facilitate the electron and
Li+ transmission during the charge/discharge process tests.

Regarding TiO2 as an anode material of LIBs, many studies have been conducted [82].
However, coating TiO2 particles with conductive polymers improved the electrochemical
performance of mesoporous TiO2 [83] and TiO2 nanoparticles [84] by adding 8 wt.% and
15 wt.% PANi in the composites, respectively.

4. Alloy Anodes
4.1. Silicon-Based Anodes

Silicon (Si), as a low-cost and abundant material, has been considered one of the most
studied and attractive anode materials in the pure [10,45,85–88], oxide [89], and com-
posite [71] form for LIBs due to its high gravimetric (4200 mAh g−1) and volumetric
capacities (2400 mAh cm−3). However, the diffusion coefficient of Li in Si is low (about
10−13 cm2 s−1) [90], and Si has a low electrical conductivity (10−3 S cm−1, which can be
increased to about 10−2 S cm−1 after alloying with Li) [91]. These drawbacks can be solved by
adding conductive carbon additives. However, fast capacity fading and high volume expan-
sion, about 300%, during the charge/discharge processes seriously hinder the application
of Si anode materials. Until now, several efforts have been focused to solve the mentioned
challenges. For instance, some effective methods to solve these challenges include produc-
ing Si nanostructures [92,93] and Si/Carbon nanocomposites [71,94,95]. Nevertheless, as
an important cause of the failure of Si anodes, the formation of a stable SEI on the surface
of Si cannot be achieved with the mentioned methods. Hence, surface modification with
a polymer coating on the Si-based anodes is one of the attempts to control SEI formation,
which is discussed in the following paragraphs.

PPy, PANi, and PTh have been applied as effective coating layers on Si particles because
of their high electrical conductivity, flexibility, and environmental friendliness [44,91,96]. Since
PPy can form a conductive matrix, it has been used as a conductive binder and also as an
active material in battery and supercapacitor applications [97–101]. Additionally, it acts as
a host matrix to avoid significant volumetric expansions during the charge/discharge pro-
cesses. PPy has been used for coating Si particles with different structures [44,45,86,102,103].
Herein, the important findings will be addressed. Du et al. [44] have studied PPy coating
on porous Si hollow nano-spheres via in situ chemical polymerization. The PPy coating
significantly enhanced the surface electronic conductivity of Si with excellent structural
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stability. Having porous channels in this nanocomposite buffered large volume changes.
Additionally, it facilitated the diffusion of electrolyte and Li+ into the electrode, resulting in
a high capacity (1772 mAh g−1) and cycling stability (88% capacity retention after 250 cy-
cles) and a high rate capability (Figure 6). Luo et al. [45] have studied thin PPy coating
(thickness of about 6 nm) on Si nanoparticles (NPs) and found that the PPy-coated particle
electrodes increased the critical size of Si NPs from 150 nm to about 380 nm.
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The Bao group [10] demonstrated an interesting synthetic self-healing polymer coated
on low-cost Si micro-meter particles, about 3–8 µm. The mechanical damages and cracks of
the coated polymers due to the volume expansion of Si particles during the charge/discharge
processes could be repaired naturally via the branched hydrogen bonding of the coated
polymer, enhancing the Si lifetime anode electrodes with particle sizes in micro-meters.
They increased the conductivity of the coated polymers to about 0.25 S cm1 by adding
uniformly conductive carbon nanoparticles into the polymer. CE is critical for the commer-
cialization of every electrode material; the self-healing polymer coating electrode shows
an initial CE of about 80%, which is comparable with those electrodes prepared with Si
nanoparticles [104–106].

PANi is also an important polymer for coating Si particles [87,96] due to its high
conductivity (16 S m−1) [107]. Wu et al. [96] have developed in situ polymerization coating
with conductive polymer hydrogel, PANi, placed into Si-based anode electrodes, creating a
three-dimensional connection network between the Si nanoparticles and PANi. Addition-
ally, the stable SEI formation on the electrode materials was the reason for the high CE in
the half-cell battery tests. The partial carbonization of PANi to carbon on Si nanoparticles was
studied by Mu et al. [108]. They obtained a Si/PANi/C composite, which demonstrated better
electrochemical performance; although the CE after three cycles reached 99%, the initial CE
was about 60%, which is a drawback of this composite. The PANi/LiClO4 film was used
for coating on Si@Carbon composite (with a capacity of about 700–800 mAh g−1) materials
by the Takeda group [40]. This coating increased the electronic contact of the Si@Carbon
composite, held good mechanical integrity, and tolerated the micro-structural change from
Si upon the cycling tests, resulting in a stable cycling life compared to uncoated composites.
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Pan et al. [109] recently used PANi to coat Si nanoparticles. This composite exhibited a
reversible capacity of 1000 mAh g−1 at 1 A g−1 after 300 cycles, also showing good cycling
stability at an areal capacity of 3 mAh cm−2 after 150 cycles and an excellent rate performance
of 942 mAh g−1 at 5 A g−1. Zheng et al. [91] have developed PTh coating on porous Si
particles by a simple chemical oxidative polymerization approach. PTh represented a flexible
layer to hold Si particles during volume expansion/shrinkage processes and decreased
the SEI layer. The Si@PTh composite electrodes demonstrate a longer cycle life with a
reversible capacity of 1130.5 mAh g−1 at 1 A g−1 after 500 cycles. The reason could be an
excellent structural stability of the composites and the use of porous Si in the electrodes;
however, the main drawback of using porous Si would be low volumetric capacity.

Attia et al. [49] have used a self-assembling polyvinylpyrrolidone (PVP) and polyacry-
lonitrile (PAN) mixture on the surface of Si NPs, followed by a slow heat treatment process.
A robust SiO2 shell was produced around the Si nanoparticles because PAN improved the
oxidation of Si. In contrast, the decomposition of PAN produced a nitrogen-rich carbon
coating on the SiO2 layer, leading to enhanced stability and reversibility of the electrodes.
The thickness of the mixed polymers/SiO2/nitrogen-rich carbon layer was about 3–4 nm.
Further improvements were achieved by combining graphene as a conductive network
with these particles to produce electrodes with higher stability and electrochemical per-
formance. Using PAN coating also improved Si nanoparticle capacity and cycling life, as
shown by Yoon et al. [110]; the composites delivered a specific capacity of 2000 mAh g−1,
with a capacity retention of 95% and 75% after 100 and 1000 cycles at 0.5 C, respectively.
Fu et al. [50] have developed a coated polyimide on Si NPs by a mechanical stirring process.
The polyimide film provided high ionic conductivity and wettability, and the polyimide-
coated Si composites revealed much lower Li+ diffusion resistances than pure Si. However,
the polyimide-coated Si anode in the full cell with LiCoO2 as cathode showed poor cycling
stability of 50% after only 50 cycles.

A thin, cross-linked polymer film on Si electrodes via iCVD has been studied by Ten-
haeff’s group using poly(1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane) (pV4D4)
as the polymer [51]. pV4D4 films with a thickness of about 25 nm on Si electrodes improved
the initial CE and capacity retention over 100 cycles and demonstrated higher rate capability
than uncoated electrodes. However, even after 100 cycles, the CE of the coated electrode
was low (about 94%), making it difficult for practical application. Using high-energy ball-
milling, Si/poly(vinyl alcohol) (PVA) composite particles with a size of about 200 nm were
achieved from PVA and micron-sized Si particles [52]. A high initial CE of about 86% and a
capacity of 1526 mAh g−1 after 100 cycles were obtained with 5 wt.% PVA in the Si composite
anodes. The better electrochemical performance could be attributed to using ball-milling.
At the same time, the polymer coating effectively reduced the size of Si particles and kept
them in nanometer size, thereby shortening the diffusion pathway of Li+. By applying both
polyethylene glycol tert–octylphenyl ether and polymer polyallyl amine (this was explained
in the section on graphite), the Wu group [17] succeeded in increasing the capacity of Si
from 240 mAh g−1 (for uncoated Si electrode) by six-fold to 1630 mAh g−1 at 2 C. Although
they obtained interesting results, the drawback of this work could be the costly polymers
for practical applications.

Recently, Wang et al. [111] synthesized a Si/carbon composite by ball-milling us-
ing a waste Si slag, and they used poly(hexaazatrinaphthalene) (PHATN) for coating on
Si/carbon composites. The benzene rings in the PHATN could be the active centers for
accepting Li-ions, forming stable Li-rich PHATN thin and influential SEI films, which
change the LiF’s formation path, thereby reducing the consuming electrolytes. Additionally,
PHATN molecules expand owing to the change of molecular configuration, providing
more space for the volume changes of the Si particles during (de)lithiation processes.
This composite anode demonstrated a specific capacity of about 1120 and 417 mAh g−1

after 500 cycles at 1.0 and 16.5 A g−1, respectively. PDA coating on SiOx developed by
Gu et al. [112] showed better wetting properties with water and electrolyte solution. It de-
livered an initial Columbic efficiency of 80.48% and excellent specific capacities of about
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1270 and 1140 mAh g−1 at 0.05 and 3 C, respectively, and a capacity retention of about 80%
after 150 cycles at 1 C.

4.2. Silicon@Graphite (Si@Gr)

Wu’s group [58] has developed a mixed polymer, including poly(diallyl dimethy-
lammonium chloride) and poly(sodium 4-styrenesulfonate) (PDDA–PSS polymer) on the
surface of Si/Gr composite materials containing Si NPs. They showed that the PDDA–PSS
polymer, in addition to surface coating, also improved the uniformity of Si NPs distribu-
tion on the Gr surface and maintained the Si particles during volume changes without
separation, thus allowing the NPs to maintain close contact with Gr micro-particles. The
coated electrodes demonstrated higher Coulombic efficiencies throughout the cycling, a
specific capacity of 450 mAh g−1 at a lower C-rate, with 95% retention after 200 cycles,
and an outstanding rate capability of 96% capacity retention (426 mAh g−1) at 10 C. How-
ever, the uncoated Si/Gr electrode presented poor performance, less than 200 mAh g−1 at
10 C. Furthermore, the PDDA–PSS-coated Si/Gr exhibited the same volume expansion as
the pristine Gr electrode. Kim et al. [57] investigated poly(vinyl alcohol)-PO4 (PVA-PO4)
coating on Si/Gr composites. Si/Gr materials were prepared by ball-milling with 30%
Si in the composite, and the PVA−PO4 on the surface of Si/Gr was produced again by
ball-milling of PVA, NH4H2PO4, and Si/Gr particles. Electrochemical improvements were
pronounced for the PVA-PO4 coated Si/Gr composites and delivered a discharge capacity
of about 1500 mAh g−1, and stable CE throughout the cycles thus provided a particular
improvement. Here, the PVA–PO4 acted as a binder in addition to lithium polyacrylate,
reducing the electrode’s pulverization. Furthermore, it preserved stable Li2O with high
ionic conductivity during cycling, forming a stable SEI layer.

Recently, Abdollahifar et al. [38] developed a chitosan coating on Si/Gr particles as an
artificial SEI layer using a simple solution method. The coating was made of sulfonated
chitosan and cross-linked with glutaraldehyde, promoting good ionic conduction and
sufficient mechanical strength of the polymer layer. The coated Si/Gr composite anodes
demonstrated a capacity of 600 mAh g−1, with excellent cycling stability of up to 1000 cycles.
The coated polymer improved CE by reducing active Li losses and electrolyte consumption.
A significantly enhanced cycling stability of the chitosan-coated anodes could be ascribed to
the artificial SEI function of the polymer coating. It exhibited a cation (Li+)-selective behavior
to facilitate the diffusion of Li-ions between the electrolytes and the Si/Gr composite material.

4.3. Tin (Sn)-Based Anodes

Several high-capacity anode materials have been reported and studied widely as
promising candidates for LIBs applications, such as Tin (Sn), Si, metal oxides, and Li metal,
due to their high theoretical capacity and natural abundance. High electrical conductivity
of Sn, make it an attractive anode condidate for LIB applications. However, this material
experiences low initial CE, which could be avoided using a LixSn alloy, which also serves as
a potent Li-containing anode material [113,114]. LixSn alloys have gained much attention
due to the high theoretical specific capacity of Li4.4Sn, which equals 788 mAh g−1 [113,115].
Like Si anodes, Sn also has a major drawback due to its significant volume changes during
cycling, which can cause severe mechanical damage to the anode, eventually leading to
capacity fading of the cell, and gradual aggregation of LixSn/Sn. Some of the efforts that
have been introduced to solve the above issues include nanosizing the active material and
introducing porosity into the structure, as well as the surface coating [113,116,117]. Surface
polymer coating is an exciting method for protecting the micro-structure of the electrode
that experiences internal stress while protecting the surface of the active material from
side reactions. Nevertheless, the role of surface polymer coating in the particle networks
of anodes remains challenging. The following section will discuss polymer coating on
Sn-based anode materials.

Fan et al. [118] reported that the ultra-thin 3D PPy coating (3–4 nm) generated in situ
on the surface of Sn nanoparticles provided structural integrity and increased capacity. The
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3D-PPy-coated Sn anodes result in a higher specific capacity of 766 mAh g−1 (0.2 A g−1)
and 583 mAh g−1 (2 A g−1). It was shown that the conductive polymer had multiple
functions and acted as a binder and a conductive network in which the Sn nanoparticles
are dispersed. The reference electrodes without a 3D conductive network demonstrated a
capacity of 375 mAh g−1 after similar cycles. In a study accomplished by Li et al. [119], the
various thicknesses (8–40 nm) of PPy coating on Sn nanoparticles were used as protection
during the lithiation step. The optimized coating thickness of 20 nm stabilized the LixSn
nanoparticles (LixSn@PPy), and this composite anode showed an excellent specific capacity
of 534 mAh g−1 after 300 cycles, with a capacity retention of 86%. Moreover, the optimized
PPy coating offers less volume expansion of the active anode material and prevents the
agglomeration of LixSn particles. It is claimed that the PPy conductive polymer coating
provides the channels of fast electron diffusion and enables quicker reaction kinetics. Cao
et al. reported on the PEO-coated Sn anodes, where the polymer should act as a passivation
layer that neutralizes the volume expansion of the active material during cycling [120].

4.4. SnO2

One of the most promising candidates for anode materials among the metal oxides is
SnO2 owing to the high theoretical capacity, safe working potential, and natural abundance.
The oxide of Sn also suffers from significant volume change (>300%) during cycling [117].
The electrochemical reactions of Li and SnO2 can be seen below Equations (1) and (2).
Assuming that the reactions are fully irreversible, a reversible theoretical capacity of 782
and 1494 mAh g−1 can be obtained.

SnO2 + 4Li+ + 4e− → Sn + 2Li2O (1)

Sn + xLi+ + xe− → LixSn (0 ≤ x ≤ 4.4) (2)

Yuan et al. reported on the SnO2-PPy composite anodes through the chemical polymer-
ization method [26]. The SnO2-PPy (18.25% of SnO2 amount of loading) composite anode
and bare SnO2 anode delivered a discharge capacity of 562 (1st cycle) and 450 mAh g−1

(20th cycle), and 570 (1st cycle) and 250 mAh g−1 (20th cycle), respectively. The proposed
mechanism for improved cycling stability of the SnO2-PPy composite anode is that the concen-
tration of polymer PPy acts as a conductive matrix and buffers the volume change reductions
in the active composite anode material, resulting in LixSn alloying and de-alloying reactions.
Cui L et al. reported on one-dimensional (1D) nanocomposites of 79 wt.% of SnO2@PPy,
which exhibit a capacity of 430 mAh g−1 after 20 cycles, which is three times higher than bare
SnO2 [121]. Shao Q.-G et al. designed SnO2 with a multi-walled carbon nanotube (MWCNT)
and as a protective layer of the surface coating of PPy (SnO2@MWCNT@SnO2@PPy). The
composite anode materials with higher conductivity effectively suppressed mechanical
stress and prevented the aggregation of SnO2 nanoparticles, delivering 600 mAh g−1 for
30 cycles [27].

Liu et al. prepared the core-shell hollow SnO2@PPy with the hydrothermal method,
after which the in situ chemical polymerization took place [28]. The nanocomposites of
SnO2@PPy (21 wt%) result in a specific capacity of 1036 and 331 mAh g−1 at the current
density of 0.1C and 2.0C, respectively. The polymer coating prevents the pulverization of the
hollow SnO2 and prevents them from aggregating. Zhou M et al. reported on the double-
shelled hollow micro-spheres with poly(ethyleneglycol dimethacrylate-co-methacrylic acid
as SnO2/P(EGDMA-co-MAA)composite anodes, which showed a high capacity retention
of 49.5 wt%. The initial discharge and charge capacity of SnO2/P(EGDMA-co-MAA) with
35.3 wt.% SnO2 (18 nm) and 49.5 wt.% SnO2 (24 nm) showed a capacity of 1170, 896, 689, and
470 mAh g−1, respectively [122]. After 430 cycles, the SnO2/P(EGDMA-co-MAA) compos-
ite anode displayed a discharge capacity of 711 mAh g−1. Cao et al. reported that the PPy
polymer coating played an interesting role in SnO2 nanoparticles (SnO2@PPy) and resulted
in an initial discharge/charge of 935 and 723 mA h g−1 with a CE of 77%. The effects
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between the PPy-coated SnO2 and the hollow structure can decrease the pulverization of
SnO2 [29].

Li et al. have used the in situ transmission electron microscopy (TEM) to study the
role of interparticle connections in SnO2 nanoparticles with different coating layers of
PPy and metal oxide MnO2 [123]. The PPy coating layers in SnO2@PPy provide a large
contact area and robust adhesion between SnO2 nanoparticles, demonstrating a better
cycling stability and fast kinetics. The SnO2 NPs@MnO2 layer showed a specific capacity
of 680 mAh g−1 after 10 cycles. However, SnO2@PPy (20 nm) delivered a stable capacity of
780 mA h g−1 with a current rate of 0.1 C over 400 cycles. Recently, Zhang et al. [37] studied
the PPy polymer coating on SnO2 nanoparticles coated with the sol–gel method. The SnO2
encapsulated by the conductive PPy showed specific capacities of 930 and 560 mAh g−1

at 0.2 and 2 A g−1, respectively. Li et al. introduced the hierarchical SnO2 spheres coated
with PPy, which improved conductivity and accommodated the structural integrity during
cycling [124]. This composite anode resulted in a stable cyclability of 782 mAh g−1 (at
0.25 C) after 650 cycles and 580 mAh g−1 (at 4.0 C) after 5000 cycles.

Arif et al. reported a ternary-type SnO2 nanocomposite as an anode incorporated with
reduced graphene oxide (rGO) and PEDOT:PSS as a conductive polymer [125]. This work
reports that 5 wt.% of PEDOT:PSS coated on the SnO2/rGO composite delivers an improved
capacity of 980 mAh g−1 (0.1 C) with a CE over 99% after 160 cycles; both the rGO and the
PEDOT:PSS act as the conductive medium and buffer the volume change of SnO2 NPs. The
PDA-coated SnO2 [117] with a layer thickness of 5 nm exhibited significantly improved
cycling stability and demonstrated good cyclability for over 300 cycles. Li et al. reported a
facile approach combined with hydrothermal treatment and polymerization to fabricate the
core-shell-structured SnO2@C/PEDOT:PSS micro-sphere anodes, as seen in Figure 7a [126].
For a better understanding of structural changes during cycling, the TEM images of the
SnO2@C anode after 200 cycles at a current rate of 0.5 C are depicted in Figure 7b,c. The
TEM images show a stable micro-sphere morphology that helps avoid aggregation during
the cycling process. However, without polymer coating, the bare anode materials exhibited
cracks and fractures, leading to an unstable structure and degrading the electrochemical
performance. The group reported the initial specific capacity of 1170 mAh g−1 at a current
rate of 0.1 C and 441 mAh g−1 for 1200 cycles at a high current rate of 2C (Figure 7d). The
PEDOT:PSS polymer coating accommodates the volumetric change of SnO2. Guo et al.
reported that the in situ polymerization of SnO2-Fe2O3@PANi results in anodes with an
excellent capacity of 1000 mAh g−1 (current density of 400 mA g1) after 380 cycles [127].
Adding a carbon layer can improve the electronic conductivity of the anode, and in situ
polymerization of PANi coating prevents agglomeration and particle growth during the
heat treatment. This method ensures homogeneous carbon coating, thus providing good
conductive contact between SnO2-Fe2O3 and the carbon shield surrounded by the anode.
Table 2 summarizes the effect of polymer coating on the performance of some reported
SnO2 anodes.
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Table 2. Various polymer coatings applied to SnO2-based anodes and their electrochemical perfor-
mances.

Polymer Synthesis Method Coating on
Particle/Electrode Thickness

Cycling Performance
(mAh g−1)/Current

Rate (mA g−1)
Ref.

Polypyrrole (PPy)

Chemical polymerization method Electrode -
450 (20 cycles)/50

250 (20 cycles for bare
SnO2)/50

[26]

Chemical polymerization method Particle - 600 (30 cycles)/100 [27]
In situ chemical polymerization Electrode - 430 (20 cycles)/50 [121]

Hydrothermal method and in situ
chemical-polymerization Particle 25 nm 448.4 (100 cycles)/78 [28]

Chemical vapor-phase
polymerization Electrode 20 nm 646 (150 cycles)/100 [29]

In situ coating method Particle 20 nm 760 (400 cycles)/0.1 C [123]

Poly(3,4-ethylenedioxythiophene-
poly(styrenesulfonate)

(PEDOT:PSS)

Wet chemical method Particle 2–3 nm 980 (160 cycles)/80 [125]
Hydrothermal method and

polymerization Particle 6 nm 441.5 (1200 cycles)/2 C [126]

Poly(ethyleneglycol
dimethacrylate-co-methacrylic acid)

Hydrothermal method and
polymerization Particle 24.5 nm 711.9 (430 cycles)/200 [122]

Polydopamine (PDA) Wet chemical method Electrode 5 nm 1502 (300 cycles)/160 [117]

4.5. Other Tin (Sn)-Based Anodes

Sn−Ni-alloy-type anode materials are promising candidates for LIBs, with a simple fabri-
cation method, higher capacity, and conductivities. Sn-Ni nanotubes have boosted mechanical
strength and efficient electron transfer in the nanotube, but they also partly improved the
mechanical stress during Sn volume expansions. A study conducted by Fan et al. used PEO
to control the formation of SEI and stabilize the anode structure despite the volume changes,
as well as to stabilize the electrode interface [128]. It was shown that adding a thin PEO
coating to the Sn−Ni alloy nanotubes improves the cycling and rate performance. How-
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ever, the 1D nanotube morphology may not be optimal for battery applications, and a
three-dimensional (3D) configuration could be more beneficial due to the larger active
surface area of the electrodes. Gowda et al. introduced the conformal coatings of PMMA
(25–30 nm), which were deposited on the Sn–Ni alloy anode materials and served as a
gel-type electrolyte after being soaked with liquid electrolyte for the application of LIBs
(Figure 8) [129]. The 3D Sn−Ni@PEO composite exhibited reversible capacities of 939 and
533 mAh g−1 at the current densities of 0.2 and 5 A g−1, respectively [128]. Over 80 cycles, the
composite anode retained its specific capacities of 619 and 170 mAh g−1, with current rates
of 0.2 and 5 A g−1, respectively (Figure 8). The nanotube array anode Sn/Ni@PEO shows
a stable discharge capacity of 806 mAh g−1 over 200 cycles. On the other hand, the Sn/Ni
nanotube array without the PEO coating resulted in a capacity of 600 mAh g−1 after 200
cycles [130]. The composite system Sn/Ni@PEO combines the 3D hollow nanostructure of
the active material and the surface coating of PEO for accompanying the volume expansion
of Sn, delivering higher cycle stability, better contact with the current collector, and high
rate performance. Tolganbek et al. recently introduced a layer-by-layer method (LBL) for
coating a thin polymer electrolyte onto 3D Ni3Sn4 anode particles (Figure 8). This method
has the advantage of controlling the thickness of the deposited polymer layer on the 3D ac-
tive material structure. Figure 8c represents the Ni3Sn4 anode/gel-like polymer electrolyte
(GPE)/LiFePO4 cathode 3D cells scheme, fabricated using the LBL deposition method [36].
With this design, the cells showed a capacity of 143 mAh g−1 over 100 cycles (Figure 8c,d).
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Figure 8. (a) The cycling performance of PMMA-polymer-coated Ni−Sn and bare Ni−Sn nanowires.
The three-dimensional PMMA-coated Ni−Sn nanowires (in blue color) and the uncoated Ni−Sn
nanowires cycled (in red color) at the rate of 0.3 mA cm−2 (or 3.0 C). Reproduced from Ref. [130] with
permission from the American Chemical Society. (b) A schematic representation of the Sn–Ni@PEO
nanotube formation. Reproduced from Ref. [128] with permission from the American Chemical
Society. (c,d) A 3D full battery fabrication consists of the Ni3Sn4 alloy as an anode material and
LiFePO4 (LFP) as a cathode at 0.1 C. Reproduced from Ref. [36] with permission from Elsevier.
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4.6. Germanium (Ge)

In terms of Ge, with a theoretical capacity of 1600 mAh g−1 and a volumetric capacity
of about 8500 mAh cm3 and with a better electronic conductivity and transmission rate of
Li+ than Si, much attention has been paid to the anodes of LIBs [131,132]. However, Ge
displays volume expansion up to 300% during cycling, delivering low initial CE and poor
cyclability [133–135]. Polymer coating on the particles [59] and electrodes [32] can be used
to improve these issues. Regarding electrode coating, Sun et al. [32] established a method for
producing high-performance Ge film electrodes grown on a 3D current collector (CuO) and
an in situ formation of PVDF−hexafluoropropene/SiO2 (PVDF-HFP/SiO2) protective layer
on the electrode surface. The coated polymer improved the mechanical and ionic/electronic
transport properties of Ge, which led to high reversible capacity (about 1100 mAh g−1)
and cycling stability over 3000 cycles at 1 C rate with 95% retention and an excellent rate
capability even at 10 C (974 mAh g−1). Moreover, after a few initial cycles, the electrodes
showed a high CE of 99.9%, indicating good reversibility for the (de)lithiation processes.
The PEDOT:PSS coating (about 3 wt.%) on the surface of Ge nanoparticles (10–100 nm)
was developed by Liu et al. [59]. The PEDOT:PSS coated Ge electrode improved the
initial CE from 81% (for the pristine electrode) to 89% and demonstrated an excellent rate
performance at 2 C (800 mAh g−1) and 4 C (700 mAh g−1), whereas the uncoated electrode
showed almost no capacity at 2 C.

5. Conversion Anodes

Conversion anodes mainly include, but are not limited to, transition metal oxides,
sulfides [136], phosphides [137–140], and nitrides [141–144]. Herein, polymer coating on
the transition metal oxides will be discussed.

5.1. Iron Oxides

Iron oxide anodes, such as Hematite, α-Fe2O3 (paramagnetic mineral only in a Fe2+

oxidation state, with a theoretical capacity of 1007 mAh g−1), and Fe3O4 (ferromagnetic
material in both Fe2+ and Fe3+ oxidation states, with a theoretical capacity of 926 mAh g−1),
are non-toxic, natural abundance, easy-to-prepare, low-cost materials with high electronic
conductivity and have been considered as one of the high-capacity anode candidates for
LIBs. Except for the higher theoretical capacity and density (5.24 g cm−3), iron oxide
anodes could be safer than Gr (2.16 g cm−3) owing to their higher potential, which reduces
Li dendrite deposition on the anodes during charge/discharge cycling. However, iron
oxide anodes suffer from poor rate capability and long-term cyclability because of the
large volume change (over 200%) during Li-ion (de)intercalation (conversion reaction)
processes [145–154]. Therefore, many approaches have been proposed to increase the
iron-oxide-based anodes’ cyclability and rate capacity [155–159]. Polymer coating on the
particular structures of iron oxide particles, in a study by Jeong et al. [42], for instance,
could provide a unique electrode structure with a short diffusion distance for ions and a fast
mass transport channel for the electrolyte and necessary void spaces for significant volume
variations during the cycling tests. They prepared a hierarchical core-shell hollow structure
of α-Fe2O3 coated with PANi as an anode material via in situ polymerization. α-Fe2O3@PANi
hollow structure anodes delivered efficient and fast ion/electron pathways for electrochemical
reactions. Furthermore, more space for significant volume expansions resulted in a large
reversible capacity (958 mAh g−1 at 0.1 C), high rate capability (793 mAh g−1 at 5 C and
724 mAh g−1 at 10 C), and better cycling stability (Figure 9). Liu et al. [160] used PPy for
coating α-Fe2O3 particles directly on the iron foil as a current collector to produce a unique
structure. The α-Fe2O3@PPy electrodes showed a specific capacity of 0.42 mAh cm2 at
0.1 mA cm2; however, no improvement was achieved for the cycling stabilities compared
to the uncoated electrodes. To enhance the cycling stability of Fe2O3 when PPy is used as a
coating polymer, carbon coating on Fe2O3 before polymer coating is a critical step, as shown
by Han et al. [43]. Due to the use of Fe2O3 NPs, a porous carbon matrix, and the formation of
two protective layers of carbon and PPy, this unique nanostructure with improved electrical
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conductivity demonstrated better electrochemical performance. This composite showed a
practical capacity of 1004 mAh g−1 with a Fe2O3 loading (47 wt.%) close to the theoretical
capacity. High volumetric capacity is another advantage of using iron oxide anodes—an
essential parameter in cell packs. The volumetric capacity of the Fe2O3@Carbon/PPy
composite was about 816 mAh cm−3, which is more than two times that of conventional Gr
electrodes (about 370 mAh cm3) [161].
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Figure 9. (a) Schematic demonstration of the procedure for synthesis of hierarchical Fe2O3/PANi.
(b–d) TEM images of the particles were obtained with various reaction times for PANi polymerization
(scale bar is 200 nm). (e,f) Rate performance of Fe2O3/PANi electrode at rates 0.1 C–10 C. Reproduced
from Ref. [42] with permission from Wiley.

In order to protect Fe3O4 from structural variation, prevent the aggregation of NPs,
and avoid direct contact between the active materials and the electrolyte, an effective
polymer, PPy, was used to coat Fe3O4 NPs [162]. The Fe3O4@PPy composite demonstrated
notable capacity retention of 98% of the initial capacity (544 mAh g−1) after 300 cycles. In
this study, the remarkable cycling stability could be due to the high content of PPy (about
40 wt.%) in the composite. Coating Fe3O4 hollow nano-sphere particles (about 200 nm)
with PANi can also increase the reversible capacity (1090 mAh g−1 at 50 mA g−1) and
improve its rate capability compared to uncoated and solid particles of Fe3O4 [163].

5.2. MnO2

Although manganese (Mn) oxides are well-known materials for supercapacitor ap-
plications [164], they can also be applied as electrode materials for LIBs [165,166] and
other types of batteries [167–170]. Among the Mn-oxide materials, MnO2 received more
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attention for LIBs applications due to its low cost, natural abundance, environmental
friendliness, low discharge voltage plateau, and, importantly, a high theoretical capac-
ity of 1230 mAh g−1. However, Mn-oxides exhibit low electrical conductivity (10−5 to
10−6 S cm−1) [171] and significant volume variations during (de)lithiation processes [172].
Additionally, they suffer from Mn dissolution [173–175], leading to degradation of the elec-
trochemical performance in terms of rate capability and cyclic stability. The polymer coating
can relatively overcome the drawbacks mentioned above. For instance, Chen et al. [55]
synthesized MnO2 nano-boxes and demonstrated that PEDOT coated on the surface of
MnO2 nano-boxes (edge and shell of about 300 nm and 50 nm) by in situ polymerization of
3,4-ethylenedioxythiophene offers the paths for Li-ion diffusion and the space to buffer the
volume variations. The conductive polymer guarantees structural stability and increases
the electronic conductivity of MnO2, resulting in improved electrochemical performances
with a reversible capacity of 628 mAh g−1 after 850 cycles at 1 A g−1. Xiao et al. [41] studied
ultra-thin MnO2 nanosheets coated with PTh, which improved the capacity and cycling
stability and delivered a reversible capacity of 500 mAh g−1 after 100 cycles at 500 mA g−1.
However, the uncoated electrode only retained a capacity of 250 mAh g−1 after the same
cycling. PPy could also improve the MnO2 electrochemical performance, which was shown
by Garakani et al. [171]. They used MnO2 nanowires@PPy core shell grown on graphene
foam to increase conductivity and achieve a stable structure against volume expansion
upon lithiation. The PPy-coated MnO2 electrode demonstrated a three-times-faster lithi-
ation speed than the uncoated MnO2. It showed a reversible capacity of 945 mAh g−1 at
0.1 A g−1, while the uncoated electrode only showed 550 mAh g−1 after 150 cycles.

5.3. Copper Oxide (CuO)

Copper oxide (CuO), another interesting and low-cost transition metal oxide, has been
used as an anode for LIBs [176–179] because of its high theoretical capacity of 674 mAh g−1 [178]
and environmental benignity. However, this low conductive material shows a significant
volume expansion (174%) upon lithiation [180] and low initial CE (35% to 65%) [181–183].
Therefore, these critical issues need to be resolved for practical applications. The PPy
coating on CuO particles could minimize the mentioned challenges [34,46,184]. For in-
stance, Yin et al. [46] synthesized various CuO particles with shell nano-belt structures by
controlling the polymerization time of pyrrole. The shell played a vital role in Li storage
properties of the final composite, along with using sodium dodecyl sulfate (surfactant)
as a key factor in obtaining high-value core-shell nanostructures. Within three hours of
polymerization, about 7 wt.% PPy was produced on the CuO composite, providing a high
reversible capacity of 760 mAh g−1 after 45 cycles. They also showed some improvements
in another study [184]. Zhou et al. [34] developed an evaporation method for the in situ
polymerization of PPy on CuO arrays for uniform polymer coatings. The uniform polymer
coating could well preserve the stability of mechanical structures of the composite and
provide rapid transmission of Li-ions and electrons during the cycling tests, leading to high
Li storage and enhancing the specific capacities and cycling stability (up to 561 mAh g−1 at
1 C after 100 cycles), which was higher than 30% compared to the pristine CuO anode.

5.4. Co3O4

Spinel Co3O4 is a transition metal oxide, which has been investigated as a competitive
anode of LIBs [185–189] due to its high theoretical capacity (890 mAh g−1) [185] and density
(6.11 g cm−3, about three times that of Gr). Like many conversion anodes, such as iron-
based anodes, Co3O4 has poor electronic conductivity and suffers from severe volume
change and particle aggregation during cycling, thus leading to poor stability performance.
A thin PPy coating layer on the Co3O4 nanowires improved conductivity and acted as a
buffer layer to relieve the strain induced by volume variation upon cycling. A Co3O4 coated
with a PPy anode [190] displayed notably improved cycle performance with a reversible
capacity of 700 mAh g−1 at 3 A g−1 after 500 cycles. In contrast, an uncoated Co3O4 nanowire
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only showed 150 mAh g−1 after 100 cycles. The electrochemical performance of CoCO3
anode materials of LIBs can also be improved by thin PPy coating layers [191].

5.5. ZnFe2O4

ZnFe2O4 is a low-cost, easy-to-prepare, abundant raw material, with a high theoretical
capacity (1000 mAh g−1). However, ZnFe2O4 anode materials, like other ternary mixed
transition metal oxides, suffer from poor cycle stability and rate capability because of low
electronic conductivity and significant volume expansion during (dis)charge (conversion
reactions) processes. PDA, a bionic ionic permeable film, was coated on the surfaces of
ZnFe2O4 particles by the self-polymerization of dopamine to accommodate the volume
expansions [56]. ZnFe2O4@PDA composites delivered higher capacity and improved the
rate capability of composites at high current densities compared to uncoated electrodes. PPy
coating on one-dimensional ZnFe2O4 [53] also improved the rate capability of composite
electrodes; more than two times capacity was retained at high current densities, 2 A g−1,
compared to the pristine electrodes.

A polymer coating also improves the electrochemical performance of the uncommon
anodes on the anode particles, such as Bi2S3 by PEDOT [192], NiO by PANi [47], hard car-
bons by double coating with poly(dimethyldiallylammonium chloride) and poly(sodium-
p-styrenesulfonate) for high rate anodes [60], aluminum by poly(ethylene oxide) [63],
phosphorus anode by PPy [193], 3D porous conductive framework by hyperbranched
polyol [194], and Sb2S3 by PPy [195].

5.6. Vanadium-Based Anodes

Wang et al. [196,197] reported the PPy surface polymer coating on vanadium-based
anodes LixV2O5, which could stabilize the cycling capacity of the anode and improve the
cycle life. With this approach, the PPy-coated anode delivers a better CE of ~86% after
40 cycles compared to a bare anode, whose initial capacity decreases to as low as a CE of
~8%. The cell performance of LiMn2O4/LixV2O5 has a specific capacity of 43 mAh g−1 at
the voltage of 1.15 V [197]. The anode coated with a layer of PAN showed an improved
electrochemical performance compared to the uncoated anode, with an initial capacity of
47 mAh g−1 and a CE of 80%.

Another interesting anode material is VS2, a capable substitute for conventional
carbon anode materials because of its high theoretical specific capacity. Nevertheless,
this type of anode active material has not been applied in practical applications, since it
suffers from significant capacity decay and poor cycle life. Zhou et al. [198] prepared VS4
through a solvothermal method; this anode material offered some interesting properties,
such as high sulfur content and one-dimensional structure. Three different polymers
(PEDOT, PPY, and PANi) were reported as coatings on the VS4 anode material surface
to improve the electron conductivity, decrease the diffusion of polysulfides, and modify
the electrode/electrolyte interface (Figure 10a). The VS4 anode without polymer coating
had a capacity of 100 mAh g−1; PEDOT- and PPY-coated VS4 had a specific capacity of
318 mAh g−1 (VS4@PEDOT) and 448 mAh g−1 (VS4@PPy), as shown in Figure 10b. Among
these polymer coatings, VS4@PANi exhibited a CE of 86% in the first cycle and a reversible
capacity of about 755 mAh g−1 (100 mA g−1) over 50 cycles. In comparison with PEDOT
and PPy polymers, PANi exhibited better performances when coated on this anode material,
which could be due to its strong interaction with VS4 anode materials. Ding et al. studied
PEDOT-PSS-coated VS2 nanosheets prepared using an aqueous solution method [35]. The
coated anode of 5VS2@PEDOT-PSS delivered a higher reversible capacity of 569 mAh g−1

(0.1 A g−1) after 100 cycles. Apart from VS2 and VS4 anodes, copper vanadate (CVO) is a
promising anode material for LIBs due to its layered structure and excellent kinetics. The
PEDOT:PSS-coated CuV2O6 nano-belts were prepared through a dip-and-dry method [199].
The electrochemical performance of CuV2O6/PEDOT:PSS and bare CVO anodes delivered
a specific capacity of 915 mAh g−1 and 1142 mAh g−1, respectively, in the first cycle. The
reversible capacity after 100 cycles was 536.6 and 476.5 mAh g−1, corresponding to coated
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and uncoated CVO, respectively. The PEDOT:PSS coated on CVO anodes offered better
electron and ion conductivity, fewer structural changes, and decreased unwanted side
reactions during cycling.
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6. Summary and Outlook

LIBs technology provided a new door for energy storage for higher applications,
especially in automotive EVs and HEVs, and stood out as an indispensable alternative for
both present and future energy operations. In the past two decades, many studies on LIBs
have been quite exciting, and more novel materials and strategies are being developed.
There is a substantial demand for lightweight, reduced-size, space-efficient, low-cost, and
high-capacity LIBs. This demand will continue to increase with technology maturation.
Throughout the extensive material research and design, there should be an improvement
in the development of various anode materials to enhance the capacity and cycle life of
LIBs. This comprehensive review provides the various anode materials widely employed
for LIBs and the polymer coating effects under investigation to increase their performance.
The electrochemical reactions of LIBs were elaborated and overviewed with the advanced
anode materials fabricated with a polymer coating.

Various coating strategies using polymer compounds are vital to improving the anode
materials’ performance and SEI concerns. Plenty of progress has been accomplished in
developing high-performance anode materials for LIBs. However, further investigation is
required into the supporting mechanisms that limit their performance to support the chem-
ically stable materials’ fabrication and development of easy processes for anode materials’
production. We mainly discussed research activities regarding polymer coating with different
anode materials and showed the achievements of various high-performance anode materials,
i.e., intercalation anodes (Gr and titanium oxides), alloy anodes (Si-, Sn-, and Ge-based com-
pounds), and conversion-type anodes (transition metal oxide compounds). Each category
had promising features and capacities, but some drawbacks limit the optimal electrochemi-
cal performance of LIBs. Undoubtedly, substantial challenges occur for each component,
requiring significant research efforts in various fields to open up their full potential for the
high-performance anode materials. The Si- and Sn-based anodes are alloy-type materials and
are the most attractive because of their high capacity. However, the main challenges are signifi-
cant volume changes during cycling, which have limited the electrochemical performances,
thus frustrating their implementation. In addition, some of these anode materials experience
poor conductivity, affecting their low capacity. To overcome these challenges, the polymer
coating approach demonstrated and showed excellent electrochemical performance in
LIBs. Generally, the critical challenges for anode materials are poor cycle life and C-rate
capability, low CE, unstable SEI, and high irreversible capacity. Polymer coating on the
anode active material particles could solve some of these critical challenges, depending
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on the anode material and specific polymer. For instance, in graphite anodes, the issue
is Li plating with deep discharge at potentials near 0.0 V in a half cell (or fully charged
for a full cell) and low initial CE. In Si-based anodes, the problem is volume expansion,
resulting in unstable and thick SEI, poor cycling life, and low CE; transition metal oxides
also have similar challenges. Therefore, a thin polymer coating (about 2–25 nm) can im-
prove some of these issues via acting as an artificial SEI, and depending on the polymer, it
could increase the conductivity of anode electrodes. Furthermore, maintaining the active
anode materials’ passivation and accommodating volume expansion during (de)lithiation
processes improves the mechanical flexibility. Conductive polymers, such as PPy, PAN,
and PEDOT, are frequently used because of their outstanding electrochemical properties.
These polymers may also serve as a host for Li-ion (de)intercalation and deliver excellent
electronic contact between the mass loading and the current collector.

A quantitative understanding of the mechanisms, polymer coating thickness, nanoscale
design, and properties is still needed. To better understand the nature of the SEI layer
produced with polymers, its impact on the CE needs to be fully considered. Notably, more
advanced in situ/operando characterization techniques (such as TEM, X-ray photon spec-
troscopy (XPS), and X-ray diffraction (XRD)) and theoretical and simulation studies are
necessary to explore the in-depth analysis of polymer coating microscopic processes that
occur during (de)lithiation processes at the atomic and particle levels. Additionally, low-
cost fabrication strategies must be developed for polymer coating on anodes with desirable
performance. Polymer coating could enhance the interparticle connections of alloy anodes
and lightweight production and application of high-capacity anode materials for LIBs.
Future developments in the controllable thickness of various polymer coatings and control
of SEI formulations, such as carbon nanotube anodes, Si anodes, and high-capacity Sn
anodes, are promising advancements for the future of LIBs. This review provides a holistic
view of recent innovations and advancements in the various kinds of polymer coatings for
anode materials for LIBs. It also provides a broad view of the prospects that the field of
battery technology holds for energy conversion, storage, and applications.
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