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Abstract: With the development of large-scale CMOS-integrated circuit manufacturing technology,
microprocessor chips are more vulnerable to soft errors and radiation interference, resulting in
reduced reliability. Core reliability is an important element of the microprocessor’s ability to resist
soft errors. This paper proposes DuckCore, a fault-tolerant processor core architecture based on the
free and open instruction set architecture (ISA) RISC-V. This architecture uses improved SECDED
(single error correction, double error detection) code between pipelines, detects processor operating
errors in real-time through the Supervision unit, and takes instruction rollbacks for different error
types, which not only saves resources but also improves the reliability of the processor core. In the
implementation process, all error injection tests are passed to verify the completeness of the function.
In order to better verify the performance of the processor under different error intensity injections, the
software is used to inject errors, the running program is run on the FPGA (Field Programmable Gate
Array), and the impact of the actual radiation environment on the architecture is evaluated through
the results. The architecture is applied to three–five-stage open-source processor cores and the results
show that this method consumes fewer resources and its discrete design makes it more portable.

Keywords: processor architecture; RISC-V; instruction set architecture; software instrumentation;
fault-tolerant

1. Introduction

The free and open RISC-V instruction set architecture (ISA) has the characteristics
of modularity, low power consumption, high performance, and easy expansion. It has
attracted an active community building processor cores and ecosystems, which makes it
competitive to established processor designs [1]. A large number of open-source processor
cores have appeared in commercial and academic circles within a few years [2]. Even so,
there are still not many processor architectures with high reliability and high fault toler-
ance [3]. Most of the radiation-resistant processors commonly used in space applications
are based on SPARCV8, ARM, and MIPS architectures. The characteristics of the RISC-V
architecture have a large application range in space electronic equipment.

Soft errors are transient faults caused by noise interference or the impact of high-
energy particles. With the development of integrated circuit manufacturing technology
(Moore’s Law), soft errors caused by radiation and interference are increasing, which results
in the problem of reduced reliability, which will limit the development and application of
modern advanced microprocessors [4]. For processors in a space environment, the radiation
problems encountered are even more severe, especially single event effects (SEEs), such as
single event upset (SEU) and single event latching (SEL) [5]. Studies [6] have shown that
80% to 90% of failures in computer systems are caused by transient faults. Therefore, it is of
great significance to solve the problem of soft errors and improve the fault tolerance of the
processor so that it can be better applied to various complex and changeable environments.
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The fault tolerance of the processor core depends on its design architecture, and
commercial processor cores are often in a black box state, which makes it difficult to harden
the fault tolerance [7]. The fault tolerance for storage space often uses Hamming code or
ECC check technology [8,9], but Hamming code can only correct 1-bit errors, not multi-bit
errors. The trigger design [10] based on Triple Modular Redundancy (TMR) technology
can effectively improve fault tolerance, however, it uses many more resources. Checkpoint-
oriented recovery methods have the ability to cover errors using rollback, but they often
face the problem of setting checkpoint locations [11]. The results of previous research [12,13]
show that the design for software redundancy can be reinforced without relying on the
hardware itself, but additional inspection instructions need to be added to this function.
The fault-tolerant design [14,15] using commercial processor cores mostly uses a multi-core
design to improve the safety of its system, but a multi-core design will consume a lot
of resources.

In this paper, we aim to combine a variety of strategies to improve the fault tolerance
of the processor core, so that it can adapt to the complex radiation environment while
having good performance and a low resource ratio. We combined improved SECDED code,
error supervision, pipeline rollback, and other technologies, and proposed the DuckCore
fault-tolerant architecture. The DuckCore architecture is verified on FPGA and has ideal
error correction ability. This scheme is also applied to some open-source [16–18] processor
cores to compare and analyze resource usage. In addition, it can be easily applied to the
processor architecture of a two–five-stage in-order microprocessor, and achieve a good
balance between reliability and performance.

The remainder of this paper follows the ensuing structure: in Section 2, the related
works of our predecessors are introduced, the fault-tolerant design methods and ideas
of each processor are analyzed, and their respective advantages and disadvantages are
clarified as well. In Section 3, the design ideas and methods of DuckCore are introduced.
In Section 3.1, a general five-stage sequential pipeline architecture model based on the
RISC-V instruction set is given. In Section 3.2, the design of the improved SECDED code is
introduced. In Section 3.3, the design of the pipeline inspection and rollback strategy is
presented in detail. In Section 3.4, the operation mechanism and processing method are
illustrated with examples. In Section 4, the verification scheme of this architecture and the
software and hardware test platform are given. In Section 5, the results of the functional
test are given, the impact of processor performance under different error types is compared,
and the application resource occupation of the architecture is analyzed. Finally, in Section 6,
the conclusions are recapitulated.

2. Related Work

Integrated circuit technology and architecture technology have jointly promoted the
development of microprocessors. At the same time, the advancement of these two technolo-
gies has also introduced new challenges and opportunities into the soft and error-tolerant
design of microprocessors. The methods commonly used by fault-tolerant processors
mainly include spatial redundancy, temporal redundancy, and information redundancy [19].
Spatial redundancy involves TMR and multi-core technology, while time fault tolerance
is mainly based on multithreading technology. Redundant multithreading (RMT) for
SMT (simultaneous multithreading) processors [20,21] is a good way to achieve fault toler-
ance. Information redundancy is mainly implemented by means of error correction such
as coding.

EDAC (Error Detecting and Correcting Code) can be used to detect and correct errors
in microprocessors caused by SEU. It is a common technology used in digital communi-
cations to improve the reliability of data transmission. For example, the highly reliable
8051 microprocessor of the French TIMA laboratory [22] uses the Hamming code method
to protect its internal memory and data. The use of Hamming code for fault-tolerant
reinforcement brings more resource consumption as the number of source codes and digits
increases. Many scholars have proposed improved Hamming codes. U. K. Kumar et al. [23]
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change the order of check bits to implement an improved Hamming code, which reduces
circuit consumption and saves more resources in the face of large-scale storage devices.

Early fault-tolerant processors are mostly based on architectures such as SPARCV8,
8051, and RISC. Chris Weaver et al. [24] used a parallel pipeline inspection core to monitor
the running status of the processor and rollback errors in real-time, which improves fault
tolerance. However, inspections require more resources. Jiri Gaisler et al. [25] designed a
LEON-F microprocessor based on the SPARCV8 architecture. The processor adopts a dual-
core mutual supervision architecture, the internal trigger of each single-core adopts a TMR
design, and the memory uses BCH (Bose–Chaudhuri–Hocquenghem) code to achieve error
detection and correction. The processor also has strong fault tolerance, and the encoding
and dual-core methods take up more resources. Todd M. Austin et al. [26] proposed
the DIVA architecture to implement error-checking technology for multi-stage pipeline
processor cores. Abdelmajid Bouajila et al. [27] made changes to the DIVA technology to
improve the reliability of the check core itself and applied the improved DIVA technology
to the seven-stage pipeline core LEON3. Both methods deal with errors in the write-back
stage, which brings performance loss in the face of a more complex radiation environment.

With the development of RISC-V, a large number of open-source processor cores
have appeared in academic and commercial markets [28]. In recent years, the RISC-V
processor has also been deeply studied and applied in the Internet of Things, neural
networks, artificial intelligence, and so on [29–32]. There are not many RISC-V proces-
sors with fault-tolerant architecture currently publicly available. The SHAKTI-F proces-
sor core [8], open-sourced by the Indian Institute of Technology, based on the RV32I
architecture, adds SECDED code between each stage of the pipeline and uses repeti-
tive computing technology to solve the double-bit error problem. However, SHAKTI-F
only considers inspections in the execution stage, ignoring exceptions in other pipelines.
Alexander et al. [9] focused on improving the fault tolerance of the RISC-V processor in
the storage architecture. They designed the ECC module based on the characteristics of
the Chisel language and successfully transplanted it to the rocket and other processor
cores without considering the internal core reliability. Douglas Almeida Santos et al. de-
signed a low-power three-stage pipelined RISC-V processor, using TMR technology on
the arithmetic unit and 38-bit Hamming code verification on the fetch stage. This method
is similar to SHAKTI-F, as it only considers the RV32I architecture and does not consider
multi-bit errors and complex pipeline conditions [3]. Similarly, the authors of [33] used
Hamming code combined with TMR technology and proposed a processor architecture
based on RV32I. Cristiano Rodrigues et al. [34] designed a fault-tolerant architecture based
on ARM and RISC-V dual-core redundancy, but this method is too resource-intensive.
Mong Tee Sim et al. [15] used dual-core lockstep technology based on the RISC-V core
to achieve fault-tolerance, and this method is suitable for fast error recovery in safety-
critical applications.

3. Architecture Design

The DuckCore (this name was devised by our project team; in this paper, it refers to
an architecture using a combination of coding and rollback technology) core architecture
is designed for fault-tolerance on the classic five-stage in-order pipeline architecture. It
adopts improved SECDED code and draws on the architectural concepts of SHAKTI-F
and DIVA technology. It has the capability for real-time monitoring of instruction running
status and error rollback, which can more effectively improve the processor’s anti-single
event upset ability. This architecture can be applied to small microprocessor architectures
with two–five-stage in-order pipelines.

3.1. Baseline Pipeline Structure

The classic architecture model of the DuckCore is based on the RV32IM instruction set,
using a classic five-stage in-order pipeline design, as shown in Figure 1, including fetch (IF),
decoding (DE), execution (EXE), memory access (MEM), write-back (WB) in five stages.
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The privileged instruction set of the RISC-V instruction set is realized through the CSR
register and its internal control module.
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Figure 1. Rv32IM processor core architecture.

Fetch (IF): The fetch module determines the next instruction that needs to enter the
pipeline. If the pipeline is paused (due to data correlation or internal errors), it stops the
instruction fetch. If the pipeline has a branch jump (interrupt or branch instruction), then
the next fetch address becomes the jump address. Otherwise, the fetch module fetches
instructions, increasing the address by four.

Decoding (DE): The decoding module decodes the instructions of the fetch module
according to the RISC-V encoding format. A total of 58 RISC-V instructions are imple-
mented in this design, and various instructions are classified and distinguished in the
decoding stage.

Execution (EXE): The execution considers the realization of all instructions: arithmetic
and logic operations, jump instruction processing, CSR instruction processing, multiplica-
tion and division operations, etc. In the execution stage, the memory address and register
address required by the MEM stage are also calculated.

Memory access (MEM): The LOAD/STORE instructions and storage-related opera-
tions are implemented in the memory access stage.

Write-back (WB): The data to be written into the register is delayed for one cycle in the
write-back stage. The register processor includes 32 general registers and CSR registers.

A simple five-stage pipeline model can be divided into combinational logic and
sequential logic. The sequential logic part of the divided module is concentrated in the four
modules of IF_ID, ID_EX, EX_MEM, and MEM_WB. Both the REGS module and the CSR
REGS module are related to storage data access, and there are also sequential logic circuits.
The combinational logic circuit module is also divided according to the module, and the
model diagram is shown in Figure 2.
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A simpler three-stage pipeline model is shown in Figure 3 below.
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3.2. Improved SECDED Code

The SHAKTI-F processor core uses the classic SECDED code [35]. In this architecture,
it is necessary to perform on-site recovery and code verification operations on the data.
As the amount of data increases, this coding method is somewhat complex and does not
save resources. Therefore, we made an improvement to the coding based on the method
proposed by U. K. Kumar [23].

The classic 32-bit SECDED encoding requires seven parity bits according to the encod-
ing rules of Hamming code. Consider the source code as the following data, define A1 as
32-bit source code data, and DX or PX as a single-bit number:

A1[31:0] = D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17D18D19D20D21D22D23D24D25D26D27D28D29D30D31D32 (1)

The data (define B1 as 39-bit data) after inserting the check bits becomes:

B1[38:0] = P1P2D1P3D2D3D4P4D5D6D7D8D9D10D11P5D12D13D14D15D16D17D18D19D20D21D22D23D24D25D26P6D27D28D29D30D31D32P7 (2)

According to the coding rules of Hamming code, the check bits are calculated
as follows:

P1 = D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7 ⊕ D9 ⊕ D11 ⊕ D12 ⊕ D14 ⊕ D16 ⊕ D18 ⊕ D20 ⊕ D22 ⊕ D24 ⊕ D26 ⊕ D27 ⊕ D29 ⊕ D31 (3)

P2 = D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D7 ⊕ D10 ⊕ D11 ⊕ D13 ⊕ D14 ⊕ D17 ⊕ D18 ⊕ D21 ⊕ D22 ⊕ D25 ⊕ D26 ⊕ D28 ⊕ D29 ⊕ D32 (4)

P3 = D2 ⊕ D3 ⊕ D4 ⊕ D8 ⊕ D9 ⊕ D10 ⊕ D11 ⊕ D15 ⊕ D16 ⊕ D17 ⊕ D18 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D26 ⊕ D30 ⊕ D31 ⊕ D32 (5)

P4 = D5 ⊕ D6 ⊕ D7 ⊕ D8 ⊕ D9 ⊕ D10 ⊕ D11 ⊕ D19 ⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D26 (6)

P5 = D12 ⊕ D13 ⊕ D14 ⊕ D15 ⊕ D16 ⊕ D17 ⊕ D18 ⊕ D19 ⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D26 (7)

P6 = D27 ⊕ D28 ⊕ D29 ⊕ D30 ⊕ D31 ⊕ D32 (8)

P7 = D1 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6 ⊕ D8 ⊕ D11 ⊕ D12 ⊕ D13 ⊕ D15 ⊕ D16 ⊕ D18 ⊕ D19 ⊕ D20 ⊕ D22 ⊕ D25 ⊕ D27 ⊕ D28 ⊕ D30 ⊕ D31 ⊕ D32 (9)

The decoding is based on the received 39-bit encoded data. Assume that the received
data is:

B[38:0] = P1P2D1P3D2D3D4P4D5D6D7D8D9D10D11P5D12D13D14D15D16D17D18D19D20D21D22D23D24D25D26P6D27D28D29D30D31D32P7 (10)

Then the decoding equations are:

S1 = P1 ⊕ D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7 ⊕ D9 ⊕ D11 ⊕ D12 ⊕ D14 ⊕ D16 ⊕ D18 ⊕ D20 ⊕ D22 ⊕ D24 ⊕ D26 ⊕ D27 ⊕ D29 ⊕ D31 (11)

S2 = P2 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D7 ⊕ D10 ⊕ D11 ⊕ D13 ⊕ D14 ⊕ D17 ⊕ D18 ⊕ D21 ⊕ D22 ⊕ D25 ⊕ D26 ⊕ D28 ⊕ D29 ⊕ D32 (12)

S3 = P3 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D8 ⊕ D9 ⊕ D10 ⊕ D11 ⊕ D15 ⊕ D16 ⊕ D17 ⊕ D18 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D26 ⊕ D30 ⊕ D31 ⊕ D32 (13)
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S4 = P4 ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D8 ⊕ D9 ⊕ D10 ⊕ D11 ⊕ D19 ⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D26 (14)

S5 = P5 ⊕ D12 ⊕ D13 ⊕ D14 ⊕ D15 ⊕ D16 ⊕ D17 ⊕ D18 ⊕ D19 ⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D26 (15)

S6 = P6 ⊕ D27 ⊕ D28 ⊕ D29 ⊕ D30 ⊕ D31 ⊕ D32 (16)

S7 = P7 ⊕ D1 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6 ⊕ D8 ⊕ D11 ⊕ D12 ⊕ D13 ⊕ D15 ⊕ D16 ⊕ D18 ⊕ D19 ⊕ D20 ⊕ D22 ⊕ D25 ⊕ D27 ⊕ D28 ⊕ D30 ⊕ D31 ⊕ D32 (17)

When S7S6S5S4S3S2S1 = 0000000, there is no error;
When S7S6S5S4S3S2S1 6= 0000000, the number of error bits in the received data is

greater than or equal to 1.
U. K. Kumar [23] gives an improved Hamming code method based on 7-bit data. This

scheme draws on its ideas and considers 32-bit SECDED code. The improved SECDED
code changes the position of the check bit and adjusts the check bit to the back of the source
code. Figure 4 shows the whole algorithm idea of the improved SECDED code. S1–S7 are
used as check digits, the source code (D1–P7) is the data, and the error position represents
the value of S7S6S5S4S3S2S1 when the error occurs.
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Figure 4. Improved SECDED code encoding and verification scheme.

Consider the source code in the form shown below:

A2[31:0] = D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17D18D19D20D21D22D23D24D25D26D27D28D29D30D31D32 (18)

The encoding form is:

B2[38:0] = D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17D18D19D20D21D22D23D24D25D26D27D28D29D30D31D32P1P2P3P4P5P6P7 (19)

The number (P1P2P3P4P5P6P7) indicates the check bit.
The adjusted SECDED encoding rules are as follows:

P1 = D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D8 ⊕ D10 ⊕ D12 ⊕ D14 ⊕ D17 ⊕ D20 ⊕ D22 ⊕ D24 ⊕ D27 ⊕ D30 (20)
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P2 = D1 ⊕ D3 ⊕ D5 ⊕ D6 ⊕ D9 ⊕ D11 ⊕ D12 ⊕ D15 ⊕ D18 ⊕ D21 ⊕ D22 ⊕ D25 ⊕ D31 (21)

P3 = D2 ⊕ D3 ⊕ D7 ⊕ D8 ⊕ D9 ⊕ D13 ⊕ D14 ⊕ D15 ⊕ D19 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D28 (22)

P4 = D4 ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D8 ⊕ D9 ⊕ D16 ⊕ D17 ⊕ D18 ⊕ D19 ⊕ D26 ⊕ D27 ⊕ D28 ⊕ D32 (23)

P5 = D10 ⊕ D11 ⊕ D12 ⊕ D13 ⊕ D14 ⊕ D15 ⊕ D16 ⊕ D17 ⊕ D18 ⊕ D19 ⊕ D29 ⊕ D30 ⊕ D31 ⊕ D32 (24)

P6 = D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D26 ⊕ D27 ⊕ D28 ⊕ D29 ⊕ D30 ⊕ D31 ⊕ D32 (25)

P7 = D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7 ⊕ D10 ⊕ D11 ⊕ D13 ⊕ D16 ⊕ D20 ⊕ D21 ⊕ D23 ⊕ D26 ⊕ D29 (26)

The decoding is based on the received 39-bit data, call S7S6S5S4S3S2S1 the status code
and the decoding equations are:

S1 = P1 ⊕ D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D8 ⊕ D10 ⊕ D12 ⊕ D14 ⊕ D17 ⊕ D20 ⊕ D22 ⊕ D24 ⊕ D27 ⊕ D30 (27)

S2 = P2 ⊕ D1 ⊕ D3 ⊕ D5 ⊕ D6 ⊕ D9 ⊕ D11 ⊕ D12 ⊕ D15 ⊕ D18 ⊕ D21 ⊕ D22 ⊕ D25 ⊕ D31 (28)

S3 = P3 ⊕ D2 ⊕ D3 ⊕ D7 ⊕ D8 ⊕ D9 ⊕ D13 ⊕ D14 ⊕ D15 ⊕ D19 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D28 (29)

S4 = P4 ⊕ D4 ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D8 ⊕ D9 ⊕ D16 ⊕ D17 ⊕ D18 ⊕ D19 ⊕ D26 ⊕ D27 ⊕ D28 ⊕ D32 (30)

S5 = P5 ⊕ D10 ⊕ D11 ⊕ D12 ⊕ D13 ⊕ D14 ⊕ D15 ⊕ D16 ⊕ D17 ⊕ D18 ⊕ D19 ⊕ D29 ⊕ D30 ⊕ D31 ⊕ D32 (31)

S6 = P6 ⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕ D25 ⊕ D26 ⊕ D27 ⊕ D28 ⊕ D29 ⊕ D30 ⊕ D31 ⊕ D32 (32)

S7 = P7 ⊕ D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7 ⊕ D10 ⊕ D11 ⊕ D13 ⊕ D16 ⊕ D20 ⊕ D21 ⊕ D23 ⊕ D26 ⊕ D29 (33)

The encoding operation based on the classic SECDED requires 104 logical OR opera-
tions, and the adjusted encoding operation only requires 89, which reduces the number
of operations by 15 and saves resources. As can be seen from Figure 4 and the coding
equations of the two methods, the design of the parity check code is based on the principle
that the data bits are placed dispersedly to ensure that the bits required for each parity
check code operation are as few as possible, since the data space represented by 6-bit data
is much larger than 32-bit.

According to the adjusted encoding method, it can be determined:
When S7S6S5S4S3S2S1 = 0000000, there is no error;
When S7S6S5S4S3S2S1 6= 0000000, the number of error bits in the received data is

greater than or equal to 1. Since the SECDED encoding can only correct 1-bit errors and
detect 2-bit errors, it cannot effectively identify multi-bit errors. Therefore, this design
stipulates that when the value of S7S6S5S4S3S2S1 is equal to the value of S7S6S5S4S3S2S1 in
Figure 4, a 1-bit error is considered and corrected. For example, when S7S6S5S4S3S2S1 = 1000011,
the decoding module determines that D1 is abnormal and corrects it (inverted). When
S7S6S5S4S3S2S1 is not equal to any set of data shown in Figure 4 (in fact, this method misses
some special cases, but since the probability is small, it can be ignored), it is considered
that the number of error bits in the received data ≥ 2. At this time, an error warning signal
is generated.

Improved SECDED code is applied to the encoding and decoding circuits between
pipelines. Figure 5 shows the data-encoding process. The encoding circuit only implements
the operation of inserting check bits into the source code. Figure 6 shows the decoding
process. The decoding circuit calculates the status code in a single cycle. If a 1-bit error
occurs, the correction module will correct the data. If a 2-bit error occurs, an error alarm
is generated, and a HALT signal is triggered at the same time to notify the upper-stage
pipeline to suspend related operations. If there is no error, the TRUE signal is set high to
indicate that the current decoding is correct.
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Figure 6. Embedded data decoding module. It is embedded in a combinational logic module to
realize the SECDED decoding function and correct errors in time. It will generate an alarm signal in
case of a multi-bit error.

It should be noted that, in addition to the 32-bit Hamming code, for 8-bit or 16-bit
registers, the SECDED code of corresponding bits is adopted, which can save resources.
This kind of improved SECDED code will not be repeated here.

3.3. Pipeline Rollback Architecture Design

Figure 7 shows the overall fault-tolerant scheme of the DuckCore processor core
architecture. In this design, the encoding module mentioned in Section 3.2 is embedded
in the sequential logic module between each stage of the pipeline, and the decoding
module is embedded in the combinatorial logic. These two modules mainly realize the
functions of detection and guarantee. The processing after the error occurs depends on
the cooperation of the three modules: REDO (re-operation and rollback), Supervision
(supervision, detection), and ARBIT (arbitration control).
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REDO: The REDO module is embedded in sequential logic. It records the current
running data, address, and control signals. The module only records one cycle of data. If
there is no repeated operation after the next cycle, the data will be overwritten by new data.
Figure 8 shows the main function of the module.
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Figure 8. REDO module: It is embedded in the timing logic module to store temporary data in
real-time. When the REDO operation is performed, it realizes the function of data replacement.

Supervision: This module supervises the current operating status of the pipeline, in-
cluding the priority of the current pipeline, error probability, instruction execution type, and
other information. It also receives notifications from the ARBIT module and forwards the
final operation (including re-executing instructions, pipeline waiting, pipeline refreshing,
etc.) at the same time.

ARBIT: The ARBIT module is used to receive all Supervision signals and decide the
most reasonable way to deal with the error according to the current error state.

3.4. Pipeline Rollback Disposal Process

Figure 9 shows the rollback method of the fetching stage. Here, ICache is used as an
external program storage area. When the processor starts to work, it loads the running
program from the ICache. This paper only considers the fault-tolerant architecture of the
processor core, and the storage area uses improved SECDED encoding by default. After
the loaded instruction is decoded, the status and data are transmitted to the Supervision
module. At this time, the priority of fetching is set to Priority- 1© (the sequence of rollback
after errors occur in each stage is called priority, so there are five priorities in the five-stage
pipeline). When an error occurs, the ARBIT module decides whether to handle the error
according to the error situation. There are several possibilities for error conditions:

(1) The error only occurs at the fetch stage, re-fetching the instruction;
(2) The error occurs at the fetch stage but other conditions occur in the pipeline simulta-

neously (such as abnormal instruction processing or Control Transfer Instruction). At
this time, the ARBIT module decides whether to re-fetch or refresh.

Figures 10 and 11 show the processing method in the process of fetching and decoding.
When the fetching stage is completed, the data that enters the IF_ID module does not need
to be encoded again (the decoding is considered correct and bypassed). If the previous stage
of the pipeline is abnormal, the instruction will be recoded (ENCODING). The priority of
this stage is Priority- 2©, which is higher than the fetching stage. If this stage of the pipeline
and the fetching pipeline report an exception at the same time, the module will not be
executed and the ARBIT module will give priority to the stage with a high pipeline level for
exception handling. The REDO module is embedded in the IF_ID module. When the data
error occurs, the original saved data is re-imported and the same operation is performed.
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Figure 10. Fetching-decoding rollback process. After the data from the fetching module enters the
timing logic, the data without error is sent to the decoding module. If there is an exception, the REDO
operation will be executed at this stage to return the original data. The REDO operation is arbitrated
by the ARBIT module, and then the SUPERVISION module is notified to give feedback.
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Figure 11. Decoding Rollback Process. The execution of this module is similar to that of the fetching
module, but the data does not come from the ICache. This stage also detects whether there is a
decoding error and reports the data to the SUPERVISION module.

Figure 12 shows the rollback operation flow in the execution stage. Similarly, the
ID_EXE module of the pipeline has a REDO module, and the EXE module transmits the
execution status signal to the Supervision module according to the decoding result. The
difference is that the JUMP module is added to the Supervision module to determine
whether the jump instruction is being executed in the current execution process. The JUMP
module is added here to improve the efficiency of wrong judgment.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 27 
 

 

ENCODING
Or BYPASS

EXE

EXE_MEM
ARBIT

REDO

DECODING

SUPERVISION

pority

repeat

Jump?

ID_EXE

DECODING
ERROR
FREQU

OP_TYPE

 
Figure 12. Execution rollback process. The operation in this stage is similar to that in Figure 9, but 
the instruction type needs to be determined in this stage. Therefore, the Jump module is embedded 
in this module to determine whether the current execution type is a Control Transfer Instruction 
and report the information to the ARBIT module. 

Figure 13 shows the division of instructions in the RISC-V instruction architecture 
(only RV32IMZicsr is considered here) [36]. We distinguish between Control Transfer 
Instruction and other instructions. The division is based on whether the instruction 
performs a jump during the execution stage. 

LOAD/STORE

Arithmetic/Shifts/Logic

Branches/Jump

CSR（System)
5 pipeline

3 pipeline

JAL

JALR

BEQ\BNE\BLT\BGE\BLTU\BGEU

ECALL\EBREAK\WFI\MRET\
CSRRW\CSRRS\CSRRC\CSRRWI\CSRRSI\CSRRCI

LB\LH\LW\LBU\LHU\SB\SH\SW

MUL\MULH\MULHSU\MULHU\
DIV\DIVU\REM\REMU

ADD\SUB\SLL\SLT\SLTU\XOR\OR
\SRL\SRA\OR\AND

ADDI\SLTI\SLTIU\XORI\ORI\
ANDI\SLLI\SRLI\SRAI

 
Figure 13. Rv32IM instruction classification. 
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is detected, the processor core will change the fetching address, causing the data of the 
first two stages of the pipeline to no longer be executed. If there is a pipeline decoding 
error in the first and second stages when the jump operation is performed at this time, 
there is no need to do a rollback operation, because the instruction jump will ignore the 
error to improve the operating efficiency. The module that performs this function is the 
Flush module, which is embedded in the ARBIT module. Figure 14 shows the processing 
block diagram of the Flush module. 

Figure 12. Execution rollback process. The operation in this stage is similar to that in Figure 9, but
the instruction type needs to be determined in this stage. Therefore, the Jump module is embedded
in this module to determine whether the current execution type is a Control Transfer Instruction and
report the information to the ARBIT module.

Figure 13 shows the division of instructions in the RISC-V instruction architecture (only
RV32IMZicsr is considered here) [36]. We distinguish between Control Transfer Instruction
and other instructions. The division is based on whether the instruction performs a jump
during the execution stage.
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Figure 13. Rv32IM instruction classification.

Due to the characteristics of the five-stage in-order pipeline, when the jump execution
is detected, the processor core will change the fetching address, causing the data of the first
two stages of the pipeline to no longer be executed. If there is a pipeline decoding error
in the first and second stages when the jump operation is performed at this time, there
is no need to do a rollback operation, because the instruction jump will ignore the error
to improve the operating efficiency. The module that performs this function is the Flush
module, which is embedded in the ARBIT module. Figure 14 shows the processing block
diagram of the Flush module.
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Figure 14. Flush module: The module is embedded in the ARBIT module to determine whether the
current instruction needs to be refreshed according to the received error type, priority, and instruction
type. If there is an error appearing in the levels of the first–third stage, the jump situation needs to be
determined.

The processing method of the fourth- and fifth-stage pipeline is similar to the first
three-stage pipeline. Figure 15 shows the architecture diagram of the overall processing
method. The embedding method of the REDO module or the Supervision module is the
same as that described above. The results of the detection of each module are uniformly
scheduled by the ARBIT module. The Flush module, the Priority Control module, and
the System Control module are embedded in the ARBIT module. In this architecture,
the execution priority of each level of pipeline is Priority- 1© > Priority- 2© > Priority- 3© >
Priority- 4© > Priority- 5©. When there is only one error, the data rollback will be executed
immediately. The System Control module is used to deal with fatal errors.
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Figure 15. The relationship between the arbiter and the supervisory module. The yellow part of the
figure shows the SUPERVISION modules distributed between the 1–5 stages of the pipeline, which
are distributed from left to right to monitor the error conditions of the 1–5 stages of the pipeline in
turn. The SUPERVISION module summarizes the collected error signal, priority, and instruction
type to the ARBIT module. The ARBIT module determines the rollback strategy through internal
judgment and sends the rollback command back to each SUPERVISION module.

The ARBIT module plays an important role in the pipeline rollback operation.
Figure 16 shows the internal operation flow of the ARBIT module. FLUSH corresponds
to the flush module in Figure 15, the TIME module and SYSTEM module correspond to
the System Control module to realize fatal error handling. The other modules (S1–S7,
OR_OPERATION, and NO_OPERATION) form the Priority Control module to realize
priority overall scheduling. After an error occurs at each stage of the pipeline, the priority
signal will be set high. The Priority Control module determines whether to perform flush
or other operations according to the error and priority. This process will be described in
detail in Section 3.5.

The fatal error considered in this design is that a bit error caused by SEL cannot
be recovered. A system-level exception will occur. This problem cannot be avoided no
matter how the instruction rollback is taken. For this reason, this design embeds periodic
detection in the Supervision module to determine the number of abnormal errors. Since the
interval of each stage of the pipeline processor is one cycle, if there are multiple abnormal
errors in the same stage of the pipeline, it is considered that an unrecoverable error has
occurred at this position, which is beneficial to prevent the system from being unable to
recover to a normal working state. Figure 17 shows the block diagram of the fatal error
detection design.
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Figure 17. Fatal error abnormal monitoring. The module is embedded between 1 to 5 stages of the
pipeline and is placed at every two stages of the pipeline to monitor whether the errors between
two adjacent decoding modules occur repeatedly. If the interval period is one cycle, the count will
increase by 1, and a fatal information alarm will be sent after the count reaches the threshold. Then,
the system generates a system ERROR.

3.5. Operation Mechanism Description

Figure 18 shows the overall operating mechanism under the architecture. The main
operations include the following:

1. When an abnormality occurs during a certain stage of the pipeline operation and a
multi-bit error is reported, the system will determine the number of modules that
give feedback. If there is only one error, it will determine the pipeline position where
the error occurred. If it is located at the third stage, fourth stage, or fifth stage, the
data rollback will be executed immediately; if the error occurs at the first stage or
second stage, the ARBIT module determines whether the Control Transfer Instruction
is executed in the EXE stage at this time. If the Control Transfer Instruction is executed,
rollback is not taken. If no Control Transfer Instruction is executed, rollback is taken
immediately;
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2. When there are multiple multi-bit errors, rollback will be taken according to the prior-
ity order. During the rollback process, the pipeline suspends one cycle of operation;

3. If the same error occurs at the same stage of the pipeline, the operation of the pipeline
is suspended, and the system-level operation determines whether to reset the current
processor core or run a specific security code;

4. When a pipeline causes a rollback due to an error, other pipelines need to suspend or
delay the current instruction.
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Figure 19 shows a specific running routine. The test program (rv32ui-p-add) performs
the read and write operations of t4 and t5 registers and compares them. When the program
starts to execute, the two registers ra and sp are set to 0, and the result of the addition of ra
and sp is written into the t5 register. Next, the data 0 is written into the t4 register, and then
the t4 and t5 data are compared. If t4 and t5 are not equal, the program jumps to address
0x1c. If they are equal, it continues to run and stays at address 0x14. The figure shows that
after an error is detected in the decoding (ID) stage, the ARBIT module will suspend the
whole pipeline. After the arbitration is completed, the instruction returns to 0x0c and the
program continues to run.
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For the same running routine, the case of simultaneous errors of multiple pipelines is
given in Figure 20. The figure shows the abnormal situation in the decoding (ID), execution
(EXE), and memory access (MEM) processes during operation. There are three errors in the
pipeline, and since Priority- 2© > Priority- 3© > Priority- 4©, a rollback operation is taken by
the ARBIT module. The ARBIT module controls the pipeline to restart from the instruction
(00000113) and refreshes the error pipeline at the same time. The fetch stage returns to run
the instruction (00208f33). The rollback function is executed by the REDO module (this is
actually a repetitive operation).
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4. Implementation
4.1. Hardware Platform

As shown in Figure 21, the test environment connects the upper computer (display
terminal in Figure 21) with the test board through a serial port. The upper computer
transmits the running program to the test board through the serial port. At the same time, it
monitors the running state of the test program by receiving the data returned by the board.
The upper computer also observes the waveform of the board through the JTAG interface.
The test board adopts the K325T FPGA chip of the Xilinx Company as the hardware test
platform. The external power supply of the board adopts a 5 V power supply, and the
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FPGA is externally equipped with a 50 MHz single-ended crystal oscillator. A 128 MB DDR
is attached to the board as external memory. UART, IIC, SPI, GPIO, and other interfaces are
reserved as well.
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4.2. Software Testing Methods

This section will verify the characteristics of the architecture from two aspects: function
and performance.

Functional tests verify whether the architecture can effectively avoid errors when
encountering SEU, so it is necessary to effectively simulate the error of each stage of the
pipeline. The functional test is based on Modelsim software. The test program uses the
RISC-V compliance test set officially launched by RISC-V, which can perform integrity
testing on all instructions and registers implemented by the RISC-V core. By analyzing
all possible fault types, targeted fault injection is carried out. The injection position and
type of test excitation are given in Figure 22. Test incentives include single-stage pipeline
errors and multi-stage pipeline errors. For the complex situation wherein all pipelines have
errors, they are no longer drawn due to the consistency of principles.
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Functional testing can effectively verify the correctness of the architecture and strategy,
but it is not easy to measure the performance of the processor. The general software test
(this means only running unprocessed test programs without adding special test cores
or special injection circuits to the hardware) is not easy to simulate the scene of a single
event flip. Therefore, in order to simulate errors during the real-time operation of the
software and test the performance of the processor, the particle flip simulation module
is embedded in the processor core during the test. In this way, large-scale error injection
testing can be achieved through software injection. The software runs on the hardware
platform described in Section 4.1.

The particle flip simulation module simulates a single event upset (logic value flip)
by means of custom CSR instructions. The RISC-V privileged instruction set [37] provides
a part of the open CSR memory access space. The 0xBC0-0xBFF space, which belongs to
the custom read/write space, can be used to customize the functions of the kernel. It was
chosen as the software control address in our method. The user controls the location and
frequency of coding errors by accessing specific addresses and writing specific instructions.
Figure 23 shows the design block diagram of the particle flip simulator module, which
is embedded in the output of the encoding module. Through command control, it can
simulate the situation of data errors caused by SEU.
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Figure 23. Encoding embedded in the CSR control module.

Figure 24 shows the flow of controlling pipeline errors at each stage by using CSR
instructions. The time, frequency, and degree of errors in each pipeline can be controlled in
real-time through the control of instructions. The red letters in Figure 24 indicate that error
injection will be carried out at this position. The test method covers the possibility of all
single event flip errors and monitors the running time of effective software to determine
the performance of the processor.

Commonly used test programs to measure processor performance are CoreMark and
Dhrystone. For these two software test sets, errors were injected into the C language code
at a certain frequency to simulate the single event upset during software operation, and
the impact of the interference on processor performance was measured by the results of
running scores. A fatal error will not be injected during the test, so the software can run
normally without resetting.
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5. Analysis and Comparisons

This section verifies the function and performance of DuckCore according to the func-
tional simulation method and software test method mentioned in Section 4. The evaluation
results of resource and power consumption are given. At the same time, this method is
applied to other open-source processor cores to compare their resource occupation. Finally,
the functional integrity of this architecture is compared with other open-source cores.

5.1. Functional Simulation

The following four typical working conditions are given. These figures show how the
processor architecture handles different error conditions.

Figure 25 shows the rollback operation in which an error occurs only once in the
pipeline during the decoding stage. Code 1 shows part of the assembly code of the running
test program rv32ui-p-add. In the process of running, an error occurs during the decoding
stage of the instruction 0x00000d93, which caused the error_de signal to rise, and the
instruction is decoded incorrectly as 0x00000000 at the same time. Since errors only occur
in the decoding stage of this cycle, a rollback operation is performed. The instruction is
executed again. This operation took one time period.
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Code 1. rv32ui-p-add partial assembly code example-1.

00000000 <_start>:
0: 00000d13 li s10,0
4: 00000d93 li s11,0
00000008 <test_2>:
8: 00000093 li ra,0
c: 00000113 li sp,0
10: 00208f33 add t5,ra,sp
14: 00000e93 li t4,0
18: 00200193 li gp,2
1c: 4ddf1663 bne t5,t4,4e8 <fail>

Figure 26 shows the rollback operation, in which an error occurs only once in the
pipeline during the execution stage. Code 2 shows part of the assembly code of the running
test program rv32ui-p-add. During the execution of the program, when the 4e4:00301863
instruction has been executed in the execution stage, the program executes the Control
Transfer Instruction. At this time, the instruction 4ec:00000d93 is being decoded in the
decoding stage and a double-bit error occurs. Even if there is a coding error, the rollback
operation will not be executed since the jump is valid, and the program will normally jump
to the execution instruction 4f4:00100d13. This operation does not take any time period.
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Code 2. rv32ui-p-add partial assembly code example-2.

000004cc <test_38>: 4ec: 00000d93 li s11,0
4cc: 01000093 li ra,16 000004f0 <loop_fail>:
4d0: 01e00113 li sp,30 4f0: 0000006f j 4f0 <loop_fail>
4d4: 00208033 add zero,ra,sp 000004f4 <pass>:
4d8: 00000e93 li t4,0 4f4: 00100d13 li s10,1
4dc: 02600193 li gp,38 4f8: 00100d93 li s11,1
4e0: 01d01463 bne zero,t4,4e8 <fail> 000004fc <loop_pass>:
4e4: 00301863 bne zero,gp,4f4 <pass> 4fc: 0000006f j 4fc <loop_pass>
000004e8 <fail>: 500: 0000 unimp
4e8: 00100d13 li s10,1 ...

Figure 27 shows the rollback operation of multiple pipeline stages with errors at the
same time. During the execution of the program, when the instruction 4d8:00000e93 is
being executed in the execution stage, a double-bit error is found at this stage. At the same
time, double-bit errors are detected at both the fetch stage and the decoding stage. Since
the priority of the fetch stage is the highest, the ARBIT module refreshes other pipeline
instructions and starts rollback from the fetch stage at the same time, and the instruction is
executed from the error position 0x000004d8. The operation took three time cycles.
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Figure 28 shows a situation in which the processor core has to reset under a fatal error.
The program runs the assembly code in Code 1. When the decoding process repeats errors
and the internal error count (inner_error_count) exceeds two times (the number can be
configured by the user and set according to the importance, which is set to two here), it is
considered that a fatal error has occurred, and the ARBIT module generates a reset signal
(rst) and runs again from address 0.
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5.2. Software Test

The performance test results show the operation waveform of the processor without
error injection and the running points of CoreMark and Dhrystone. The CoreMark and
Dhrystone programs are modified according to the idea in Figure 24 (that is, injecting errors
into the running program). The running results under different error injections are given.

Figure 29 shows the waveform of the CoreMark program when the program runs
normally. The waveform shows the processor operation from 0x0000367c to 0x000036c4. During
this period, no false incentives were given. All signals in Figure 29 are top-level signals.

Figure 30 shows the operation results of the CoreMark program (left in the figure)
and the Dhrystone program (right in the figure) at 50 MHz without error injection. The
basic running score of DuckCore can reach 2.7 CoreMark/MHz and 1.38 DMIPS/MHz. It
should be noted that this picture only shows the operation results under 50 MHz FPGA.
The integrated main frequency of this architecture can reach 150 MHz under the SMIC
process node of 130 nm.
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Figure 30. Operation result display diagram of CoreMark and Dhrystone.

Figures 31 and 32 respectively show the results of the two running programs in the
case of four kinds of error injection. The abscissa in the figure represents the number of
C-language codes between errors (0 means no errors are injected). X-errors represent the
number of stages of the pipeline that generated the error. It can be seen that error injection
will lead to a decrease in the operating performance of the processor, and especially when
errors occur frequently, the performance of the processor will be greatly affected. Judging
from the trend of the curve, the processor under the DuckCore architecture responds
quickly to error recovery. As the error injection interval becomes larger, the processor’s
operating performance will be less affected. The probability of a space component being
exposed to radiation to cause a flip is far less than the injection frequency. Therefore, the
processor can have better performance in a space environment. From the running trend
of the curve, the performance response of the processor is similar to the error injection,
because the data error injection itself has regularity, which makes the trend roughly the
same, but the numerical impact is different.

The actual test values are given in Table 1, which is convenient for readers to check
the curve. From a specific numerical point of view, high-density data errors have a great
impact on performance, or even reduce one unit of data. With the decrease in injection
density, the performance tends to be stable. The stability of the curve reflects the strong
ability of the architecture to resist complex errors.
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Table 1. Running results of CoreMark and Dhrystone under different error injections.

X-Errors Abscissa CoreMark Dhrystone

0 1 2.02 0.92
0 2 2.26 1.1
0 3 2.40 1.18
0 4 2.42 1.2
1 1 1.7 0.68
1 2 2.06 0.96
1 3 2.27 1.08
1 4 2.28 1.14
2 1 1.5 0.6
2 2 1.88 0.78
2 3 2.16 1
2 4 2.18 1.06
3 1 1.32 0.68
3 2 1.72 0.72
3 3 2.1 0.92
3 4 2.12 1.01
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5.3. Comparison and Analysis

Sections 5.1 and 5.2 have verified and evaluated the functions and performance of
DuckCore. This fault-tolerant method has a good capability for dealing with spatial single
event upsets, and it can have a certain degree of recovery in complex situations (multiple
pipelines appear, bit flips at the same time). The comparison between this architecture
and other architectures in power consumption, performance, and application scenarios is
given below.

Table 2 shows the comparison of resource occupancy before and after using this archi-
tecture for some processors. The resource occupation of the DuckCore core has increased
by 157 Slice LUTs compared to the original, and Slice has increased by 1827. Architec-
ture changes have produced more codec circuits and the increase in data bits increases
the sequential logic resources. From the perspective of FPGA synthesis, DuckCore’s re-
source increase is better than the SHAKTI-F solution (increased by 26.17%). The design
method of this framework has also made the same application on other open-source pro-
cessor cores. After adopting this architecture, the resources of the V-scale are increased by
901 Slices compared with the original. Similarly, Tinyriscv’s resources increased by
653 slices. Since the two processor cores are both three-stage pipeline architectures, the
resource usage is small. Ultrascale’s resource increase is closer to DuckCore since both are
five-stage sequential pipeline architectures.

Table 2. Comparison of resources occupied by fault-tolerant solutions of different open-source cores.

Processor Core ISA Slice LUTs Slice LUT as Logic

DuckCore Rv32IM 2916(1.43%) 266 2916
DuckCore (change Architecture) Rv32IM 3073(1.5%) 2093 3073

V-scale Rv32IM 2700(1.32%) 1003 2700
V-scale (change Architecture) Rv32IM 2700(1.32%) 1904 2700

Ultrascale Rv32IM 3598(1.77%) 2706 3598
Ultrascale (change Architecture) Rv32IM 4223(2.07%) 4223 3598

Tinyriscv Rv32IM 5754(2.82%) 1984 5754
Tinyriscv (change Architecture) Rv32IM 5754(2.82%) 2637 5754

Table 3 shows the use of FPGA resources before and after the improved SECDED code
is adopted in the architecture. The resource consumption of the open-source processor core
Ultrascale using the improved SECDED code is compared. According to the comparison, in
the DuckCore architecture, the improved SECDED coding saves 548 LUT resources, account-
ing for 17.8%. For Ultrascale, 654 LUT resources are saved, accounting for 15.5%. Therefore,
the improved SECDED code consumes fewer resources than the traditional scheme.

Table 3. Comparison of resource occupation under different codes.

Processor Core Slice LUTs

Ultrascale 3598(1.77%)
Ultrascale (use Classic SECDED) 4877(1.77%)

Ultrascale (use improved SECDED) 4223(2.07%)
DuckCore 2916(1.43%)

DuckCore (use Classic SECDED) 3621(1.78%)
DuckCore (use improved SECDED) 3073(1.5%)

Table 4 shows the power consumption comparison of FPGA before and after the
SECDED code is adopted. Because the previous analysis shows that the improved SECDED
code saves more resources than the traditional methods, this conclusion is also confirmed
in terms of power consumption. In the DuckCore architecture, the power consumption of
the modified traditional SECDED code is 0.244 w, an increase of 0.03 W compared with the
original, accounting for 14%. The power consumption of the improved SECDED coding
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is only 0.227 w, an increase of 0.007 w compared with the original, accounting for 3.3%.
Compared with the traditional SECDED code, the improved SECDED code saves 10.7%
power consumption. Therefore, the improved coding also has the advantage of lower
power consumption.

Table 4. Comparison of power consumption under different codes.

Processor Core Total on-Chip Power

DuckCore 0.214 W
DuckCore (change Architecture with Classic SECDED) 0.244 W

DuckCore (change Architecture with improved SECDED) 0.227 W

The DuckCore architecture, SHAKTI-F, and DIVA are all designed for the fault tol-
erance of the processor core. Table 5 shows some index comparisons between DuckCore,
SHAKTI-F, and DIVA. From the coverage of the environment, the SHAKTI-F core cannot
prevent errors in the multi-stage pipeline. DIVA can cope with most situations. However,
due to the design of the dual-core architecture, if the dual-cores have problems at the same
time, their ability to cope is limited. From this point of view, DuckCore can cope with a
more complex error environment.

Table 5. Comparison of different processor core indicators.

Processor Core ISA Core One-Bit Error Two-Bit Error M-Bit Error

DuckCore RV32IM 1 Y Y—support 1–5piple Part support
SHAKTI-F Rv32I 1 Y Y—support 3piple No support

DIVA SPARC 2 Part support Part support Part support

6. Conclusions

The core problem of the aerospace processor is to deal with space radiation effects.
Process level reinforcement can effectively solve the single-event latch and total dose effects,
but it is still an important proposition for soft errors (such as SEU). This paper proposed
the DuckCore architecture and described its strategy and design.

The main work and characteristics of this paper are as follows: (1) improved SECDED
code is applied between the pipelines, which saves computing resources; (2) the fault-
tolerant design of the pipeline rollback is adopted to ensure that each stage of the pipeline
is effectively supervised, improves the processor core’s ability to deal with a complex
radiation environment, and simulates the impact of errors on processor performance
through the combination of software and hardware; (3) the architecture has good portability,
low resource consumption, and can be applied to two–five-stage embedded processors.

In the future, we hope to study a more reliable multi-core architecture based on a
highly reliable RISC-V single core. In addition, it is also an interesting proposition in the
emergency treatment of key modules related to safety.
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16. Asanović, K.; Avizienis, R.; Bachrach, J.; Beamer, S.; Biancolin, D.; Celio, C.; Cook, H.; Dabbelt, D.; Hauser, J.; Izraelevitz,
A.; et al. The Rocket Chip Generator; EECS Department, University of California: Berkeley, CA, USA, 2016. Available online:
https://github.com/chipsalliance/rocket-chip (accessed on 20 October 2021).

17. Liang, K. Tinyriscv. Available online: https://gitee.com/liangkangnan/tinyriscv (accessed on 20 October 2021).
18. ultraembedded. Riscv. Available online: https://github.com/ultraembedded/riscv (accessed on 20 October 2021).
19. Sorin, D.J. Fault tolerant computer architecture. Synth. Lect. Comput. Archit. 2009, 4, 1–104. [CrossRef]
20. Reinhardt, S.K.; Mukherjee, S.S. Transient fault detection via simultaneous multithreading. In Proceedings of the 27th International

Symposium on Computer Architecture (IEEE Cat. No.RS00201), Vancouver, BC, Canada, 14 June 2000; pp. 25–36.
21. Vijaykumar, T.; Pomeranz, I.; Cheng, K. Transient-fault recovery using simultaneous multithreading. ACM Sigarch Comput. Archit.

News 2020, 30, 87–98. [CrossRef]
22. Cota, É.; Lima, F.; Rezgui, S.; Carro, L.; Velazco, R.; Lubaszewski, M.; Reis, R. Synthesis of an 8051-Like Micro-Controller Tolerant

to Transient Faults. J. Electron. Test. 2001, 17, 149–161. [CrossRef]
23. Kumar, U.K.; Umashankar, B.S. Improved Hamming Code for Error Detection and Correction. In Proceedings of the 2007 2nd

International Symposium on Wireless Pervasive Computing, San Juan, PR, USA, 5–7 February 2007. [CrossRef]
24. Weaver, C.; Austin, T. A fault tolerant approach to microprocessor design. In Proceedings of the 2001 International Conference on

Dependable Systems and Networks, Gothenburg, Sweden, 1–4 July 2001; pp. 411–420. [CrossRef]
25. Gaisler, J. A portable and fault-tolerant microprocessor based on the SPARC V8 architecture. In Proceedings of the International

Conference on Dependable Systems and Networks, Washington, DC, USA, 23–26 June 2002; pp. 409–415. [CrossRef]
26. Austin, T. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings of the MICRO-32. Proceedings

of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture, Haifa, Israel, 16–18 November 1999; pp. 196–207.
[CrossRef]

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://riscv.org/announcements/2019/11/9679/
http://doi.org/10.1109/DTIS48698.2020.9081185
http://doi.org/10.1109/IRPS.2011.5784484
http://doi.org/10.1002/9781119107392
http://doi.org/10.1201/9781439863961
http://doi.org/10.1016/j.cosrev.2020.100349
http://doi.org/10.1109/ATS.2015.35
http://doi.org/10.1007/978-3-030-52794-5_4
http://doi.org/10.1109/TVLSI.2015.2475167
http://doi.org/10.1145/3109984.3110008
http://doi.org/10.1109/MM.2007.4
http://doi.org/10.1109/TII.2013.2248373
http://doi.org/10.1109/DFT.2016.7684084
http://doi.org/10.1109/IECON43393.2020.9255188
https://github.com/chipsalliance/rocket-chip
https://gitee.com/liangkangnan/tinyriscv
https://github.com/ultraembedded/riscv
http://doi.org/10.2200/S00192ED1V01Y200904CAC005
http://doi.org/10.1145/545214.545226
http://doi.org/10.1023/A:1011125927317
http://doi.org/10.1109/ISWPC.2007.342654
http://doi.org/10.1109/DSN.2001.941425
http://doi.org/10.1109/DSN.2002.1028926
http://doi.org/10.1109/MICRO.1999.809458


Electronics 2022, 11, 122 27 of 27

27. Bouajila, A.; Sommer, T.; Zeppenfeld, J.; Stechele, W.; Herkersdorf, A. A Fault-Tolerant Processor Architecture. FERS-Mitteilungen.
2009, 28, 1–6. [CrossRef]

28. Holler, R.; Haselberger, D.; Ballek, D.; Rossler, P.; Krapfenbauer, M.; Linauer, M. Open-Source RISC-V Processor IP Cores for
FPGAs—Overview and Evaluation. In Proceedings of the 2019 8th Mediterranean Conference on Embedded Computing (MECO),
Budva, Montenegro, 10–14 June 2019; pp. 1–6. [CrossRef]

29. Lim, S.-H.; Suh, W.W.; Kim, J.-Y.; Cho, S.-Y. RISC-V Virtual Platform-Based Convolutional Neural Network Accelerator Imple-
mented in SystemC. Electronics 2021, 10, 1514. [CrossRef]

30. Zhang, H.; Wu, X.; Du, Y.; Guo, H.; Li, C.; Yuan, Y.; Zhang, M.; Zhang, S. A Heterogeneous RISC-V Processor for Efficient DNN
Application in Smart Sensing System. Sensors 2021, 21, 6491. [CrossRef] [PubMed]

31. Del Río, I.G.; Hellín, A.M.; Polo, R.; Arribas, M.J.; Parra, P.; Da Silva, A.; Sánchez, J.; Sánchez, S. A RISC-V Processor Design for
Transparent Tracing. Electronics 2020, 9, 1873. [CrossRef]

32. Lee, D.; Moon, H.; Oh, S.; Park, D. mIoT: Metamorphic IoT Platform for On-Demand Hardware Replacement in Large-Scaled IoT
Applications. Sensors 2020, 20, 3337. [CrossRef] [PubMed]

33. Heida, W.F. Towards a Fault Tolerant RISC-V Softcore. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2016.
Available online: http://resolver.tudelft.nl/uuid:cee5e97b-d023-4e27-8cb6-75522528e62d (accessed on 20 October 2021).

34. Rodrigues, C.; Marques, I.; Pinto, S.; Gomes, T.; Tavares, A. Towards a Heterogeneous Fault-Tolerance Architecture based on Arm
and RISC-V Processors. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society,
Lisbon, Portugal, 14–17 October 2019. [CrossRef]

35. Tam, S. Single Error Correction and Double Error Detection. Xilinx Application Note. 2006. Available online: https://www.xilinx.
com/support/documentation/application_notes/xapp645.pdf (accessed on 20 October 2021).

36. Waterman, A.; Asanovic, K. The RISC-V Instruction Set Manual-Volume I: User-Level Isa-Document Version 2.2. RISC-V
Foundation (May 2017). 2017. Available online: https://riscv.org/technical/specifications (accessed on 20 October 2021).
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