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Abstract: Network dimensioning is a critical task in current mobile networks, as any failure in this
process leads to degraded user experience or unnecessary upgrades of network resources. For this
purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottle-
necks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions
obtained with legacy approaches. Previous works have shown that deep learning outperforms
classical time series analysis when predicting data traffic in cellular networks in the short term (sec-
onds/minutes) and medium term (hours/days) from long historical data series. However, long-term
forecasting (several months horizon) performed in radio planning tools relies on short and noisy
time series, thus requiring a separate analysis. In this work, we present the first study comparing
SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in
a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell
for a whole country during 30 months. The considered methods include Random Forest, different
Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average
and Additive Holt–Winters. Results show that SL models outperform time series approaches, while
reducing data storage capacity requirements. More importantly, unlike in short-term and medium-
term traffic forecasting, non-deep SL approaches are competitive with deep learning while being
more computationally efficient.

Keywords: mobile network; traffic forecasting; network dimensioning; time series; supervised learning

1. Introduction

In future 5G networks, it is expected that the rapid traffic growth and the coexistence
of services with very different requirements will lead to constantly changing traffic pat-
terns and network capacity requirements [1,2]. As a result of such dynamism, network
(re-)dimensioning will become a critical task in these networks. As a result, operators will
have to revise and constantly update their capacity plans to predict capacity bottlenecks in
advance, avoiding troubles before user experience is degraded. To make it easier, smart ca-
pacity planning tools are developed in a Self-Organizing Networks (SON) framework [3,4].
Such tools, often implemented in the Operation Support System (OSS), require accurate
prediction of upcoming traffic demand and network capabilities to anticipate traffic vari-
ations, so that network configuration can be timely upgraded to guarantee an adequate
level of user satisfaction in this changing environment.

In the radio interface, capacity bottlenecks are detected by comparing traffic forecasts
with some pre-defined threshold reflecting cell capacity, so that an alarm is activated to
notify the future lack of resources. Then, different re-planning actions can be executed
depending on how much in advance the problem is detected. Imminent problems detected
with short-term forecasts often trigger temporary changes of network parameters (e.g., a
more efficient voice coding scheme [5], new handover margin settings for traffic sharing
between adjacent cells [6] or naïve packet schedulers for a lower computational load [7]).

Electronics 2021, 10, 1151. https://doi.org/10.3390/electronics10101151 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6204-0604
https://orcid.org/0000-0003-3859-2622
https://orcid.org/0000-0003-0171-5721
https://orcid.org/0000-0003-4880-6225
https://orcid.org/0000-0001-5831-5484
https://www.mdpi.com/2079-9292/10/10/1151?type=check_update&version=1
https://doi.org/10.3390/electronics10101151
https://doi.org/10.3390/electronics10101151
https://doi.org/10.3390/electronics10101151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10101151
https://www.mdpi.com/journal/electronics


Electronics 2021, 10, 1151 2 of 19

Such quick actions, dealing with fast fluctuations of traffic demand, tend to be provisional,
so that parameters return to their original values when normal network state is recovered,
or act as temporary solution if the problem persists in the hope of more stable solutions
relying on network capacity extensions. In contrast, long-term forecasts predict the lack of
resources ahead in time (e.g., several months), so that more future proof solutions can be
implemented (e.g., bandwidth extension [8], license extension for the maximum number of
channel elements and/or simultaneous users [9] or new carriers/co-sited cells).

In the literature, the earliest works address circuit-switched traffic prediction by deriv-
ing statistical models based on historical data (e.g., Auto Regressive Integrated Moving
Average—ARIMA) [10,11]. More modern approaches tackle packet-data traffic forecasting
with sophisticated models based on supervised machine learning to take advantage of
massive data collected in cellular networks [12,13]. Several models have been proposed
to predict traffic in the short term (seconds, minutes) based on deep learning [14,15].
With these models, advanced dynamic radio resource management schemes and proac-
tive self-tuning algorithms can be implemented [16]. However, some re-planning actions
(e.g., deployment of a new cell) may take several months to be implemented (e.g., radio
frequency planning, site acquisition, civil works, licenses, installation/commissioning,
pre-launch optimization. . . ) [17]. Thus, the upcoming traffic must be predicted with much
longer time horizons (i.e., several months) [18]. For this purpose, a monthly traffic indicator
is often computed per cell from busy-hour measurements, limiting the number of historical
data samples used for prediction [19,20]. Moreover, some studies [21,22] have shown
that the influence of past measurements quickly diminishes after a few weeks, due to
changes in user trends (e.g., new terminals, new hot spots. . . ) and re-planning actions by
the operator (e.g., new site, equipment upgrades. . . ). As a consequence, long-term traffic
forecasting relies on short and noisy time series, different from those used in short-term
traffic forecasting, based on minute/hourly data. It is still to be checked if SL methods
outperform classical time series analysis with these constraints.

In this work, a comprehensive analysis is carried out to compare the performance
of SL against time series analysis schemes for predicting monthly busy-hour data traffic
per cell in the long term. For this purpose, a large dataset is collected during 30 months
from a live Long Term Evolution (LTE) network covering an entire country. All prediction
techniques considered here are included in most data analytics packages and have already
been used in several fields. Hence, the main novelty is the assessment of well-established
SL methods for long-term data traffic forecasting based on short and noisy time series
taken from current mobile networks offering a heterogeneous service mix. Specifically, the
main contributions are:

• The first comprehensive comparison of the performance of SL algorithms against
classical time series analysis in long-term data traffic forecasting on a cell basis, relying
on short and noisy time series. Algorithms are compared in terms of accuracy and
computational complexity.

• A detailed analysis of the impact of key design parameters, namely the observation
window, the prediction horizon and the number of models to be created (one per cell
or one for the whole network).

The rest of the document is organized as follows. Section 2 presents related work.
Section 3 formulates the problem of predicting monthly busy-hour data traffic per cell,
highlighting the properties of the time series involved. Section 4 describes the considered
dataset. Section 5 outlines the compared forecasting methods. Section 6 presents the
performance assessment. Finally, Section 7 summarizes the main conclusions.

2. Related Work

Traffic forecasting in telecommunication networks can be treated as a time series
analysis problem. In the earliest works, circuit-switched traffic prediction is addressed by
deriving statistical models based on historical data. Linear time series models, such as Auto
Regressive Integrated Moving Average (ARIMA), capture trend and short-range dependen-
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cies in traffic demand. More complex models, such as Seasonal ARIMA (SARIMA) [10,23]
and exponential smoothing (e.g., Holt–Winters) [24,25], include seasonality. These can
be extended with non-linear models, such as Generalized Auto Regressive Conditionally
Heteroskedastic (GARCH) [11], to reflect long-range dependencies.

The previous works show that it is possible to predict cellular traffic at different
geographical scales (e.g., network operator [10], province [23], cell [24]) and time resolutions
(e.g., minutes [11], hourly [24], daily [10], monthly [23]), provided that traffic is originated
by circuit-switched services (e.g., voice and text messages). However, predicting packet
data traffic is much more challenging [26]. As pointed out in [25], data traffic is more
influenced by abnormal events and changes in network configuration than circuit-switched
traffic. In [27], short-term traffic volume in a 3G network is predicted via Kalman filtering.
In [28], ARIMA is used to predict the achievable user rate in four cells located in areas
with different land use. In [29], application-level traffic is predicted by deriving an U-stable
model for 3 different service types and then dictionary learning is implemented to refine
forecasts. As an alternative, more modern approaches tackle data traffic forecasting with
sophisticated models based on Supervised Learning (SL). Most efforts have been focused
on short-term prediction (seconds, minutes) to solve the limitations of time series analysis
approaches to capture rapid fluctuations of the time series. A common approach is to use
deep learning to model the spatio-temporal dependence of traffic demand. The temporal
aspect of traffic variations is often captured with recurrent neural networks based on Long
Short-Term Memory (LSTM) units [14,30–32]. Alternatively, in [33], a deep belief network
and a Gaussian model are used to capture temporal dependencies of network traffic in a
mesh wireless network. The spatial dependence is captured by different approaches. In [14],
the scenario is divided into a regular grid, and a convolutional neural network is used to
model traffic spatial dependencies among grid points. A similar approach is considered
in [34], where extra branches are added to the network for fusing external factors such
as crowd mobility patterns or temporal functional regions. In [35], convolutional LSTM
units and 3D convolutional layers are fused to encode the spatio-temporal dependencies of
traffic carried in the grid points. Alternatively, other authors model spatial dependencies
of traffic carried in different cells. In [32], a general feature extractor is used with a
correlation selection mechanism for modeling spatial dependencies among cells and an
embedding mechanism to encode external information. In [15], to deal with an irregular
cell distribution, the spatial relevancy among cells is modeled with a graph neural network
based on distance among cell towers. A graph-based approach is also considered in [36],
where traffic is decomposed in inter-tower and in-tower. Deep learning schemes such as
LSTM [37], convolutional neural networks [38] or recurrent neural networks [39] have also
been applied to coarser time resolutions (i.e., an hour) to extend the forecasting horizon to
several days.

The above works show that advanced deep learning models perform well if data
are collected with fine-grained time resolution to build long time series (i.e., thousands
of samples) of correlated data. However, long-term traffic prediction performed in radio
planning tools relies on short and noisy time series, which might prevent operators from
using complex deep learning models. As an alternative, it is appropriate to check if simpler
SL methods outperform classical time series analysis for time series with these constraints.
For this purpose, a large dataset containing data collected on a per-cell basis during years
is required. Such information is an extremely valuable asset for operators, which is seldom
shared. For this reason, to the authors’ knowledge, no recent work has evaluated long-term
traffic forecasting in mobile networks considering SL techniques.

3. Problem Formulation

The problem of forecasting traffic ' carried in a cell 2 with a time horizon C0 at time C
from historical data collected during an observation window : can be formulated as

'̂(2, C + C0) = 5 ('(2, C), '(2, C − 1), ...'(2, C − : + 1)) , (1)
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where C − : + 1 denotes the oldest available data sample.
The way to tackle traffic prediction strongly depends on the time granularity of data,

which determines two key factors. A first factor is the length of available time series,
: . Note that, when training a prediction model, the number of observations must be
higher than the number of model parameters [40]. Thus, complex deep learning models
with hundreds of internal parameters cannot be considered if a short time series (i.e.,
dozens of samples) is available due to data aggregation on a coarse time resolution (e.g.,
monthly data).

A second factor is data predictability, which may be degraded by the aggregation
operation needed to compute monthly busy-hour traffic. To illustrate this fact, Figure 1
shows the evolution of monthly busy-hour traffic in the Down Link (DL) from a live
LTE cell. As described later in Section 4, data aggregation is performed by selecting
the busy-hour per week and then averaging traffic measurements per week in a month.
Weekly and monthly aggregation eliminates hourly/daily fluctuations and the impact of
sporadic events (e.g., cell outage, cell barring. . . ), leaving only monthly variations needed
for detecting capacity issues. The latter consist of: (a) a trend component, influenced by
the traffic growth rate, (b) a seasonal component, given by the month of the year and (c)
a remainder component, due to abnormal events taking place locally (e.g., new nearby
site, new hot spot. . . ) or network wide (e.g., launch of new terminals, change of network
release. . . ). In the example of the figure, it is observed that the trend component prevails
over the seasonal component, causing that the time series is not stationary. Additionally
important, network events cause sudden trend changes, which decrease the value of past
knowledge and, ultimately, degrade the performance of prediction algorithms.

Figure 1. Evolution of monthly busy-hour traffic in a cell.

For a deeper analysis of how time resolution affects predictability, Figure 2a,b show
a box-and-whisker diagram of the autocorrelation function of the DL traffic pattern in
310 cells from a live LTE network on an hourly and monthly basis, respectively. To ease
comparison, two seasonal periods are represented in both cases (2 days for hourly data
and 2 years for monthly data). The shadowed area depicts the 95% confidence interval for
each lag, suggesting that values outside this area are very likely a true correlation and not a
statistical fluke. The smaller interval width for the hourly series are due to a larger number
of samples stored in those series. In Figure 2a, the interquartile boxes show a cyclical
pattern with maxima (strong positive autocorrelation) at lags 24 and 48 and minima (strong
negative correlation) at lags 12 and 36. Such a behavior reveals that hourly traffic is seasonal.
Moreover, in most lags, the whole box is out of the shadowed area, suggesting that past
information is relevant for the current traffic value. In contrast, Figure 2b shows that the
autocorrelation of monthly traffic does not suggest a seasonal pattern, due to the absence
of local maxima or minima. On the contrary, it quickly diminishes to 0, so that, in most
cells, only information from lags 1 to 4 is significantly correlated with the current traffic
value. This fact suggests that, even for time series with the same available observation
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window, monthly busy-hour data are less predictable than hourly data. It is especially
relevant that, unexpectedly, correlation with lags 12 and 24 (i.e., with data collected in the
same month of previous years) is not significant, reducing data predictability. A closer
analysis (not presented here) shows that seasonality is neither observed in the de-trended
monthly traffic series.

(a) Hourly data. (b) Monthly busy-hour data.

Figure 2. Autocorrelation of cell DL traffic.

The above analysis confirms that long-term traffic forecasting for network dimension-
ing, based on monthly busy-hour traffic data, requires a separate analysis from short-term
traffic forecasting based on higher time resolution data.

4. Dataset

The analysis carried out in this work requires a large dataset including the largest
number of cells and network states. The considered dataset contains data collected from
January 2015 to June 2017 (i.e., 30 months) in a large live LTE network serving an entire
country. The network comprises 7160 cells (also known as evolved Nodes B) covering
a geographical area of approximately 500,000 km2, including cells of different sizes and
environments, with millions of subscribers. Analysis is restricted to the DL, as it has the
largest utilization in current cellular networks.

In the network, traffic measurements are gathered on a per-cell and hourly basis.
As explained in Section 1, such raw data are pre-processed to obtain a single traffic mea-
surement per cell/month to be stored in the long-term for network dimensioning tasks.
The resulting dataset consists of 7160 time series (1 per cell) with 30 measurements (1 per
month) of the monthly DL traffic volume in the busy-hour, expressed as a rate (i.e., in kbps).
The monthly DL traffic volume carried in a cell 2 and month < during the busy-hour,
'(2,<), is calculated as follows:

1. The average DL traffic volume (in kbps) and the average number of active users (i.e.,
those users demanding resources) are measured and collected per cell 2 and hour.

2. The weekly busy-hour is selected per cell as the hour with the highest number of
active users in week F. Each week belongs to a month <. The DL traffic volume (in
kbps) during that busy-hour is selected as the weekly DL traffic volume per cell, week
and month, '(2,F,<) (in kbps).

3. Finally, the monthly busy-hour DL traffic volume per cell and month, '(2,<), is
computed as the average of '(2,F,<) across weeks in month <, as

'(2,<) = 1
#F (<)

∑
F ∈<

'(2,F,<) , (2)

where #F (<) is the number of weeks in month <. For simplicity, a week riding two
months is considered to belong to only one month (the month including more days of
that week).
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The considered dataset combines a large temporal and spatial scale (30 months, entire
country) with a fine-grained space resolution (cell), which guarantee the reliability and
significance of results. Moreover, it allows to test prediction methods with different
observation windows and time horizons, broadening the scope of the analysis.

5. Traffic Forecasting Methods

Six prediction methods are tested. A first group consists of classical statistical time
series analysis schemes, namely Seasonal Auto Regressive Integrated Moving Average
(SARIMA) and Additive Holt–Winters (AHW). A second group consists of state-of-the-
art SL algorithms, namely Random Forest (RF), Artificial Neural Networks (ANN) and
Support Vector Regression (SVR). The basics of these techniques are outlined next:

• SARIMA computes the current value of a time series difference as the combination
of previous difference values and the present and previous values of the series. As
detailed in [41], a SARIMA process is described as SARIMA(?,3,@)(%,�,&)<. (?,3,@)
describe the non-seasonal part of the model, where ? is the auto-regressive order, 3 is
the level of difference and @ is the moving average order, with ?, 3 and @ non-negative
integers. (%,�,&)< describe the seasonal part of the model, where %, � and & are
similar to ?, 3 and @, but with backshifts of the seasonal period < (e.g., for monthly
data, < = 12).

• AHW calculates the future value of a time series with recursive equations by aggre-
gating its typical level (average), trend (slope) and seasonality (cyclical pattern) [42].
These three components are expressed as three types of exponential smoothing, with
smoothing parameters U, V and W, respectively. As in SARIMA, the seasonal period is
denoted as < (for monthly data, < = 12). In this work, Additive Holt–Winters (AHW)
is chosen, since, as shown in Figure 1, the seasonal effect is nearly constant through
the time series (i.e., it does not increase with the level).

• RF is an ensemble learning method where several decision trees are created with
different subsets of the training data (also known as aggregating or bagging). To
reduce the correlation among trees, a different random subset of input attributes is
selected at each candidate split in the learning process (feature bagging) [43]. To avoid
model overfitting, trees are pruned. Then, predictions obtained from different trees
are averaged to perform a robust regression [44].

• ANN is a statistical learning method inspired by the structure of a human brain. In
ANN, entities called nodes act as neurons, performing non-linear computations by
means of activation functions [45]. Two ANNs are considered in this work. The
first one, denoted as ANN–MLP, is a feed-forward network (i.e., without memory)
consisting on a Multi-Layer Perceptron (MLP) [46]. The second one, denoted as
ANN–LSTM, is a deep recurrent network (i.e., with memory) based on LSTM units
capable of capturing long-term dependencies thanks to the use of information control
gates [47]. The architectures of such networks (number of layers, number of neurons
per layer, activation functions, etc.) are detailed in Section 6.1.

• SVR maps a set of inputs into a higher dimensional feature space to find the regression
hyperplane that best fits every sample in the dataset. For this purpose, a linear or
non-linear (also known as kernel) mapping function can be used. Unlike traditional
multiple linear regression, SVR neglects all deviations below an error sensitivity
parameter, n . Moreover, the regularization parameter, �, restricts the absolute value
of regression coefficients. Both parameters control the trade-off between regression
accuracy and model complexity (i.e., the smaller n and larger �, the better the model
fits the training data, but overfitting is more likely) [44].

Several issues must be considered when using these methods for long-term data traffic
forecasting in cellular networks:

1. Observation window: time series corresponding to recently deployed cells may not
have many historical measurements. Thus, it is important to check the capability of
the methods to work with small observation windows. Such a feature is especially
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critical during the network deployment stage, when network structure is constantly
evolving (e.g., new cells are activated every month). At this early stage, robust traffic
forecasting is crucial to avoid under-/over-estimating traffic in the new cells.

2. Number of models: recursive models such as SARIMA, AHW and ANN–LSTM are
conceived to build a different model per cell based on historical data of that particular
cell. Thus, the short period available in data warehouse systems for long-term fore-
casting (typically, less than 24 months) may jeopardize prediction capability in these
methods, since it is always necessary to have more observations than model parame-
ters [40]. In contrast, in RF, ANN–MLP and SVR, a single model can be derived for
the whole network from historical data of all the cells. The latter ensures that enough
training data are available to adjust model parameters, avoiding model overfitting.
Likewise, sharing past knowledge across cells in the system increases the robustness
of predictions in cells with limited data or abnormal events.

3. Time horizon: The earlier a capacity bottleneck can be predicted, the more likely
the problem will be fixed without any service degradation, since some network re-
planning actions (e.g., build a new site) may take several months. Such a delay forces
operators to foresee traffic demand several months in advance (referred to as multi-
step prediction). In classical time series analysis methods, such as SARIMA and AHW,
multi-step prediction is carried out recursively by using a one-step model multiple
times (i.e., the prediction for the previous month is used as an input for predicting the
following month). Such a recursive approach reduces the number of models needed,
but quickly increases prediction errors originated by the use of predictions instead
of observations as inputs [48]. This is a critical issue when using recursive methods
for series with large random components, as those used in long-term forecasting. In
contrast, SL algorithms have the ability to directly train a separate model for each
future step. Such an approach does not entail an increase of computational load if the
set of steps predicted is small (e.g., 3 and 6 months ahead).

4. Interpretability: Ideally, prediction models should be simple enough to have an intu-
itive explanation of their output values [49]. Models built with SARIMA and AHW
are easier to understand, since their behavior is described by a simple closed-form
expression, whereas models built with RF, ANN and SVR cannot be explained intu-
itively. In long-term traffic forecasting, interpretability is not an issue, and is thus
neglected in this work.

6. Performance Assessment

This section presents the evaluation of the different forecasting approaches with the
dataset described in Section 4. For clarity, model construction is first explained, assessment
methodology is then detailed and results are presented later.

6.1. Model Construction

Assessment is carried out with IBM SPSS Modeler [50], a commercial tool for pre-
dictive analytics extensively used in several fields [51–53]. The tool has a visual interface
that allows users to leverage statistical and data mining algorithms without program-
ming. Likewise, it offers an expert mode to find the optimal settings for certain model
hyperparameters. These features are extremely valuable for network planners without a
deep knowledge of prediction methods. SPSS Modeler 18.1 includes all the forecasting
methods considered in this work except to ANN–LSTM, which is implemented by using
Keras python library [54]. Table 1 summarizes the hyperparameter settings selected for the
six prediction methods. To get the best of classical time series approaches, ?, 3, @, %, �
and & in SARIMA and U, V and W in AHW must be set on a cell basis. For this purpose,
the Expert mode offered by SPSS Modeler is used to find the optimal settings per cell. In
this mode, the input data series is first transformed when appropriate (e.g., differentiating,
square root or natural log) and model parameters are then estimated by minimizing the
one-step ahead prediction error. Such an Expert mode is also used to set the number of
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neurons per layer in ANN–MLP. In models comprising neural networks, overfitting is
avoided through the use of early stopping callbacks and validation data. The rest of the
hyperparameters are fixed manually following a grid search in the parameter space. The
reader is referred to [54,55] for further information on the algorithms in SPSS Modeler and
Keras, respectively.

Table 1. Methods of hyperparameter settings.

SARIMA

p, d, q, P, D, Q Automatically set by Expert mode
m 12

AHW

U, V, W Automatically set by Expert mode
m 12

RF

No. of trees 10
Maximum depth Until leaves have 10 samples
No. of predictors per tree

√
#? (#? : total number of predictors)

ANN–MLP

No. of layers 3 (1 hidden layer)
No. neurons in hidden layer Automatically set by Expert mode
Activation function Hyperbolic tangent
Error function Sum of squares
Training algorithm Gradient descend
Training data split 70% for training/30% for validation
Training stop rule Accuracy in the validation dataset is higher than

90% or does not improve across iterations

ANN–LSTM

No. of layers 3 (2 LSTM layers + 1 output layer)
No. LSTM units per layer 10
Activation function Rectified Linear Unit
Error function Mean average error
Training algorithm Adaptive Moment Estimation (Adam)
Training data split 70% for training/30% for validation
Training stop rule 100 epochs or accuracy in the validation dataset

does not improve in 3 consecutive epochs
Batch size 64

SVR

Error sensitivity parameter, n 0.1
Regularization parameter, � 10
Kernel Linear
Training algorithm Sequential minimal optimization

To check the sensitivity of methods to the data collection period, the five approaches
are tested in 3 different cases. In a first case, it is assumed that the operator collects traffic
data on a cell basis during 24 months. In the second and third cases, it is assumed that
the operator collects traffic data during 18 and 12 months, respectively (e.g., network
deployment stage). This reduction in the observation window is an important constraint
for SARIMA and AHW, which require dozens of samples to predict monthly data from
time series with some randomness, ans these considered in this work [40]. Hence, only SL
methods are compared in these cases.

To check the impact of prediction time horizon, two horizons are considered: 3 months
(i.e., traffic is forecast 3 months in advance) and 6 months (i.e., 6 months in advance). Thus,
the combination of factors results in 6 cases, hereafter referred to as cases 12-3, 12-6, 18-3,
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18-6, 24-3 and 24-6, where the first number denotes the number of months when data are
collected by the operator and the second number denotes the prediction horizon. From
the operator point of view, the less data stored and the more in advance traffic is forecast
(i.e., case 12-6), the better, but, from an accuracy point of view, the opposite is likely true
(i.e., case 24-3).

Forecasting methods are trained and tested emulating the behavior of network plan-
ning tools. For clarity, an example of how the operator would apply the methods in
each case is given in Figure 3. Specifically, the example illustrates how to predict traffic
carried out in June 2017 with a 3-month time horizon (i.e., the prediction is made on
March 2017) based on measurements from previous months. Figure 3a–c show the timeline
used for SARIMA/AHW in case 24-3, RF/ANN–MLP/ANN–LSTM/SVR in case 24-3
and RF/ANN–MLP/ANN–LSTM/SVR in case 12-3, respectively. Figure 3a,b correspond
to case 24-3 (i.e., 24-month collection period), where traffic in June 2017 is predicted in
March 2017 based on historic data from April 2015 to March 2017. In SARIMA and AHW, a
model is computed per cell with all data samples available (i.e., 24 datasamples), which is
then applied recursively to predict traffic carried 3 months later (June 2017). This results
in #2 models, with #2 the number of cells. In contrast, in SL methods, a single model is
created for the whole network using data from all cells. First, the model is trained with
available data. The training dataset consists of #2 datum points (1 per cell). Each datum
point comprises 21 predictors, which are the monthly traffic in a specific cell from April
2015 to December 2016, and an output, which is the monthly traffic in that cell in March
2017. Note that not all months can be used as predictors to train the model to allow the
3-month horizon. Once the model is trained, traffic in June 2017 in a cell of the scenario is
predicted by using the network-wide model with a new datum point containing traffic of
that cell from July 2015 to March 2017 as predictors.

Similarly, Figure 3c illustrates the timeline in case 12-3 (12-month collection period).
Now, only data from April 2016 to March 2017 are necessary. In this case, SARIMA and
AHW methods cannot be used due to the limited length of the time series. In SL approaches,
the process is identical to that explained in case 24-3, except for a reduction in the number
of input attributes in every datum point from 21 to 9 months (3 months less than the new
observation window). Likewise, datum points from case 18-3 have 15 traffic measurements
as input datum points.

Data forecasting for cases 24-6, 18-6 and 12-6 (i.e., with a 6-month horizon) follows a
similar procedure with a 6-month gap between the end of the observation window and
the target/predicted month (e.g., in case 24-6, traffic in June 2017 is predicted in December
2016 based on measurements from January 2015 to December 2016).

It should be pointed out that, as stated in Section 5, ANN–LSTM is conceived to build
a model per time series (i.e., per cell). However, the short length of the time series for the
three considered observation windows (e.g., 12/18/24 samples) does not allow to have
as many datum points (i.e., time lapses) as parameters. Note that the ANN–LSTM model
with the architecture in Table 1 has 1331 parameters. To circumvent this problem, in this
work, ANN–LSTM is used as the other SL methods, by creating a single model for the
whole network, as explained in Figure 3b,c. To this end, a single time series is generated
by concatenating time series from the different cells in the network and only time lapses
where the target month is the output are considered (in the example above, June 2017).

Finally, it is worth mentioning that in this work, all available time series are used for
both training and testing the SL models. However, training and test datasets used for each
target month are disjoint due to a shift in the observation window. This workflow emulates
how data become available in a network planning tool as time progresses.
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(a) Case 24-3 for classical time series analysis (SARIMA and AHW)

(b) Case 24-3 for SL methods (RF, ANN–MLP, ANN–LSTM and SVR)

(c) Case 12-3 for SL methods (RF, ANN–MLP, ANN–LSTM and SVR).

Figure 3. Timeline of prediction methods in cases 24-3 and 12-3.

6.2. Assessment Methodology

Three experiments are performed sequentially. Results of each experiment motivate
the execution of the following one.

6.2.1. Experiment 1—Selection of the Observation Window

The first experiment aims to determine how many months of data (i.e., 12 months,
18 months or 24 months) are required to forecast cellular traffic with enough accuracy
with the 2 considered prediction horizons (i.e., 3 and 6 months). For this purpose, the
6 considered methods are evaluated in cases 12-3, 12-6, 18-3, 18-6, 24-3 and 24-6. The data
to be forecast are cell traffic in June 2017, as shown in Figure 3. As explained above, a
model is created per cell with TSA methods, whereas a single network-wide model is built
with all SL methods. Note that assessing case 24-6 (the most data-demanding case) requires
collecting data 30 months in advance, and thus June 2017 is the only possible target month
for this experiment in the considered dataset.

6.2.2. Experiment 2—Method Comparison

The second experiment aims to check: (a) how much time in advance prediction can
be made (3 or 6 months), (b) the dependence of prediction accuracy on the target month
and (c) which is the best prediction algorithm. For this purpose, cell traffic from July 2016
to June 2017 (i.e., for a year) is forecast 3 or 6 months in advance with an observation
window of 12 months. Models used to predict traffic in the different months are created as
explained in Section 6—A, but with the corresponding months displaced (e.g., in case 12-3,
if the target month is May 2017, the observation window starts/ends a month before than
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in Figure 3c). SARIMA and AHW approaches cannot be included in this experiment due
to the small observation window (12 months).

6.2.3. Experiment 3—Creation of Specific Models for High-Traffic Cells

In capacity planning, accurate traffic prediction is especially important in cells with a
high traffic, as these are more likely to suffer capacity problems. The aim of this experiment
is to evaluate the possibility of creating a differentiated model for such cells. The idea is to
discard underutilized cells, which often show noisy traffic measurements, when training
the model. To this end, a model to forecast traffic in June 2017 is trained only with data
from high-traffic cells. In this work, a cell 2′ is considered as a high-traffic cell if its traffic
when the time prediction is made (e.g., in case 12-3, 3 months before, in Mar 2017) exceeds
the 85th percentile of the monthly cell traffic in the network, i.e., '(c’,Mar17) > %' (2,"0A17)

85 .
In all the experiments, prediction accuracy is measured with two main figures of merit:

1. The Mean Absolute Error ("��) computed as

"�� =
1
#2

∑
2

|'̂(2,<) − '(2,<) | , (3)

where '̂(2,<) is the predicted traffic for month < in cell 2, and
2. The Mean Absolute Percentage Error ("�%�) computed as

"�%� =
1
#2

∑
2

�����100
'̂(2,<) − '(2,<)

'(2,<)

����� , (4)

Additionally, two secondary indicators are used for a more detailed assessment: (a) the
180B, computed as the mean error

180B =
1
#2

∑
2

('̂(2,<) − '(2,<)) , (5)

and (b) the execution time, as a measure of computational load.

6.3. Results
6.3.1. Experiment 1

Table 2 breaks down the performance of the prediction methods in cases 12-3, 18-3 and
24-3 (3-month horizon). As explained above, SARIMA and AHW are not tested in cases
12-3 and 18-3. Results show that, in case 24-3, SARIMA achieves the worst performance,
with an extremely large "�%� (=43.25%) and "�� (=2069.72 kbps). An analysis not
shown here reveals that SARIMA fails to capture trend and level changes in historical data
for some time series. Such a behavior may be due to the reduced number of historical data
samples in the considered time series, which prevents the model from eliminating noise
effect, thus causing a significant error when estimating future traffic. AHW outperforms
SARIMA, but it still performs poorly ("�%� = 29.28% and "�� = 1780.71 kbps). Such
a poor performance is due to the recursive nature of these models, where noisy input
data severely degrade the accuracy of predictions beyond the next step. All SL techniques
outperform AHW, with "�%� below 28% and "�� below 1600 kbps. Thus, it can be
concluded that SL techniques are more accurate than SARIMA and AHW. When comparing
case 24-3 (the longest tested window) against case 12-3 (the shortest tested window), it is
observed that, unexpectedly, SL algorithms perform similarly or even better in case 12-3
(e.g., for ANN–MLP, "�� increases from 1023.55 kbps with 12 months to 1339.91 kbps with
24 months). This fact confirms that the influence of past measurements quickly diminishes
in the long term due to changes in user trends and re-planning actions by the operator. This
statement is reinforced by results from case 18-3, in which algorithm obtain any significant
improvement compared to case 12-3.
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Table 3 shows the comparison between cases 12-6, 18-6 and 24-6 (6-month prediction
horizon). In case 24-6, all SL techniques but SVR again outperform both SARIMA and
AHW (SVR outperforms SARIMA, but not AHW). When comparing cases 12-6 and 24-6,
all SL algorithms achieve a better "�� in case 12-6, as in cases 12-3 vs. 24-3 (e.g., in SVR,
"�� decreases from 2517.43 kbps in case 24-6 to 1372.89 kbps in case 12-6, a 45.47% in
relative terms). Results from case 18-3 only improve performance of SVR. Nonetheless,
such a method is still the worst SL approach.

Table 2. Impact of observation window for 3-month horizon.

Window 12 Months 18 Months 24 Months

Indicator SGVK [%] SGK [kbps] SGVK [%] SGK [kbps] SGVK [%] SGK [kbps]

SARIMA - - - - 43.25 2069.72
AHW - - - - 29.28 1780.71
RF 23.75 1017.55 24.25 1027.20 23.29 1236.44
ANN–MLP 24.28 1023.55 25.33 1046.25 24.90 1339.91
ANN–LSTM 22.65 976.69 25.61 1076.16 23.38 999.15
SVR 25.78 1070.03 24.70 1020.59 27.86 1572.81

Table 3. Impact of observation window for 6-month horizon.

Window 12 Months 18 Months 24 Months

Indicator SGVK [%] SGK [kbps] SGVK [%] SGK [kbps] SGVK [%] SGK [kbps]

SARIMA - - - - 590.17 16,708.55
AHW - - - - 30.88 1902.44
RF 23.94 1048.63 25.14 1053.56 22.76 1199.32
ANN–MLP 24.23 1055.93 27.46 1277.13 23.58 1250.32
ANN–LSTM 22.23 1034.30 24.59 1041.39 29.55 1253.69
SVR 30.81 1372.89 27.59 1163.40 37.66 2517.43

From the above results, it can be concluded that: (a) SL approaches outperform
SARIMA and AHW when predicting traffic in cellular networks in the long term and
(b) there is not much benefit on storing more than 1 year of traffic measurements (unless
SARIMA, AHW or SVR are the only option). Thus, AHW and SARIMA are not consid-
ered in further experiments. Likewise, a 12-month time horizon is chosen as optimal for
SL methods.

6.3.2. Experiment 2

Table 4 presents the average "�%� , "�� and 180B across months for each algorithm
and case. For a more detailed analysis, Figure 4 breaks down the "�� obtained in cases
12-3 (solid lines) and 12-6 (dotted lines) for each target month. Recall that cases 24-3 and 24-6
are not considered based on the conclusions in experiment 1. Table 4 show that, in case 12-3,
RF, ANN–MLP and ANN–LSTM perform similarly ("�%� ≈ 27% and "�� ≈ 1000 kbps),
outperforming SVR ("�%� = 30.26% and "�� = 1059.86 kbps). Moreover, Figure 4 shows
that prediction accuracy for the former algorithms degrades significantly when predicting
traffic in July and August 2016 (summer holidays) compared to the rest of months (working
months). This might be due to isolated events taking place during summer months in the
country where data was collected (e.g., tourism, festivals, etc.) that change traffic patterns
unpredictably, making information collected 3 months in advance not representative of
the traffic in the months to come. In contrast, SVR shows a more stable behavior during
summer months (i.e., "�� does not degrade).
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Table 4. Summary of method and time horizon comparison across months.

Case 12-3 12-6

Indicator SGVK [%] SGK [kbps] bias [kbps] SGVK [%] SGK [kbps] bias [kbps]

RF 27.63 994.21 160.51 40.09 1329.31 719.20
ANN–MLP 27.73 987.28 134.61 38.71 1256.40 572.46
ANN–LSTM 26.37 986.88 134.27 31.87 1173.39 287.73
SVR 30.26 1059.86 −251.32 36.71 1327.15 −531.02

Figure 4. "�� time evolution.

By comparing cases 12-3 and 12-6 in Table 4, it is observed that, for all algorithms,
there is a significant degradation in accuracy if traffic predictions are made more than
3 months in advance (e.g., for ANN–LSTM, "�� and "�%� increase by 18.89% and
20.85% in relative terms, respectively). Moreover, dotted lines in Figure 4 show a strong
variation in "�� across months in case 12-6. Thus, when possible, it is recommended to
use a 3-month prediction horizon.

ANN–LSTM shows the best overall results, with a "�%� of 26.37% and a "�� of
986.68 kbps in case 12-3, and the smallest degradation in accuracy from case 12-3 to case
12-6. Nonetheless, for a 3-month horizon, ANN–MLP and RF algorithms can be used
alternatively with similar prediction accuracy ("�%� ≈ 27.70% and "�� ≈ 990 kbps).
Remember that, unlike ANN–LSTM, the latter algorithms are included in most data
analytics tools (such as, e.g., SPSS modeler), which provide automatic schemes that relieve
network operators from the complex hyperparameter tuning task.

It should be pointed out that, even for the best method and case, prediction results
are not very accurate (i.e., "�� ≈ 1000 kbps, or, expressed more intuitively, a deviation
of 0.39 GB per hour and cell). This error can be explained by re-planning actions taken
by the operator in the considered network area during the data collection period, which
lead to unpredictable traffic changes in neighbor cells. For a closer analysis, Figure 5
illustrates traffic prediction from January 2017 to June 2017 with a 3-month horizon for
two cells, referred to as Cell A and Cell B, with the compared methods. No significant
re-planning actions were taking in the surroundings of Cell A during the data collection
period, whereas Cell B is a cell with a new neighbor cell deployed in October 2016. In
Figure 5a, it is observed that, for Cell A, all methods approximate real traffic quite well (e.g.,
"�� fluctuates between 4 and 900 kbps for ANN–MLP, and between 314 and 824 kbps
for RF). In contrast, in Cell B, the abrupt decrease in traffic in October 2016, caused by the
deployment of the nearby cell, leads to large prediction errors even for all models.

It is also remarkable that 180B values in Table 4 for case 12-3 are negative or close
to 0, i.e., models tend to underestimate traffic. This behavior is risky especially for high-
traffic cells, which are more likely to suffer from capacity problems and, hence, require
re-dimensioning actions. For a closer analysis of bias, Figure 6 shows the error scatter plot



Electronics 2021, 10, 1151 14 of 19

of error versus measured cell traffic obtained when predicting traffic carried in March 2017
with ANN–LSTM in case 12-3 (the combination of month/algorithm/horizon with the
lowest "�� in this experiment). The regression line shows that the more loaded cells are,
the more negative the error is. This trend points out the need for a more accurate model for
high-traffic cells. This problem will be addressed in experiment 3.

(a) Cell A (not affected by re-planning action) (b) Cell B (affected by re-planning action)

Figure 5. Example of the impact of re-planning actions on cell traffic.

Figure 6. Error vs. monthly busy-hour traffic (ANN–LSTM, case 12-3).

6.3.3. Experiment 3

Table 5 breaks down "�%� and "�� in case 12-3 for the 1074 (15%) cells with the
largest traffic in March 2017, obtained with two different models: (a) the model built in
experiment 1 (denoted as network-wide model), and (b) a specific model trained exclusively
with data collected from the high-traffic cells (denoted as specific model). Note that
the same set of cells is tested to assess both models. To isolate the effect of building a
differentiated model, those high-traffic cells that were affected by re-planning actions
before June 2017 have not been considered when evaluating the accuracy of the models. In
the table, it is observed that the specific model outperforms the network-wide model in RF,
ANN–MLP and SVR methods, whereas the specific model created with ANN–LSTM does
not improve the network-wide model built with this method. SVR experiences the largest
improvement with the specific model in absolute terms, decreasing "�� from 2223.88 kbps
to 1725.20 kbps (22.42% in relative terms) and "�%� from 20.44% to 14.19% (29.11% in
relative terms). Nonetheless, it is still the worst method. Specific models created with RF
and ANN–MLP show the best results, achieving "�%� ≈ 11% and "�� ≈ 1200 kbps.
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Table 5. Performance of network-wide and specific models for high-traffic cells in case 12-3.

Model Network-Wide Specific

Indicator SGVK [%] SGK [kbps] SGVK [%] SGK [kbps]

RF 12.46 1339.88 11.26 1212.18
ANN–MLP 12.31 1374.55 11.35 1232.98
ANN–LSTM 12.21 1311.72 13.27 1356.13
SVR 20.44 2223.88 14.49 1725.20

For a closer analysis, Figure 7a–d show the error cumulative distribution functions
(CDF) obtained with the different methods for high-traffic cells with the network-wide
model (solid lines) and the specific model (dashed lines) in case 12-3 for the selected target
month (June 2017). It is observed that, for all methods, error curves with the specific models
are shifted to the right compared to those with the network-wide models, whose median
values are closer to 0. Thus, the specific models for high traffic cells not only increase
prediction accuracy, but also reduce the bias. Nevertheless, CDFs show that prediction
error is still negative in many high-loaded cells (≈45% for RF, ANN–MLP and ANN–LSTM
and ≈75% for SVR). This issue should be addressed by other means (e.g., models based on
predictors other than cell traffic).

(a) RF. (b) ANN–MLP.

(c) ANN–LSTM. (d) SVR.

Figure 7. Error cumulative distribution functions for SL methods in high-traffic cells (case 12-3).
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6.4. Computational Complexity

The different methods are compared by their total execution time. For SARIMA and
AHW, execution time comprises computing a cell-specific model and extending it until
the target month, which must be repeated for all cells in the system. For SL algorithms,
execution time comprises training a network-wide model with the series from all cells and
computing predictions from historical traffic values (i.e., no model extension is needed).

For SARIMA and AHW, it is expected that running time grows linearly with the
number of predictors (months), #<, and the number of models built (cells), #2 . Thus, their
worst-case time complexity is O(#2#<). For SL methods, running time increases with the
number of datum points (cells), #2 , and the number of predictors/inputs (months), #<.
Specifically, the worst-case time complexity for the back propagation algorithm used to
train ANNs with #< inputs, 1 output and #; hidden layers is O(#2#<#;#=#8) where #=

is the size of the hidden layers and #8 is the number of iterations. The time complexity of
sequential minimal optimization used to train SVR is quadratic with the training set size,
O(#2

2). Likewise, the worst-case time complexity of RF is given by the time of building a
complete decision tree, O(#<#2log#2).

Table 6 summarizes the time taken to train the models in the different approaches in
experiment 1 (7160 cells) in a centralized server with Intel Xenon octa-core processor, clock
frequency of 2.4 GHz and 64 GB of RAM. The number of predictors per case is shown on
the upper part of the table. Results show that, in cases 24-3 and 24-6, AHW and SARIMA
are the most time-consuming methods, since they build a model per cell. Among SL
methods, ANN–MLP is the fastest approach, whereas ANN–LSTM is the lowest approach.
In SL methods, it is observed that, the longer data collection period, the larger number of
predictors, and hence the larger runtime. For a certain collection period, the larger the time
horizon, the lower number of predictors in the model, and hence the lower runtime. In
contrast, in SARIMA and AHW, the longer the time horizon, the larger runtime, since the
model must be extended until the target month. Nonetheless, execution times in all cases
are negligible in long-term traffic forecasting, where traffic must be predicted at most once
a month.

Table 6. Execution times (s).

Case 12-3 12-6 24-3 24-6

Number of predictors

SARIMA and AHW - - 24 24
SL algorithms 9 6 21 18

Execution times [s]

SARIMA (per cell) - - 0.56 0.61
AHW (per cell) - - 0.65 0.72
RF (entire network) 5 4 8 6
ANN–MLP (entire network) 3 2 6 4
ANN–LSTM (entire network) 140 98 313 245
SVR (entire network) 12 10 14 13

7. Conclusions

Accurate long-term traffic forecasting will be crucial for network (re)dimensioning in
5G networks. However, monthly busy-hour time series are short and noisy, which makes
long-term traffic prediction a challenging task. In this work, a comparative study has been
carried out to assess different approaches for predicting cellular traffic in the long term (i.e.,
several months in advance). Six methods have been compared, including classical time
series analysis schemes (SARIMA and AHW) and supervised machine learning algorithms
(RF, ANN–MLP, ANN–LSTM and SVR). To this end, three experiments have been carried
out with a dataset taken from a live LTE network, covering an entire country (7160 cells)
and traffic data for two and a half years.
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Results have shown that SL methods outperform classical time series analysis in terms
of accuracy and required storage capacity. Specifically, with SL algorithms, traffic carried
per cell can be predicted with a "�� ≈ 1000 kbps with a 3-month time horizon and a
12-month observation window (i.e., data collection period). It has also been shown that it
is convenient to develop specific models for high-traffic cells, where prediction accuracy
is critical. Overall, RF and ANN–MLP have shown the best results, providing acceptable
accuracy ("�%� ≈ 11%) to detect capacity bottlenecks in high-load cells with a 3-month
prediction horizon by using data from the past 12 months. It is remarkable that these
non-deep algorithms perform very similar to deep neural networks based on LSTM units,
used to model time dependencies in short- and medium-term traffic forecasting. This is
due to the monthly busy-hour aggregation of data when forecasting traffic for network
dimensioning, which reduces time series length and predictability compared to series used
in short/medium-term forecasting. Nonetheless, none of the considered algorithms is
extremely accurate, especially for summer months, due to changes in user trends, social
events or temporary re-planning actions by the operator.

The use of SL algorithms proposed in this work, based on the creation of a single model
for the whole network, is suitable for a centralized network dimensioning tool running in
the OSS, where historical traffic measurements are currently stored. Alternatively, SARIMA
and AHW could also be executed in base stations if historical measurements were available
in each cell.

Future work will extend models to account for events that drastically change traffic
patterns in a cell (e.g., new neighbor site, equipment upgrades, social events, etc.). Likewise,
the values of nearby cells (e.g., co-sited cells) can be jointly predicted via multi-task learning
to cope with noise in time series.
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