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Abstract: Atherosclerosis is a major global health concern. The central modifiable risk factors and
causative agents of the disease are high total and low-density lipoprotein (LDL) cholesterol. To reduce
morbidity and mortality, a thorough understanding of the factors that influence an individual’s
cholesterol status during the decades when the arteria-narrowing arteriosclerotic plaques are forming
is critical. Several drugs are known to increase cholesterol levels; however, the mechanisms are
poorly understood. Activation of pregnane X receptor (PXR), the major regulator of drug metabolism
and molecular mediator of clinically significant drug–drug interactions, has been shown to induce
hypercholesterolemia. As a major sensor of the chemical environment, PXR may in part mediate
hypercholesterolemic effects of drug treatment. This review compiles the current knowledge of PXR
in cholesterol homeostasis and discusses the role of PXR in drug-induced hypercholesterolemia.

Keywords: hypercholesterolemia; PXR; SREBP2; PCSK9

1. Introduction

Hypercholesterolemia, e.g., elevated LDL cholesterol (LDL-C) and imbalance of LDL-
C and high-density lipoprotein cholesterol (HDL-C), is a central causative risk factor of
atherosclerosis [1,2]. In fact, the retention of LDL-C and other cholesterol-rich apolipopro-
tein (Apo) B-containing lipoproteins within the arterial wall represents the key initiating
event in atherogenesis [3]. Complications of atherosclerosis, ischemic heart disease and
stroke, are among the leading causes of death [4]. In addition to atherosclerosis, excess
cholesterol may also be involved in the pathogenesis of other diseases, such as non-alcoholic
fatty liver disease and diabetes [5].

Multiple genetic and modifiable factors induce hypercholesterolemia. The most com-
mon LDL-C-elevating lifestyle factor is high saturated fat intake, but certain other nutri-
tional factors and obesity also promote hypercholesterolemia [2,3]. Hypercholesterolemia
can also be caused by secondary causes, like hypothyroidism [2]. Furthermore, multiple
drugs may increase cholesterol. Some drug classes are well-known for their adverse effect
on cholesterol, such as antipsychotics and immunosuppressants, but individual drugs from
many different classes of drugs have been reported to affect cholesterol levels [2,6]. The
mechanisms by which drugs increase cholesterol concentration are still largely unknown.

Nuclear receptor pregnane X receptor (PXR; NR1I2) is a ligand-activated transcription
factor that regulates many phase I and II drug-metabolizing enzymes and drug transporters;
induction of cytochrome P450 (CYP) 3A4 enzyme is a prime example [7]. Indeed, PXR
is an important mediator of the induction type drug–drug interactions [8]. Unlike most
other nuclear receptors, PXR accepts a wide array of structurally diverse chemicals as
ligands. Many modern synthetic chemicals among environmental contaminants, industrial
chemicals, and drugs are well-characterized ligands for PXR. In addition to the classical
role in drug metabolism, PXR has been shown to play a role in other biological processes,
such as inflammation, cellular proliferation, and glucose and lipid metabolism [9,10]. Due
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to its pleiotropic functions, PXR is actively studied as a contributing factor in disease
pathophysiology and as a novel therapeutic target. Interestingly, PXR activation seems
to adversely affect multiple metabolic functions, including lipid metabolism, glucose
tolerance, and blood pressure [11]. Thus, it has been hypothesized that PXR activation
may partly explain the adverse metabolic effects of environmental chemical exposure and
drugs [12,13].

Exposure to environmental chemicals usually consists of a complex mixture of various
low-dose exposures with variable amounts and exposure times, making the association
of exposure and potential metabolic consequences challenging. In contrast, exposure to
drugs is usually well-controlled and both the exposure time and the dose are known. For
this reason, the effects of individual drugs on metabolic health are much better known
than those of environmental chemicals, and this information could serve as a tool to
understand the molecular mechanisms involved and subsequently help to predict the
effects of other types of chemicals. This review focuses on the role of PXR in drug-induced
hypercholesterolemia. We discuss the evidence for the hypercholesterolemic effect of PXR
activation in humans and the mechanistic aspects characterized in mouse models. Finally,
we survey the current knowledge on the cholesterol-elevating effect of clinically used drugs
and discuss a putative role of PXR in these effects.

2. Evidence for Induction of Hypercholesterolemia by PXR Activation in Humans

It has long been known that PXR-activating and CYP enzyme-inducing antiepileptics
(carbamazepine, phenytoin, and phenobarbital) [8] elevate cholesterol levels in patients
with epilepsy [14–17]. For example, in one of the earliest prospective studies, phenytoin
treatment elevated serum total cholesterol (TC) by 14% at 1-month and 11% at 3-month time-
points in 20 patients with epilepsy [16]. In a subset of 14 patients, 2-year treatment elevated
TC by 19%. Similarly, in a prospective study in 36 patients with a more comprehensive
lipid panel, 12-month carbamazepine treatment increased mean serum TC by 13%, LDL-C
13%, and HDL-C 14% [14]. In a subset of 19 patients, 5-year prospective measurements also
demonstrated elevated levels for TC (by 12%) and HDL-C (26%); the effect on LDL-C was
not significant (6%). Most of the cross-sectional studies display cholesterol-elevating effects
of enzyme-inducing antiepileptics, while valproic acid, an antiepileptic without enzyme-
inducing properties, does not elevate cholesterol [15,17–19]. Interestingly, phenobarbital is
known to induce human hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)
protein, the target of statins, in vivo [20]. However, as enzyme-inducing antiepileptics also
activate constitutive androstane receptor (CAR) [8], which is possibly involved in choles-
terol metabolism regulation [21], the elevation of cholesterol cannot be solely attributed to
PXR. The role of CAR activation alone in cholesterol elevation is difficult to study as there
are no selective CAR agonists suitable for human volunteer and patient studies.

Among the drugs that activate PXR, the tuberculosis antibiotic rifampicin is a well-
established selective agonist of the receptor [22]. Earlier rifampicin studies with a small
number of healthy volunteers (21 days with n = 8, 6 days with n = 10, and 14 days with
n = 7, respectively) did not observe an increase in TC [23–25], but serum lathosterol-to-
cholesterol ratios, a marker of cholesterol synthesis [26], were increased during rifampicin
treatment [24]. Furthermore, a trial (n = 12) with cholesterol measurement daily for 30 days
reported that a 14-day rifampicin dosing elevated TC by 10% (not statistically significant)
with gradual decrease to baseline after discontinuing the dosing [27].

We recently published combined results from two placebo-controlled cross-over tri-
als [28,29] investigating the effect of 600 mg rifampicin for a week on plasma metabolomics,
including all lipoprotein fractions and their lipid contents [30]. The study was the largest
to date evaluating the effects of PXR activation on plasma metabolomics, with 34 healthy
volunteers participating. Rifampicin significantly increased serum TC (by 7%) and LDL-C
(12%), with all sizes of LDL particles (large, medium, small) elevated to a similar degree.
Esterified (7%) and free cholesterol (7%), as well as intermediate-density lipoprotein (10%),
were also elevated by rifampicin dosing. Changes in serum 4β-hydroxycholesterol, a
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marker of CYP3A4 activity [31] known to be elevated by PXR activation [11], correlated
with these changes. The elevations of HDL-C (4%) and total ApoB (5%) by rifampicin
were non-significant after correction for multiple testing, while the largest very low-density
lipoprotein (VLDL) fractions tended to decrease [30]. Serum concentration of ApoB48,
the intestinal form of ApoB, was decreased 14% by rifampicin dosing. During glucose
challenge (2 h oral glucose tolerance test), PXR activation by rifampicin resulted in elevated
concentrations of very small VLDL particles, remnant cholesterol, and total ApoB [30]. As
in a previous study [24], rifampicin elevated serum lathosterol-to-cholesterol ratio [30],
and, on the other hand, decreased serum concentrations of cholesterol synthesis precursors
citrate and acetate, both suggesting increased cholesterol synthesis.

Another interesting PXR agonist with a strong hypercholesterolemic effect and some
human mechanistic evidence on the induction of cholesterol synthesis is mitotane, a
steroidogenesis inhibitor used in Cushing’s syndrome and a cytostatic treatment for adreno-
cortical carcinoma. Although its PXR-activating properties and high risk of drug–drug
interactions were revealed only recently [32,33], mitotane has long been recognized as
having a remarkable cholesterol-elevating effect. An early study on patients with Cushing’s
syndrome demonstrated a 59% increase in serum TC and an 81% increase in LDL-C, with
an accompanying 61% increase in ApoB concentration [34]. No significant effects on HDL-C
were detected in this small study (n = between 6 and 21). In a recent study in patients with
adrenocortical carcinoma (n = 39), mitotane treatment led to 43% increase in TC and 69%
increase in LDL-C after 6-month dosing [35]. Additionally, HDL-C was elevated by 14%.
Already in 1961, mitotane was suspected to induce cholesterol synthesis as indicated by
an increased rate of incorporation of l4C-acetate into plasma cholesterol of patients [36].
Mitotane also elevates plasma levels of mevalonate, a marker of cholesterol synthesis [34].

These findings indicate that (1) drugs with PXR agonism elevate TC and LDL-C
and that (2) increased cholesterol synthesis may play a role in drug-induced and PXR-
mediated hypercholesterolemia. Genetic studies provide additional evidence, as PXR gene
polymorphisms associate with plasma LDL-C levels [37].

3. Mechanisms of PXR-Induced Hypercholesterolemia

PXR is primarily expressed in the liver and intestine, which are the central tissues for
drug metabolism but also those for cholesterol homeostasis. Several intestinal and hepatic
mechanisms have been identified that may confer the hypercholesterolemic effect of PXR
activation. However, the mechanistic evidence has been mainly gathered utilizing murine
models, whose translational value is often limited by substantial differences in murine and
human lipoprotein homeostasis. Mice lack cholesterol ester transfer protein (CETP), which
leads to high HDL-C and very low LDL-C levels. Nevertheless, the fundamental mecha-
nisms controlling cholesterol synthesis and several other steps in cholesterol homeostasis in
humans and mice are similar, and the current evidence indicates important similarities in
the mechanisms controlling PXR-mediated elevation of cholesterol in humans and mice. It
should be kept in mind that the PXR ligand preference is species-specific and therefore the
compound-specific results cannot be directly transferred from mouse or rat experiments
to humans.

3.1. PXR in Cholesterol Synthesis

In mammals, almost all cells can synthesize cholesterol, but plasma cholesterol is
only affected by cholesterol synthesis in the liver due to its central position in lipoprotein
metabolism [38,39]. In the liver, as well as in other organs, the regulation of cholesterol
synthesis is predominantly determined by the activity of the transcription factor sterol-
regulatory element-binding protein 2 (SREBP2) (Figure 1) [40].
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Figure 1. Activation of PXR stimulates cholesterol synthesis and induces Pcsk9 in the liver. The
processes and molecules upregulated and downregulated by PXR activation have been indicated
with blue and red coloring in the figure, respectively. PXR activation leads to nuclear accumulation
of SREBP2, which consequently induces cholesterogenic genes, including the rate-limiting enzyme
HMGCR, and thus induces cholesterol synthesis. Furthermore, PXR activation directly induces
Sqle to increase the rate of squalene epoxidation. Induction of DHCR24 enzyme targets cholesterol
synthesis flux to the Kandutsch–Russell pathway instead of the Bloch pathway. PXR activation
appears to bypass the usual negative feedback mechanism controlling cholesterol synthesis, including
inhibition of SREBP2–SCAP complex translocation from the ER to the Golgi apparatus by high cellular
cholesterol levels and desmosterol, as well as the inhibitory effect of cholesterol on SQLE activity.
Accumulation of plasma LDL-C level is potentiated by induction of the hepatic Pcsk9 gene and a
consequent increase in circulating PCSK9 levels.

Inactive SREBP2 resides in the endoplasmic reticulum (ER) in a complex with SREPB-
cleavage activating protein (SCAP) and insulin-induced gene 1 (INSIG1), in which the
former functions as a sterol sensor and the latter as a negative regulator of SREBP2 ac-
tivation [40]. Sterol depletion in the ER incites conformational changes to SCAP, which
are required for the translocation of the SREBP2–SCAP complex to the Golgi apparatus.
There, SREBP2 is proteolytically cleaved to yield active SREBP2 monomers, which ho-
modimerize, translocate to the nucleus and induce gene expression (Figure 1). In the
nucleus, SREBP2 induces genes for cholesterol synthesis, including the rate-controlling
enzyme HMGCR. Repletion of sterols in the ER represses SCAP, thus forming a feedback
loop to control cholesterol synthesis. In addition to fluctuating ER sterol levels, SREBP2
activity is regulated by several modulators of cellular energy metabolism [41]. For instance,
factors affecting INSIG1 expression may affect SREBP2 activation, and SREBP2 is regulated
by several post-translational modifications conveyed by hormonal signals and signaling
cascades, such as insulin and mammalian target of rapamycin (mTOR). Thus, the need to
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adjust cholesterol synthesis rates may rise from multiple sources, and cholesterol synthesis
presents a highly adaptable biological phenomenon.

Our recently published results indicate that rifampicin treatment increases human
plasma cholesterol by activating PXR and hepatic cholesterol synthesis [30]. The same
cholesterol synthesis-inducing effect could be repeated also in high-fat diet-fed mice, which
were treated with selective murine PXR agonist, pregnenolone-16α-carbonitrile (PCN). This
enabled us to study the molecular mechanisms in more detail. In the liver, PXR activation
led to nuclear accumulation of active SREBP2 protein, widespread induction of its target
genes, and increases in cholesterol and markers of cholesterol synthesis [30].

INSIG1 inhibits SREBP2 activation by retaining the SREBP2–SCAP complex in the
ER [42]. PXR has been shown to transcriptionally induce Insig1 mRNA [43]. With this in
mind, the stimulation of SREBP2 activity by PXR was an unexpected finding [30]. We also
detected increased Insig1 mRNA expression in response to PXR activation but were unable
to detect increased INSIG1 protein expression [30]. In their study, Roth and colleagues [43]
did not report the INSIG1 protein level; furthermore, the study did not evaluate the effect
of INSIG1 on the activity of SREBP2 but SREBP1, an SREBP isoform mainly controlling
triglyceride synthesis [40]. SREBP1 inhibition by PXR activation is in line with studies
describing how PXR induces hepatic steatosis independent of SREBP1 [44,45]. Altogether,
these findings suggest that PXR may affect INSIG1 translation or protein degradation and
selectively affect SREBP1 and SREBP2 activities. In addition to INSIG1, PXR has been
shown to suppress fibroblast growth factor 21 (FGF21), a negative regulator of SREBP2
expression [46,47], which may play an additional role in PXR-stimulated SREBP2 activity,
although Srebp2 mRNA expression remained unaffected in our experiments.

Cholesterol is synthesized from acetyl-CoA, which undergoes multiple enzymatic
reactions to form squalene, subsequently converted to (S)-2,3-epoxysqualene by squalene
epoxidase (SQLE) and further to lanosterol, which is converted to cholesterol either in the
Bloch or in the Kandutsch–Russell pathway [48,49]. Recently, an antiretroviral efavirenz
was shown to induce cholesterol synthesis in mice by activating PXR and inducing hepatic
Sqle, a novel PXR target gene [50]. Importantly, the effect of efavirenz on cholesterol was
abolished in mice lacking hepatic PXR. In our study, PCN treatment induced hepatic
Sqle among other genes of cholesterol synthesis [30]. Furthermore, all PCN-treated mice
had lower liver squalene levels than controls, which possibly indicated faster squalene
metabolism and increased SQLE activity. Interestingly, besides HMGCR, SQLE is another
rate-limiting enzyme of cholesterol synthesis and cholesterol constitutes its inhibitory
feedback signal, in addition to downregulation of proteolytic processing of SREBP2, also by
directly inhibiting SQLE activity [51,52]. Besides the direct PXR mediated regulation [50],
distortion of normal inhibitory regulation of SREBP2 by PXR activation may in part account
for the induction of Sqle gene expression [30].

We showed that increased cholesterol synthesis due to PXR activation was caused
by the induction of the Kandutsch–Russell pathway, as evidenced by increased plasma
and hepatic markers of the pathway, lathosterol and zymostenol, and induced DHCR24,
an enzyme that directs cholesterol synthesis to the Kandutsch–Russell pathway [30]. PXR
did not affect desmosterol, a marker of the Bloch pathway and a negative regulator of
SREBP2 [53], meaning that by inducing the Kandutsch–Russell pathway instead of the
Bloch pathway PXR may evade normal SREBP2 downregulation by desmosterol (Figure 1).
Overall, these results are in line with the previous reports regarding PXR and cholesterol
synthesis and, most importantly, with the human findings, and suggest that PXR activation
stimulates hepatic SREBP2 activity with harmful effects on circulating atherogenic lipids.

3.2. PCSK9 Induction by PXR Activation

Identification of proprotein convertase subtilisin kexin-type 9 (PCSK9) and develop-
ment of PCSK9 inhibitors for drug therapy has remarkably improved the understanding of
plasma cholesterol regulation [54,55]. PCSK9 is secreted from the liver to the circulation,
where it functions to induce the degradation of hepatic LDL receptors. This results in
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decreased LDL clearance and increased circulating LDL. Inhibition of plasma PCSK9 by
antibodies has proven to be an efficient therapeutic strategy to lower plasma LDL [56].

In the liver, the expression of Pcsk9 is regulated by SREBP2 [57]. As PXR activation was
shown to stimulate SREBP2 activity, this raised the hypothesis that PXR could also induce
Pcsk9 expression. Indeed, this was found to be the case in both mice and humans [30]. LDL
receptor is another SREBP2 target gene and could counteract the negative effect of PCSK9.
Expectedly, the LDL receptor mRNA was also induced by PXR activation in mouse liver;
however, the response was very minor compared with the Pcsk9 response [30].

Statins stimulate SREBP2 activity and Pcsk9 expression as a consequence of cholesterol
synthesis inhibition and lower sterol content in the hepatocyte ER. Interestingly, lipophilic
statins (atorvastatin, simvastatin) have been shown to increase PCSK9 more efficiently than
hydrophilic statins (rosuvastatin, pravastatin) [58]. Atorvastatin and simvastatin are also
PXR ligands, and it could be speculated that, in addition to the decreased cellular sterol
content, the PXR agonism plays an additional role in the PCSK9 increase by these statins.

The current list of drugs that induce PCSK9 include statins, fibrates, mTOR inhibitors,
nilotinib, and rifampicin [30,59–62]. The mechanisms are probably diverse but given the
recently discovered role of PXR in Pcsk9 regulation, further research on the effects of PXR
agonists on Pcsk9 expression is warranted. Of the currently known PCSK9-inducing drugs,
several (atorvastatin, simvastatin, rifampicin, and nilotinib) are PXR ligands, although they
involve also other cellular mechanisms.

3.3. PXR in Intestinal Cholesterol Absorption

Intestinal absorption of biliary and dietary cholesterol is an important contributor
to hypercholesterolemia, and ezetimibe or food additives (plant stanols or sterols) that
limit intestinal cholesterol absorption decrease circulating cholesterol [63,64]. Interestingly,
Niemann-Pick C1-like 1 (NPC1L1), an intestinal cholesterol transporter protein and the
molecular target of ezetimibe, has been shown to be directly regulated by PXR [65]. Tributyl
citrate, a common plasticizer, and quetiapine, an atypical antipsychotic with known adverse
effects on lipid metabolism, have been shown to induce hypercholesterolemia in mice by
activating intestinal PXR, which is associated with increased Npc1l1 expression [50,65]. It
is noteworthy that in mice NPC1L1 is expressed only in the intestine, whereas in humans
NPC1L1 is also strongly expressed in the liver, which may affect the translational value of
these findings [66]. Rifaximin is a gut-specific human PXR activator, which does not increase
serum cholesterol in PXR-humanized mice, although it induces intestinal triglyceride
absorption [67,68]. However, rifaximin induced hepatic cytochrome P450 7A1 (CYP7A1)
enzyme, the gatekeeper of bile acid synthesis, which suggests that increased bile acid
synthesis may have protected the mice from hypercholesterolemia.

3.4. PXR in Bile Acid Synthesis and Cholesterol Metabolism

Synthesis of bile acids from cholesterol and biliary secretion of bile acids and choles-
terol present a major route of excess cholesterol disposal. Increasing bile acid disposal by
inhibiting bile acid absorption from the intestine to the circulation by bile acid sequestrants,
such as cholestyramine and colesevelam, lowers plasma cholesterol, highlighting the impor-
tance of hepatic cholesterol disposal as a regulatory mechanism of circulating cholesterol.

PXR activation has been shown to have a complex role in endogenous bile acid
homeostasis. Activation of PXR by some bile acids is critical to accelerate the detoxification
of otherwise hepatotoxic bile acids [69–71]. Bile acids are detoxified mainly by known PXR
target genes; CYP3A enzymes, bile acid conjugation enzymes SULT2A1 and UGTs, and bile
acid transporter MRP2 [72,73].

Several studies have reported that PXR activation represses CYP7A1, the rate-limiting
enzyme of bile acid synthesis, thus forming a negative feedback loop to regulate bile acid
homeostasis [72,74–76]. Although PXR activation represses CYP7A1 in several animal and
cell models, rifampicin dosing does not seem to affect CYP7A1 expression in humans [77]



Cells 2022, 11, 313 7 of 22

and even increases bile acid synthesis, as evidenced by increased serum levels of 7α-
hydroxy-4-cholestene-3-one, a marker of bile acid synthesis [24,77].

4. PXR in HDL Homeostasis

HDL is a central factor in reverse cholesterol transport, a mechanism by which tissues
and cells get rid of excess cholesterol; HDL functions to transport cholesterol from extrahep-
atic tissues to the liver and intestine [78]. Although PXR activation appears to have mainly
harmful effect on cholesterol homeostasis, there is some evidence that PXR activation could
increase HDL-C. For instance, some drugs with PXR-activating properties, such as carba-
mazepine and phenytoin, appear to increase HDL-C [14,79–81]. Furthermore, we have
reported that rifampicin induces CYP3A4-mediated formation of 4β-hydroxycholesterol
(4βHC) and, as a liver X receptor (LXR) agonist, 4βHC in turn stimulates cholesterol efflux
transporters in macrophages, possibly promoting HDL-C-mediated reverse cholesterol
transport [82]. Thus, elevation of circulating 4βHC could partly explain the HDL-C increas-
ing effect of PXR-activating drugs (PXR–4βHC–LXR circuit). For more information on this
topic, please see our recent review [11].

5. Drug-Induced Hypercholesterolemia

Increase in circulating cholesterol during drug treatment is not uncommon, as several
antihypertensives, antihyperglycemics, antipsychotics, antiretrovirals, and immunosup-
pressants may have an unfavorable effect on cholesterol. Many of these drugs are used
long-term, increasing the potential for cardiovascular risk. Drug-induced hypercholes-
terolemia may be directly caused by the drug or secondarily caused by other effects of the
drug, such as weight gain. For example, some antipsychotics, antidepressants, anticonvul-
sants, and hormones may increase weight and negatively affect cholesterol status [83].

To obtain a systematic overview on drug-induced hypercholesterolemia, we identified
clinically used drugs that increase TC or LDL-C in the commercially available Drug Lab-
oratory Effects database (Multirec Ltd., Turku, Finland) (Table 1). To increase the clinical
significance of the table, we removed drugs that have been withdrawn from the market or
were reported to have both lowering and increasing effects on cholesterol. Furthermore,
we added bexarotene, mitotane, and rifampicin to the table, as they have reported effects
on cholesterol but were not included in the original database [22,30,35].

Table 1 consists of 106 drugs, of which 48 drugs increase both LDL-C and TC, 54 drugs
increase LDL-C, and 100 drugs increase TC. Among the drugs that increase LDL-C, the
largest drug classes are immunosuppressants with 15 drugs (28%), antineoplastics with
10 drugs (19%), antipsychotics with eight drugs (15%), and antiretrovirals with six drugs
(11%). Together these four classes comprise 72% of the drugs listed.

A similar pattern is seen in the 100 drugs that increase TC (Table 1): 62% of the drugs
that increase cholesterol are either antineoplastic (22 drugs; 22%), immunosuppressants (19
drugs; 19%), antiretrovirals (12 drugs; 12%), or antipsychotics (9 drugs; 9%). In addition,
the list of drugs that increase TC include several commonly used glucocorticoids, serotonin
reuptake inhibitors, and non-steroidal anti-inflammatory drugs. Naturally, the lists of
drugs increasing TC and LDL-C are heavily overlapping. It should be noted that sometimes
the original publications used as the source for the database did not report all the relevant
cholesterol values. Furthermore, in many cases there exist conflicting data on the effect of
drugs on plasma cholesterol levels. Finally, among the drugs that have been reported to
increase TC and/or LDL-C, the magnitude of effect and the clinical significance are very
variable.
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Table 1. Cholesterol-increasing drugs and their potential to activate PXR and induce CYP3A4.

Drug Class Drug Mechanism Increases PXR
Agonist

CYP3A4
Inducer

Clinically
Relevant CYP3A4

Inducer

Androgen Methyl
testosterone

Androgen receptor
activation LDL

Antiarrhythmic Amiodarone Blocking of voltage gated K+ and Ca2+ channels LDL

Antibiotic Rifampicin Bacterial RNA synthesis inhibition CHOL, LDL Yes [22,84] Yes [22] Yes [22]

Anticonvulsant
Carbamazepine Blocking of central Na+ channel CHOL, LDL Yes [85] Yes [86–88] Yes [86–88]

Tiagabine GABA reuptake
inhibition CHOL

Antidepressant

Paroxetine Selective serotonin reuptake inhibition CHOL

Sertraline Selective serotonin reuptake inhibition CHOL

Duloxetine Serotonin and
noradrenaline reuptake inhibition CHOL

Venlafaxin Serotonin and
noradrenaline reuptake inhibition CHOL

Antigonadotropic Danazol Androgen receptor
activation CHOL, LDL

Antigout Febuxostat Xanthine-oxidase
inhibition CHOL

Antihyperglycemic
Ertugliflozin SGLT-2 inhibition CHOL, LDL

Sotagliflozin SGLT1/2 inhibition CHOL, LDL

Antihypertensive

Lacidipine Ca2+ channel blocker LDL Yes [89]

Furosemide Diuretic CHOL, LDL

Indapamide Diuretic CHOL, LDL

Propranolol Beta-blocker CHOL
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Table 1. Cont.

Drug Class Drug Mechanism Increases PXR
Agonist

CYP3A4
Inducer

Clinically
Relevant CYP3A4

Inducer

Antimycotic
Fluconazole Ergosterol synthesis

inhibition CHOL

Voriconazole Ergosterol synthesis
inhibition CHOL

Antineoplastic

Apalutamide Antiandrogen CHOL, LDL Possible [90] Yes [90] Yes [90]

Anastrozole Aromatase
inhibition CHOL

Letrozole Aromatase
inhibition CHOL

Mitotane Adrenal cortex
inhibition CHOL, LDL Yes [32] Yes [32,91] Yes [92]

Asparaginase Depletion of circulating asparagine CHOL

Histrelin GnRH agonist CHOL

Degarelix GnRH blocker CHOL

Pegvisomant IGF1 inhibition CHOL

Ruxolitinib JAK inhibition CHOL Possible ****

Rucaparib PARP inhibition CHOL

Verteporfin Phototherapy
sensitizer CHOL

Cladribine Purine analogue CHOL

Tegafur Pyrimidine
analogue CHOL, LDL

Padeliporfin Radiation therapy sensitizer CHOL, LDL

Brigatinib Tyrosine kinase
inhibition CHOL, LDL Possible * Yes *
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Table 1. Cont.

Drug Class Drug Mechanism Increases PXR
Agonist

CYP3A4
Inducer

Clinically
Relevant CYP3A4

Inducer

Cabozantinib Tyrosine kinase
inhibition CHOL, LDL

Dasatinib Tyrosine kinase
inhibition CHOL, LDL Yes [89]

Lenvatinib Tyrosine kinase
inhibition CHOL, LDL Yes

Lorlatinib Tyrosine kinase
inhibition CHOL, LDL Yes ** Yes **,***

Nilotinib Tyrosine kinase
inhibition CHOL, LDL Yes [93]

Pazopanib Tyrosine kinase
inhibition CHOL

Antipsychotic, atypical

Amisulpride Inhibition of D2 and
5-HT2A receptors CHOL

Aripiprazole Inhibition of D2 and
5-HT2A receptors LDL

Cariprazine Inhibition of D2 and
5-HT2A receptors CHOL, LDL

Clozapine Inhibition of D2 and
5-HT2A receptors CHOL, LDL Yes [94]

Olanzapine Inhibition of D2 and
5-HT2A receptors CHOL, LDL

Paliperidone Inhibition of D2 and
5-HT2A receptors CHOL, LDL

Quetiapine Inhibition of D2 and
5-HT2A receptors CHOL, LDL Yes [95] Yes [95]

Risperidone Inhibition of D2 and
5-HT2A receptors CHOL, LDL
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Table 1. Cont.

Drug Class Drug Mechanism Increases PXR
Agonist

CYP3A4
Inducer

Clinically
Relevant CYP3A4

Inducer

Antipsychotic, typical
Fluphenazine Inhibition of D2

receptors CHOL

Zuclopenthixol Inhibition of D2
receptors CHOL, LDL

Antiretroviral

Cobicistat CYP3A inhibition CHOL

Raltegravir Integrase inhibition CHOL, LDL

Efavirenz
Non-nucleoside

reverse transcriptase
inhibition

CHOL, LDL Yes [50] Yes [50,96,97] Yes [97,98]

Etravirine
Non-nucleoside

reverse transcriptase
inhibition

CHOL, LDL Yes [99] Yes [100–102] Yes [100,101]

Nevirapine
Non-nucleoside

reverse transcriptase
inhibition

CHOL, LDL Yes [103–105] Yes [103–105]

Rilpivirine
Non-nucleoside

reverse transcriptase
inhibition

CHOL, LDL Yes [99]

Darunavir Protease inhibition CHOL Yes [50]

Fosamprenavir Protease inhibition CHOL Yes [106] Yes [106] Yes [106]

Indinavir Protease inhibition CHOL

Lopinavir Protease inhibition CHOL Yes [50]

Ritonavir Protease inhibition CHOL Yes [107] Yes [108,109] Yes [108,109]

Saquinavir Protease inhibition CHOL, LDL Yes [107]

Tipranavir Protease inhibition CHOL Yes ***** Yes *****

Antithyroid Methimazole Thyroperoxidase
inhibition LDL
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Table 1. Cont.

Drug Class Drug Mechanism Increases PXR
Agonist

CYP3A4
Inducer

Clinically
Relevant CYP3A4

Inducer

Antiviral Boceprevir Protease inhibition CHOL

Barbiturate Phenobarbital GABA stimulation LDL Yes [110] Yes [111] Yes [111]

Emergency
contraception Ulipristal Progesterone

receptor modulation CHOL

Immunosuppressant

Cyclosporin Calcineurin
inhibition CHOL, LDL Yes [112]

Tacrolimus Calcineurin
inhibition CHOL Yes [113]

Rituximab CD20 inhibition CHOL, LDL

Beclomethasone Glucocorticoid
receptor activation CHOL Yes [114]

Dexamethasone Glucocorticoid
receptor activation CHOL Yes [115] Yes [116–119] Yes [117–119]

Prednisolone Glucocorticoid
receptor activation CHOL Yes [120,121] Yes [120,121]

Prednisone Glucocorticoid
receptor activation CHOL Yes [116,122] Yes [122]

Anakinra IL-1 inhibition CHOL

Rilonacept IL-1 inhibition CHOL, LDL

Basiliximab IL-2 inhibition CHOL, LDL

Sarilumab IL-6 inhibition CHOL, LDL

Siltuximab IL-6 inhibition CHOL

Tocilizumab IL-6 inhibition CHOL, LDL

Baricitinib JAK inhibition CHOL, LDL

Tofacitinib JAK inhibition CHOL, LDL

Everolimus mTOR inhibition CHOL, LDL
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Table 1. Cont.

Drug Class Drug Mechanism Increases PXR
Agonist

CYP3A4
Inducer

Clinically
Relevant CYP3A4

Inducer

Sirolimus mTOR inhibition CHOL

Temsirolimus mTOR inhibition CHOL, LDL

Leflunomide Pyrimidine
synthesis inhibition CHOL, LDL

Mycophenolate mofetil Purine synthesis
inhibition CHOL

Adalimumab TNF inhibition CHOL, LDL

Certolizumab Pegol TNF inhibition CHOL, LDL

Golimumab TNF inhibition CHOL, LDL

Infliximab TNF inhibition CHOL, LDL

Non-steroidal
anti-inflammatory drug

Acetylsalisylic acid COX inhibition CHOL Yes [123]

Diclofenac COX inhibition CHOL

Ibuprofen COX inhibition CHOL

Other

Ataluren Ribosome function modulation CHOL

Human normal
immunoglobulin

Improved pathogen
removal CHOL

Leuprorelin GnRH analogue CHOL, LDL

Proton pump inhibitor
Lansoprazole Stomach acid

reduction CHOL Yes [124] Yes [124]

Pantoprazole Stomach acid
reduction CHOL

Antioxidant Idebenone Mitochondrial
electron transport chain stimulation CHOL
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Table 1. Cont.

Drug Class Drug Mechanism Increases PXR
Agonist

CYP3A4
Inducer

Clinically
Relevant CYP3A4

Inducer

Retinoid

Alitretinoin Retinoid receptor
activation CHOL Yes [125]

Bexarotene Retinoid receptor
activation CHOL, LDL Yes [126,127] Yes [126,127]

Isotretinoin Retinoid receptor
activation CHOL Yes [125]

Tretinoin Retinoid receptor
activation CHOL Yes [125]

Stimulant Modafinil Dopaminergic
modulation CHOL Yes [128] Yes [129]

Vitamin Cholecalciferol Vitamin D receptor
activation CHOL, LDL

* U.S. Food and Drug Administration Center for Drug Evaluation and Research (2016) Chemistry review on Brigatinib (application number 208772Orig1s000), available at https:
//www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208772Orig1s000ChemR.pdf (accessed on 13 December 2021). ** Pfizer (2021) Highlights of LORBRENA (lorlatinib) prescribing
information, available at https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf (accessed on 13 December 2021). *** European Medicines Agency (2021)
Summary of Lorviqua (lorlatinib) product characteristics, available at https://www.ema.europa.eu/en/documents/product-information/lorviqua-epar-product-information_en.pdf
(accessed on 13 December 2021). **** U.S. Food and Drug Administration Center for Drug Evaluation and Research (2011) Genomics group review on ruxolitinib (application
number 202192Orig1s000), available at https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202192Orig1s000ClinPharmR.pdf (accessed on 13 December 2021). ***** U.S.
Food and Drug Administration Center for Drug Evaluation and Research (2004) Pharmacology/toxicology review and evaluation (application number NDA 21-814), available at
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21814_000_Aptivus_pharmr1.pdf (accessed on 13 December 2021).

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208772Orig1s000ChemR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208772Orig1s000ChemR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf
https://www.ema.europa.eu/en/documents/product-information/lorviqua-epar-product-information_en.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202192Orig1s000ClinPharmR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21814_000_Aptivus_pharmr1.pdf
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Some drug classes are clearly overrepresented in the list of cholesterol-elevating drugs
and their effects may seem like a class effect of certain drugs. However, there are still
significant differences between the drugs within the therapeutic groups. For instance, a
recent meta-analysis described marked differences between atypical antipsychotics in the
metabolic side effects, including TC and LDL-C, with olanzapine and clozapine displaying
the worst profiles [130]. Furthermore, changing from quetiapine, risperidone, or olanzapine
to aripiprazole has been reported to be beneficial for cholesterol status and 10-year cardio-
vascular disease risk [131]. Notably, these antipsychotics have also significant differences
in their target receptor profiles that could potentially play a role in their varying effects on
metabolic parameters.

The mechanistic understanding of the molecular mediators of drug-induced dyslipi-
demia is elusive and the data to date are limited by the lack of sophisticated human studies.
The hypercholesterolemic effects of several antipsychotics have been linked to increased
activation of SREBP2 due to inhibition of INSIG-2 in murine models [132]. Furthermore,
INSIG-2 gene polymorphisms in schizophrenia patients are associated with weight gain
and prevalence of metabolic syndrome [133].

Inflammation and drugs that modulate inflammation, non-steroidal anti-inflammatory
drugs (NSAIDS), glucocorticoids, and immunosuppressants, are known regulators of
cholesterol levels. Acute infections tend to decrease LDL cholesterol, and the more severe
the infection, the more pronounced the effects on cholesterol [134,135]. The same seems
to apply to chronic inflammatory diseases, as a decrease in HDL and LDL cholesterol is
a common finding in cases of rheumatoid arthritis and the reductions in HDL and LDL
correlate with disease severity in ankylosing spondylitis [136,137]. As inflammation attenu-
ates during anti-inflammatory drug treatment, cholesterol levels return to normal, which
may explain why many anti-inflammatory drugs seem to increase cholesterol [138,139].
However, some drugs used to treat inflammatory diseases may have more specific effects
on lipid metabolism.

Interestingly, immunosuppressants used in organ transplant patients, cyclosporin
(calcineurin inhibitor) and especially the mTOR inhibitors sirolimus, tacrolimus, and
everolimus, increase cholesterol [140,141]. Immunosuppressant-mediated dyslipidemia
is common and occurs in 60% of organ transplant patients [142]. The mechanisms by
which immunosuppressants induce dyslipidemia are not well understood, but they seem
to involve LDL metabolism and PCSK9 [143,144]. mTOR is a central regulator of lipid
metabolism and SREBP, which already hints at mechanisms of mTOR inhibitor-induced
dyslipidemia [145].

Antiretroviral therapies have improved the life expectancy of human immunodefi-
ciency virus (HIV)-infected patients. This success has brought up HIV-associated risks for
other comorbidities, including increased risk for cardiovascular diseases [146,147]. One sig-
nificant contributing factor is the adverse effect of antiretrovirals on lipid metabolism [146].
Protease inhibitors, non-nucleoside reverse transcriptase inhibitors, and integrase inhibitors
may all increase TC or LDL-C [148]. Most of the approved protease inhibitors and about a
quarter of the approved reverse transcriptase inhibitors are included in the list of drugs
that increase cholesterol (Table 1). Mechanistically, protease inhibitors have been shown to
stimulate SREBP activity in the liver [148].

6. Identification of PXR Ligands among the Drugs Inducing Hypercholesterolemia

To gain a systematic overview of the potential role of PXR in drug-induced hyperc-
holesterolemia, we identified in the literature the PXR-activating drugs among the drugs
that increase TC or LDL-C (Table 1).

Only studies that provided direct evidence of PXR binding were considered. For
instance, induction of classical PXR target genes, CYP3A and CYP2C, was not considered a
proof of PXR agonism, as the expression of these genes is also regulated by other nuclear
receptors. PXR activation is often evaluated based on CYP induction and consequent
drug–drug interactions. However, this may not always reveal actual PXR activation status,
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as some inducers are also CYP inhibitors [149]. Indeed, several drugs that are PXR agonists
also inhibit CYP3A4 activity. In these cases, the other effects of PXR activation could still be
significant. On the other hand, the results of reporter gene assays or other in vitro methods
may overestimate the receptor activation, especially if performed only with high ligand
concentrations.

Among the 106 drugs that increase either LDL-C or TC, 23 (21.7%) were identified
as PXR activators, and three, brigatinib, apalutamide, and ruxolitinib, as likely activators.
Thus, altogether, of the 106 drugs that increase cholesterol levels, 26 (24.5%) are most likely
to have PXR-activating property. Among the drugs that increase LDL cholesterol but have
not been identified as PXR agonists, clozapine, and nevirapine have been shown to have
some inducing effect on CYP3A4, but only nevirapine is a clinically significant CYP3A4
inducer. Among the drugs that increase TC, 10 drugs have not been identified as PXR
agonists but induce CYP3A4.

PXR and its sister receptor constitutive androstane receptor (CAR) both regulate drug
metabolism but also glucose and lipid metabolism and also share some ligands. However,
while PXR activation is detrimental to metabolic performance, CAR activation has been
shown to be beneficial. Of importance, CAR activation has been shown to lower cholesterol
by increasing fecal cholesterol disposal and by suppressing cholesterol synthesis [21,150].

7. Conclusions

A large number of drugs have been reported to display adverse effects on plasma
cholesterol level. For many, the effect size is rather small, but there is still a significant num-
ber of drugs for which the effect is considered clinically significant. In long-term treatment,
the unfavorable effect of drug therapy on cholesterol may predispose to atherosclerosis,
especially if combined with other risk factors.

Recent studies have indicated that activation of nuclear receptor PXR increases plasma
cholesterol and several potential mechanisms have been reported, including increased
hepatic cholesterol synthesis, induction of PCSK9, increased intestinal absorption, and
decrease of bile acid synthesis. In humans, there is currently evidence for the first two
of these mechanisms. So far, rifampicin, efavirenz, and quetiapine have been reported
to induce hypercholesterolemia through PXR-mediated mechanisms, either in humans
or mice [30,50,96]. Among the known cholesterol-increasing drugs, about a quarter are
certain or possible PXR ligands. Thus, PXR activation is likely to at least partly mediate
their hypercholesterolemic effects but verifying the role of PXR requires further studies in
each case in the future.
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