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Abstract: In positive lightning return strokes, the net momentum transported by the radiation
field has the same direction as the momentum associated with electrons, whereas the momentum
associated with electrons is in opposite direction to the momentum of radiation in negative return
strokes. It is shown here that this polarity asymmetry could limit the maximum speed of positive
return strokes with respect to the negative return strokes.

Keywords: lightning; return strokes; radiation field; momentum; polarity asymmetry; return
stroke speed

1. Introduction

The basic components of a lightning flash can be separated into streamers, leaders and
return strokes [1]. These discharge components exist in two polarities, namely, positive
and negative. In positive streamers, positive leaders and return strokes in negative ground
flashes, electrons travel in the opposite direction to the direction of the development of
the discharge, while in negative streamers, negative leaders and return strokes in positive
ground flashes electrons travel in the same direction as the direction of the propagation of
the discharge.

Features of the currents and speeds of propagation differ in general in electrical
discharges of positive and negative polarity [2,3]. Moreover, the electric fields necessary
to support these discharges differ for negative and positive polarity [3]. Some of these
differences are caused by the direction of propagation of the electrons with respect to the
direction of propagation of the discharge. In positive polarity discharges, the direction
of propagation of electrons is opposite to the direction of propagation of the discharge,
whereas in negative polarity, the two directions are the same. In electrical discharges,
it is the movement of the electrons that controls the main features of the electric discharges
because the positive charges remain more or less stationary at the places where they were
created during the propagation of the discharge. Several polarity asymmetries observed in
lightning flashes were discussed previously by Williams [4]. One example considered in [4]
relates to the way in which charges are transferred in ground flashes. In general, negative
flashes transfer charge in several return strokes, whereas in positive ground flashes, most
of the charge is transferred in a single stroke. Williams [4] suggested that such differences
are caused by asymmetry in the mobilities of electrons and positive ions.

The goal of this paper is to illustrate the polarity asymmetry in electrical discharges
caused by the momentum associated with the electron movement and the radiation emitted
by the discharge. Though the theory presented can be applied to any type of electrical
discharge, here, we will concentrate on the return strokes.
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2. The Polarity Asymmetry Associated with the Direction of Movement of Charge
Carriers

In the case of negative return strokes, the return stroke current is maintained by the
movement of electrons towards the ground along the existing leader channel. On the other
hand, the return stroke propagates upwards towards the cloud. Thus, the direction of
propagation of the electrons is opposite to that of the return stroke. In the case of positive
return strokes, electrons move towards the cloud and, thus, their direction of propagation
is the same as the direction of propagation of the return stroke. Due to this polarity
asymmetry, the electric and magnetic field at any point in space has opposite polarity
in positive and negative return strokes. However, since the Poynting vector is given by
(E× B)/µ0, the energy and momentum associated with the radiation fields propagate in
the same direction at any given point in space in both positive and negative return strokes.

In the case of vertical return strokes, the azimuthal symmetry of the electromagnetic
field makes the net component of the momentum associated with the electromagnetic field
equal to zero, except in the direction of propagation of the return stroke front, i.e., the
positive z-direction. Thus, the momentum transported by the radiation field of positive
return strokes has the opposite direction to the movement or the momentum of the electrons,
whereas in negative return strokes, they have the same direction. This asymmetry of the
direction of the radiation momentum and the direction of momentum associated with
the electrons has a significant influence on the speed of propagation of positive strokes in
comparison to negative return strokes. Before proceeding further, however, let us consider
the momentum transported by the radiation fields of return strokes.

3. Momentum Transported by the Radiation Field

Electromagnetic fields transport momentum as well as energy. The flux of momentum
transported by the electromagnetic field (rate of momentum transport per unit area) is given
by (E× B)/cµ0 [2]. Due to symmetry, the net momentum transported by the radiation
field of a positive or a negative return stroke, which is assumed to be straight and vertical,
is directed along the z-axis. In the analysis, we will first derive the momentum transported
by the radiation field from a return stroke channel located in free space and the equations
will be modified later to take into account the presence of the ground plane.

3.1. Expression for the Momentum Transported by the Radiation Field in the Absence of the
Ground Plane

In the analysis, we consider a scenario similar to that of the transmission line model
of the return stroke, where a current pulse propagates along a vertical channel with a
constant speed u without attenuation [5]. We consider the channel to be in free space with
one end, where the current is injected, located at z = 0, and the channel to be oriented
along the positive z-direction. The momentum in the positive z-direction and the positive
current of return strokes in negative ground flashes moving in the positive z-direction are
considered to have positive polarity. In the analysis, we assume that the current waveform
propagating along the channel is a step function with peak amplitude Ir. However, we
derive the equations pertinent to any arbitrary channel-base current waveform denoted
here by I(t). The geometry necessary for the analysis is shown in Figure 1. The electric
and magnetic radiation fields at point P generated by a return stroke simulated by the
transmission line model are given by [6]

Eθ(t, r, θ) =
u sin θ I(t− r/c)

4πε0c2(1− u cos θ
c )r

aθ (1)

and

Bφ(t, r) =
u sin θ I(t− r/c)

4πε0c3(1− u cos θ
c )r

aφ (2)
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Figure 1. Geometry necessary for the analysis of the radiation field from a channel in free space. The
vectors az and ar are, respectively, unit vectors in the increasing direction of z and r (or OP). The
vector aθ is given by ar × (ar × az). The vector aφ is directed towards ar × aθ .

The Poynting vector associated with this wave is then given by

S(t, r, θ) =
u2 sin2 θ I(t− r/c)2

(4π)2ε2
0µ0c5

[
1− u cos θ

c

]2
r2

ar (3)

The flux of momentum associated with this radiation field passing through a unit area
placed perpendicular to the propagation of the wave at point P is given by

pr(t, r, θ) =
u2 sin2 θ I(t− r/c)2

(4π)2ε2
0µ0c6

[
1− u cos θ

c

]2
r2

ar (4)

The z-component of this momentum flux is given by

prz(t, r, θ) =
u2 sin2 θ cos θ I(t− r/c)2

(4π)2ε2
0µ0c6

[
1− u cos θ

c

]2
r2

(5)

Due to symmetry, only the z-component of the net momentum flux exists, and the rate
of change of the total momentum can be obtained by integrating prz over a sphere with
the center at the point of current injection into the channel. The rate of change of the total
momentum in the z-direction associated with this wave is thus given by

dPrz(t)
dt

=
u2 I(t− r/c)2

(4π)2ε2
0µ0c6

π∫
0

sin3 θ cos θ[
1− u cos θ

c

]2 dθ

2π∫
0

dφ (6)

This integral can be evaluated analytically, and the result with β = u/c is given by [7]

dPrz(t)
dt

=
u2 I(t− r/c)2

8πε0c4

[
1
β2 ln

(1 + β)

(1− β)

(
3
β2 − 1

)
− 6

β3

]
(7)

Note that, irrespective of the polarity of the current, the total momentum is always
directed along the positive z-direction. That is, for both positive and negative currents,
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Prz(t) has a positive sign. In the case of a step function current of amplitude Ir, the above
equation reduces to (for t > 0)

dPrz(t)
dt

=
u2 I2

r
8πε0c4

[
1
β2 ln

(1 + β)

(1− β)

(
3
β2 − 1

)
− 6

β3

]
(8)

3.2. Expression for the Momentum Transported by the Radiation Field in the Presence of the
Ground Plane

In the presence of the ground plane, the z-momentum associated with the radiation
field can be obtained directly from the equations presented earlier, noting that in calculating
the electromagnetic field, the ground plane can be replaced by an image channel. The
geometry relevant to the analysis is presented in Figure 2. In this case, the radiation field
exists only in the upper half space, and it is given at point P by [6]

Eθ(t, r, θ) =

[
u sin θ I(t− r/c)

4πε0c2(1− u cos θ
c )r

+
u sin θ I(t− r/c)

4πε0c2(1 + u cos θ
c )r

]
aθ (9)
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Figure 2. Geometry necessary for the analysis of the radiation field from a channel located over a
perfectly conducting ground plane. The vectors az and ar are unit vectors in the increasing direction
of z and r (or OP). The vector aθ is given by ar × (ar × az). The vector aφ is directed towards
ar × aθ .

The first term comes from the direct channel and the second term comes from the
image. This can be simplified to

Eθ(t, r, θ) =
u sin θ I(t− r/c)

2πε0c2(1− u2 cos2 θ
c2 )r

aθ (10)

The corresponding magnetic field is given by

Bφ(t, r, θ) =
u sin θ I(t− r/c)

2πε0c3(1− u2 cos2 θ
c2 )r

aφ (11)
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The flux of momentum associated with this radiation field passing through a unit area
placed perpendicular to the propagation of the wave at point P is given by

pr(t, r, θ) =
u2 sin2 θ I(t− r/c)2

(2π)2ε2
0µ0c6

[
1− u2 cos2 θ

c2

]2
r2

ar (12)

The z-component of this momentum flux is given by

prz(t, r, θ) =
u2 sin2 θ cos θ I(t− r/c)2

(2π)2ε2
0µ0c6

[
1− u2 cos2 θ

c2

]2
r2

(13)

Again, due to symmetry, only the z-component of the net momentum flux exists, and
the rate of change of the total momentum can be obtained by integrating prz over a sphere
with the center at the point of current injection into the channel. The rate of change of the
total momentum in the z-direction associated with this wave is thus given by Equation (14)
(note that the upper limit of the integral over θ is equal to π/2 because the radiation exists
only over the upper half plane above the perfectly conducting ground).

dPrz(t)
dt

=
u2 I(t− r/c)2

(2π)2ε2
0µ0c6

π/2∫
0

sin3 θ cos θ[
1− u2 cos2 θ

c2

]2 dθ

2π∫
0

dφ (14)

This integral can be evaluated analytically, and the result with β = u/c is given by

dPrz(t)
dt

=
u2 I(t− r/c)2

8πε0c4

[
2
β4 ln

1
1− β2 −

2
β2

]
(15)

In the case of a step function current of amplitude Ir, the above equation reduces to

dPrz(t)
dt

=
u2 I2

r
8πε0c4

[
2
β4 ln

1
1− β2 −

2
β2

]
t > 0 (16)

4. The z-Component of the Momentum Associated with the Drift of Electrons in the
Channel

Now, let us consider the movement of electrons in the channel. Consider a channel
element of unit length of the return stroke channel. We consider the return stroke current
waveform to be a step function of amplitude Ir. The current in this channel element is
related to the drift speed vd by the equation

Ir = πa2nevde (17)

In the above equation, ne is the density of electrons in the channel, e is the elementary
charge and a is the radius of the circular cross-section of the channel. The z-momentum
of the electrons in the channel element of unit length associated with their drift is then
given by

pez = πa2nevdme (18)

In the above equation, me is the mass of the electron. Now, consider the change in
momentum of the electrons in the return stroke channel during the time interval t→ t + dt .
During this time interval, a channel length equal to udt. is fed by the source with a current
of magnitude Ir. Thus, the increase in the momentum of the electrons during that time
interval is given by

dPez = πa2nevdmeudt (19)
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This can be written as
dPez =

meu
e

Irdt (20)

Thus, the rate of increase in the momentum of electrons at time t is given by

dPez

dt
=

meu
e

Ir (21)

5. Momentum Balance in Return Strokes

Just before the initiation of the return stroke, the leader travels down from the cloud,
lowering the charge toward the ground. The electric field created by this charge and the
remaining charge in the cloud are the sources that drive the return stroke along the channel.
Let us consider a positive return stroke where the electrons are moving towards the cloud,
i.e., in the direction of the positive z-axis. Let us denote by F(t) the force exerted by the
source (i.e., the electric field) on the electrons in the channel (note that, in the case of
positive return strokes, the electric field is directed along the negative z-axis), which can be
related to the time derivative of the momentum. This force accelerates negative charges or
electrons towards the positive z-direction. This force is responsible for the momentum of
electrons in the return stroke channel. Let us now consider the momentum balance along
the z-axis for the movement of electrons for positive and negative return strokes during the
time interval t→ t + dt .

5.1. Positive Return Strokes

Let us represent the current and the speed of the positive return stroke by Irp and up,
respectively. We assume that this combination is allowed by energy conservation. The
momentum balance equation for this positive return stroke is given by

F(t) =
dPloss,z(t)

dt
+

dPez(t)
dt

+
dPrz(t)

dt
(22)

In the above equation, Ploss,z is the momentum lost by electrons in collisions and in
other interactions during the time when the electrons have increased their speed from zero
to vd. The last two terms represent the rate of change of momentum gained by electrons
and the momentum radiated away, respectively. Substituting for the radiation term, for a
return stroke in free space (Equation (8)), and taking into account (22), we obtain

F(t) =
(

dPloss,z(t)
dt

)
up ,Irp

+
meup

e
Irp+

u2
p I2

rp

8πε0c4

[
1

β2
p

ln
(1 + βp)

(1− βp)

(
3

β2
p
− 1

)
− 6

β3
p

]
(23)

In the case of a discharge channel over perfectly conducting ground, we obtain

F(t) =
(

dPloss,z(t)
dt

)
up ,Irp

+
meup

e
Irp+

u2
p I2

rp

8πε0c4

[
2

β4
p

ln
1

1− β2
p
− 2

β2
p

]
(24)

5.2. Negative Return Strokes

Just to illustrate a point, consider a negative return stroke where the current is trans-
ported purely by positrons. In this case, the positrons move in the direction of the pos-
itive z-axis and the momentum balance equations will be identical to the ones given in
Equations (23) and (24). Now, consider a negative return stroke mediated by electrons. In
this case, the electrons move towards the ground, and the direction of the momentum
associated with the electrons is opposite to that of positrons, giving rise to an identical
return stroke. The momentum balance equation for a negative return stroke with a current
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Irn and a speed un (again assuming this combination is allowed by energy conservation)
located in free space is given by

−F(t) = −meun
e Irn −

[
dPloss,z(t)

dt

]
un ,Irn

+ u2
n I2

rn
8πε0c4

[
1

β2
n

ln (1+βn)
(1−βn)

(
3

β2
n
− 1
)
− 6

β3
n

] (25)

Observe that the forward momentum is now given by the radiation field alone, while
the electrons have momentum towards the negative z-axis. This can be written as

F(t) = meun
e Irn +

[
dPloss,z(t)

dt

]
un ,Irn

− u2
n I2

rn
8πε0c4

[
1

β2
n

ln (1+βn)
(1−βn)

(
3

β2
n
− 1
)
− 6

β3
n

] (26)

In the case of a return stroke over perfectly conducting ground, we obtain

F(t) = meun
e Irn +

[
dPloss,z(t)

dt

]
un ,Irn

− u2
n I2

rn
8πε0c4

[
2

β4
n

ln 1
1−β2

n
− 2

β2
n

] (27)

6. Results

Let us consider negative return strokes. Observe that, according to (26), the condition

F(t)−
[

dPloss,z(t)
dt

]
un ,Irn

< 0

is satisfied for a channel in free space when

u2
n I2

rn
8πε0c4

[
1

β2
n

ln
(1 + βn)

(1− βn)

(
3

β2
n
− 1
)
− 6

β3
n

]
>

meun

e
Irn (28)

For a discharge channel over perfectly conducting ground, this condition is satis-
fied when

u2
n I2

rn
8πε0c4

[
2

β4
n

ln
1

1− β2
n
− 2

β2
n

]
>

meun

e
Irn (29)

These conditions are realized when the momentum associated with the radiation
overwhelms the momentum associated with electrons, while the momentum loss term
becomes larger than the momentum input from the external source. Thanks to the opposite
sign of the momentum associated with the radiation field, the source term can still drive a
return stroke even when the losses overwhelm the source term. However, the situation is
different in the case of positive return strokes. The momentum balance equations show that

no positive return stroke can exist when F(t)−
[

dPloss,z(t)
dt

]
un ,Irn

< 0 because, in this case, the

momentum balance equation cannot be satisfied (see Equation (24)). Hence, the speed and

currents of positive return strokes should be such that F(t)−
[

dPloss,z(t)
dt

]
un ,Irn

> 0. In other

words, in positive return strokes, the momentum associated with the electrons always has
to overwhelm the radiation momentum.

For a given positive return stroke current, there is a certain return stroke speed at
which the radiation term overwhelms the electron momentum term. This speed decreases
as the return stroke current increases. Figure 3 depicts the limiting speed above which the
rate of change of the radiation momentum overwhelms the rate of change of the electron
momentum as a function of the return stroke current. Note that for a given current, the
limiting speed is lower in the case of a channel above perfectly conducting ground. The
reason for this is the enhancement of the radiation field for a given current when the
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channel is located over perfectly conducting ground. For positive return strokes above
perfectly conducting ground, the limiting speeds for currents of 250 kA, 100 kA, 30 kA and
5 kA are 4.0 × 107 m/s, 9.4 × 107 m/s, 2.1 × 108 m/s and 2.98 × 108 m/s, respectively.
Such restrictions do not apply to negative return strokes. For example, while the speed
of a positive return stroke with a 100 kA current is limited to 9.4 × 107 m/s, a negative
return stroke with an identical current can propagate with larger speeds, even speeds
exceeding 2.0 × 108 m/s. Note also that for return stroke currents lower than about 20 kA,
the polarity asymmetry does not play any role because the limiting speed is almost equal
to the speed of light. The results show that the polarity asymmetry associated with the
electrons and the radiation field causes the positive return strokes to propagate with a
speed that is lower than the speed possible for a negative return stroke with an identical
current. It is important to point out that the values of the speeds given above are based on
the assumption that the current waveform can be represented by a step pulse. However,
real return stroke current waveforms differ from this ideal picture considerably. Moreover,
in general, the return stroke speed is measured over channel lengths of several hundred
meters to several kilometers, and the return stroke current waveform may change its shape
considerably over such distances [8–10]. For these reasons, the limiting values of the speeds
given above may differ from the limiting values of the speeds of actual return strokes.
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Figure 3. The limiting speed for a given positive return stroke current where the rate of change of
momentum transported by the radiation field overwhelms the rate of change of the momentum of
the electrons. The blue curve (upper curve) corresponds to a return stroke channel in free space, and
the red curve (lower curve) corresponds to a return stroke channel over perfectly conducting ground.

7. Discussion

It is important to point out that what we have presented in Section 6 are the limiting
speeds associated with positive return strokes due to the momentum balance associated
with the radiation and electrons. This does not mean that the positive return strokes need
to propagate at the limiting speeds. It is possible that due to other considerations involving,
for example, channel properties, return strokes may propagate at speeds lower than the
limiting values indicated in Section 6.

In the analysis presented in this paper, we assumed that the return stroke current
and the speed are given, and we evaluated the consequences of the momentum balance
equation. However, there are other considerations such as energy conservation that one has
to consider in deciding whether a return stroke with a given current can propagate with a
certain speed. Of course, the energy balance equation does not make any discrimination
between positive and negative return strokes. However, it may play an important role
in deciding whether a given return stroke current can be associated with a given return
stroke speed. It is possible that the selection of the return stroke speed and the current has
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to be confined within the principle of energy conservation. However, the values we have
considered in this paper belong to the range of lightning currents and speeds measured
in practice.

In the literature, one can find only a few studies where the speeds of positive return
strokes are measured [8–10]. Idone et al. [8] presented the measured speed of a positive
return stroke in triggered lightning flashes. The measured speed was about 108 m/s.
However, the peak current in the return stroke was about 20 kA, and for this reason, it
could not be used to test the theoretical predictions presented here. In another paper,
Mach and Rust [9] measured the speed of two positive return strokes with speeds of
108 m/s and 1.7 × 108 m/s. They estimated the currents in these return strokes to be
about 125 kA. However, they pointed out that the estimated current can be about 1.5 times
the actual current due to the various assumptions used in estimating the peak current.
In another paper [10], Mach and Rust studied the speed of propagation for a larger col-
lection of positive return strokes. According to their results, the average speed of natural
positive first return strokes over channel segments less than 500 m starting near the channel
base is about 0.8 × 108 m/s, whereas the corresponding speed for natural negative return
strokes is 1.7 × 108, which is considerably faster than that of the positive return strokes.
These results are in agreement with the predictions made in this paper. However, in order
to test the predictions made in this paper, it is necessary to have a dataset of measured
speeds of both positive and negative return strokes with currents in the range of 80–125 kA
or more.

8. Conclusions

In this paper, the effects of net momentum transported by the radiation field on the
speed of propagation of the current along the return stroke channel were investigated. It
was shown that, given identical initiating conditions, a positive return stroke will travel
with a lower speed in comparison to a negative return stroke. The effect can be negligible
for small currents, but it becomes highly significant for large currents.
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