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Abstract: The still prevalent use of paper conformity lists in the automotive industry has a serious
negative impact on the performance of quality control inspectors. We propose instead a hybrid quality
inspection system, where we combine automated detection with human feedback, to increase worker
performance by reducing mental and physical fatigue, and the adaptability and responsiveness
of the assembly line to change. The system integrates the hierarchical automatic detection of the
non-conforming vehicle parts and information visualization on a wearable device to present the
results to the factory worker and obtain human confirmation. Besides designing a novel 3D vehicle
generator to create a digital representation of the non conformity list and to collect automatically
annotated training data, we apply and aggregate in a novel way state-of-the-art domain adaptation
and pseudo labeling methods to our real application scenario, in order to bridge the gap between
the labeled data generated by the vehicle generator and the real unlabeled data collected on the
factory floor. This methodology allows us to obtain, without any manual annotation of the real
dataset, an example-based F1 score of 0.565 in an unconstrained scenario and 0.601 in a fixed camera
setup (improvements of 11 and 14.6 percentage points, respectively, over a baseline trained with
purely simulated data). Feedback obtained from factory workers highlighted the usefulness of the
proposed solution, and showed that a truly hybrid assembly line, where machine and human work
in symbiosis, increases both efficiency and accuracy in automotive quality control.

Keywords: automotive industry; hybrid assembly lines; Industry 4.0; information visualization;
quality inspection; semi-supervised cross domain object detection; simulated data

1. Introduction

While automation is commonplace in the automotive industry, many processes still
rely on the manual approach [1-3]. This is particularly true in quality control, as with the
growing trend in vehicle customization to drive product and production complexity to
higher levels, a much tighter control is required to ensure the same high-quality and safety
standards are met [1,4]. However, the traditional non-conformities detection method relies
on workers to visually compare the assembled vehicle with a mental image of the items
on a paper list (Figure 1), in real time. This means that the increase in complexity leads
to higher memorization workload, and consequently excessive mental fatigue and other
known sources of human error [1,3-5].

Despite the growing adoption of smart factory strategies to increase cost-efficiency and
productivity [6], the use of this paper conformity list is still quite customary [1]. Because
it depends on highly trained human observers, this method is quite tolerant towards
environmental and minor product variations. However, it relies heavily on the worker’s
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memorization and recall abilities, which must be performed accurately, quickly and reliably
in every single inspection, despite any model updates that add and/or remove vehicle
components. This entails major drawbacks: it induces worker ocular and mental fatigue,
inattentiveness, differences in proficiency levels, costs associated with constant worker
training, etc. [4]. Another major issue with the effectiveness of the paper solution is its
inherent inflexible design. The information is not individualized according to the different
workstations, it does not signal previously detected non-conformities, be it on a particular
vehicle or the most commonly detected in a given model, it can not exchange information
with the factory’s network, nor can it be updated in real time, among other limitations [1,5].
In addition, in our specific context, for a non-conformity report to be submitted the worker
must physically walk to access a terminal rather than do so wirelessly, which is another
major inefficiency and source of physical fatigue.

Figure 1. Paper conformity list.

Thus, we propose a hybrid quality inspection approach, tailored for the assembly line
of a Portuguese car manufacturer, and the replacement of the paper conformity list with a
digital counterpart. We combine the automatic detection of the assembled vehicle parts and
the identification of existing non-conformities with an information visualization module on
a wearable device to present the results to the factory worker. The workers can then validate
the flagged non-conformities, produce the quality control report and provide feedback to
the detection system, all without having to leave their posts and without causing mental
fatigue, which in turn increases the workers’ performance. Together with the design of this
novel hybrid quality inspection system, we developed a 3D vehicle generator to integrate
the visualization module and use it to generate data for the detection stage, therefore
eliminating altogether the annotation cost of the proposed solution. To compensate for the
domain gap between simulated and real images collected on the assembly line, we resort
to state-of-the-art domain adaptation methods [7,8] and pseudo labeling (PL) [9], joining
these techniques in a novel way to tailor them to our real application scenario. Finally, we
explore the potential advantages of a fixed camera setup, instead of the current generic
unconstrained approach. Therefore, our main contributions are:

*  ahybrid end-to-end system for automatic quality control in the automotive industry;

*  replacement of the paper based conformity list by a digital alternative;

*  application of state-of-the-art domain adaptation and pseudo labeling techniques in
a novel joint approach to tackle semi-supervised cross domain object detection for
quality control in the automotive industry;

* improvement of a previously proposed [10] multi-purpose 3D vehicle generator.

The rest of this manuscript is organized as follows: Section 2 provides and in-depth
review of the state-of-the-art on quality inspection for the automotive industry. Section 3
introduces the materials and methods, starting with the overall system architecture, and
afterwards diving deeper into each of its modules. Section 4 is related to the validation of
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the proposed solution and the discussion of the obtained results and Section 5 summarizes
the main conclusions and points to future improvements and research directions.

2. State-of-the-Art

The recent advancements in machine learning algorithms and the increase in compu-
tational power, as well as the smart manufacturing strategies brought by Industry 4.0, have
led to the development of computer vision based solutions to address the multiple facets
of automotive production. These can range anywhere from the replacement of expensive
sensors with cameras to visual inspection in manufacturing and assembly, along many
other fields outside the production industry [11]. It is such a profitable field, with such
a high demand for cutting-edge solutions, that commercial companies develop several
hardware, software and services specifically to answer the demanding conditions and
needs of the industrial sector.

The quality control performed through visual inspection is an extremely important
part of the production process. For example, in fault detection, machine and deep learning
algorithms are used to visually identify the occurrence of quality issues, or other structural
flaws in part manufacture and/or assembly. Detection of such faults helps not only with
the correction of the error as soon as it occurs, but its classification can diagnose its exact
cause, thus locating the machine failure that provoked it [12]. Some examples include the
classification of car seat backrests through the combination of speeded up robust features
(SURF) and a convolutional neural network (CNN) by Sun et al. [13], and the inspection of
defects such as cracks, tears or unwanted inclusions, and other elements, via region based
CNN (R-CNN) with a modified stochastic gradient descent with momentum (SGDM) by
Kuric et al. [14]. As an example of fault detection done on welding and solder joints, Pei
and Chen [15] suggest an inspection on door panels through a machine learning algorithm
combined with template matching (based on the Canny edge detector and sequential
similarity detection) for the former and the Hough transform and image segmentation for
the latter.

The classification of surface defects, on the other hand, focuses on the inspection
of fabrics, glass, painted surfaces, etc. to detect any scratches, dents and other minor
imperfections that impact the aesthetic quality of the vehicle, and thus can seriously impact
the brand’s image and consumer opinion. This task can be particularly challenging, as
many of the defects can be quite small, faint and irregular in shape, hidden in the highly
reflective surfaces and by the uneven lighting conditions [16]. Examples range from the
detection of tiny defects on paint surfaces with a combination of a deep convolutional
neural network (DCNN) and YOLOv3 by Chang et al. [17], to the detection of multiple
manufacturing defects on wheel hubs (such as scratches, indentations or oil pollution)
through the use of a Faster R-CNN by Sun et al. [18].

However, despite the constant strides in the field towards automation, workers still
play an important role in the production process. Therefore, there is a strong investment
in the creation of a multitude of tools to help reduce their workload and increase their
productivity [19]. Many are simple maintenance software tools that provide workers with
information on that specific vehicle model, often in the form of augmented reality (AR), or
with instruction manuals on the parts and procedures. Some examples are the AR smart
devices developed by Volkswagen, Bosch, Hyundai and Ferrari [19,20], or the research
done by Lima et al. [21] on the development of an AR markerless tracking system of
multiple car parts, as the base for training and maintenance solutions. Another form of
inspection software are devices developed to support workers in quality control tasks.
These replace the previous paper description of the vehicle with a more flexible, responsive
and efficient solution that can communicate directly with the smart factory [1,5]. Ford, for
example, has developed a smartphone app that serves as a wrist-worn Portable Quality
Assurance Device [22]. Other information visualization research examples are the creation
of a smart visualization framework for door assembly quality control by Gewohn et al. [1],
and of a cognitive assistant AR head-mounted display (HMD) for vehicle defect detection
by Chouchene et al. [20].
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While these solutions definitely help the workers deal with the ever growing amount
of product customization and complexity, not all of them take full advantage of what both
humans and machines can offer when working in unison. Hybrid production lines are
a more cost-efficient solution than the traditional model, as they combine automation’s
ability of processing and analyzing large volumes of data in a fast, repetitive, and precise
way with the human’s higher adaptability and cognitive flexibility. This results in much
more responsive and adaptable production lines in the face of sudden change and updates,
while requiring less adjustments to the systems already set in place [1,4,23]. However,
proper cooperation cannot be achieved if the means of communication are not adequately
designed. More often than not the industry focuses more on functionality and reliability,
completely neglecting more accessibility and usability related factors that make interfaces
easier to read and faster and more intuitive to navigate. This leads to losses in human
performance due to a lack of understanding of the worker’s needs [2,24,25], a serious issue
in a fast paced work environment with zero tolerance for error.

3. Materials and Methods
3.1. System Architecture

The quality control context our solution aims to specifically improve is the final
workstation of the vehicle assembly line, where non-conformities are detected by a human
worker circling around the vehicle to inspect it. This factory in particular assembles the
multi-brand k9 van model, which is customized according to each customer order, meaning
there is no set pattern on which model variant the worker will inspect on any given day,
outside of some being far more common than others. The worker is expected to compare the
assembled vehicle with the paper list, but it was reported that many instead only consult it
when faced with the less common models. The reason given was workers must perform
parallel tasks that require their hands to be free, so short-term memorization becomes
preferable to constant paper consultation. However, this exacerbates the aforementioned
problem of mental fatigue. As for the inspection submission process in the observed factory,
the worker has to abandon his post and walk to a terminal at the end of the line to manually
input the report into the database, which is an added source of physical fatigue.

Therefore, to achieve our goal of addressing these issues via the replacement of the
paper conformity list with a digital counterpart, our hybrid quality control support tool
must [10,26,27]:

*  Describe the conforming vehicle in the factory’s database, along with other relevant metrics;

®  Access the information via scanning of the barcode placed on the assembled vehicle;

*  Use an automated detection system to perform the initial quality inspection of the vehicle;

e Use a wearable device (e.g., Smartglasses) to display the vehicle’s conformity list
alongside the results of the non-conformity detection, both in a visual format;

e Allow the worker to confirm or cancel each of the results, or submit undetected
non-conformities to the final inspection report;

* Allow the worker to attach a photo and/or text report to each individual
non-conformity;

¢  Update the database information with the results of the automated detection and the
final inspection report submitted wirelessly by the worker;

*  Use the submitted feedback to refine the automated detection system and improve
its performance.

The final design of the quality control support tool is divided into two sections: the
automated detection, and the human interaction modules (Figure 2). The automated
detection of non-conformities is performed at the beginning of the workstation’s line,
where a set of mounted cameras are installed to capture the vehicle from multiple, fixed
angles as it enters, in order to reduce the system’s error. The module begins by detecting
the vehicle’s barcode sticker and use it to fetch the respective information from the factory’s
database. It then takes the list of parts that form the fully conforming vehicle and compares
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them to the detected ones in the assembled vehicle. The result of the comparison serves as
that vehicle’s non-conformity list, which is stored in the database.

Automated Detection

Scan Vehicle’s N Fetch Part List
i Barcode from Database

Detect
Vehicle’s Parts

Store Comparison
Result in Database

Do they match? (Non-Conformity List)

Scan Vehicle’s Inspect Remove ‘ End (?f
Barcode Vehicle’ Parts Non-Conformity inspection?

v (mobile device) *,Q
Fetch Updated Confirm
Non-Conformity Submit Report | |
¢ to Database | !

¥

-> Part List from

‘ Database
\L Do they match Attach
Generate Visual | |  with the detected Part’s Report |
Conformity List non-conformities?

Figure 2. System architecture of the final quality control support tool, that combines automated
non-conformity detection with human feedback.

The human interaction (or information visualization) module, on the other hand,
involves the visualization of the digital information on a wearable device, which the
workers use to perform the inspection on each vehicle. When the worker uses the device’s
camera to scan the barcode, the module accesses the factory’s database and fetches the
updated part list. That information is used to generate a visual representation of the
conformity list of the parts specific to that quality control post, with all the non-conforming
parts flagged by the automated detection highlighted in red. The worker circles the
assembled vehicle to perform the inspection on each side, comparing the observed parts
with the ones presented on the wearable device. The worker uses the interface to confirm if
the non-conformity results of the automated detection highlighted on the device are indeed
correct, or removes the incorrect ones. For each detected non-conformity they attach the
respective individual report in the form of photos and/or descriptive text of the assembled
part. Once the inspection is completed all the information is submitted wirelessly to the
database before the worker moves on to the next vehicle.

This hybrid approach allows us to take advantage of what both sides have to offer
to mitigate the types of errors produced by each [1,3,4,28]. On one hand, the automated
detection system, paired with a visual representation of the parts, reduces memorization
over reliance and fatigue induced oversight in the workers. On the other hand, the workers’
expertise and versatility is leveraged to provide feedback to the automated detection and
correct its mistakes, in a continuous refinement loop.

3.2. Vehicle Generator

Alongside the quality control support tool, we developed a 3D vehicle generator
of the multi-brand k9 van model (kSim9). kSim9 is a multi-purpose simulator, capable
of converting the vehicle’s digital information into a full 3D visual representation of
the correctly assembled vehicle, as well as any other possible combinations. This fully
autonomous module was developed as a time and cost saving tool, as it can be used as
a training simulator, both for workers [29] and detection algorithms based on simulated
data [10], among many other applications. By not depending on still images to form its
database, all parts and components can be viewed from any angle, in any lighting condition,
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making the updating process of both the vehicle models and detection system less time
and resource consuming.

To develop the kSim9, 3891 photos of commercial and family models of Citroén and
Peugeot vehicles were taken at the Peugeot Société Anonyme (PSA) Mangualde final quality
control workstation. From those, 259 distinct components were identified, with only 43
of them being identified as variable (Table 1). These 43 variable components resulted in
53 classes, considering that we distinguish left and right variants of the same object. For a
detailed description of the resulting class taxonomy and their corresponding objects, please
refer to Table A1 in Appendix A.

Table 1. List of all variable component types according to their planes of location.

Location Front Back Sides Top
. Side panel
To.p light Front door pillar
Window .
. . Mirror
Window hinges
. . XTR logo
Fog lights Wiper
. . Door handles
Components Fog light embellishers Door handle Back door Roof bars
P Grille rim Side lights

Back door window

Bumper bar Brand logo Window panel
Model logo .
Rear window
Bumper .
Rail
Bumper bar

Tire covers

All elements were modeled in Blender 2.8 (https://www.blender.org, accessed on
5 September 2020) and imported to Unity3D (https://unity.com, accessed on
15 November 2021) to build the validation tool used by the factory management and expert
observers to confirm the reliability rate of the generated vehicles prior to the development
of any software that would use the kSim9 as one of its components. The generator was
deemed as an accurate visual representation of the conformity list sample in use, with a
reliability rate of 100% [29].

This generator is crucial for providing training data to the automated detection module.
Since we do not have ground-truth annotations for the real images collected on the shop
floor, kSim9 provides us with an unlimited source of data, with the flexibility to explore
several camera angles and lighting conditions, achieving as much variability as desired.
More importantly, this simulated data are automatically annotated with object detection
bounding boxes after some simple processing, as detailed in [10], which eliminates the
annotation process altogether.

Previous works [10,30] already made use of this tool to generate a simulated dataset.
We now introduce an updated version that includes refinements of the vehicles and their
customization options, as well as a curation of the codes given to each vehicle part. Other
improvements encompass more realistic colors and textures (first two columns of Figure 6).
This new version includes 40 frames per each of the different 49 car configurations for
training and 10 for validation, resulting in a total of 1960 and 490 images in each set,
respectively, and a total of 53 macro categories and 150 content-based image retrieval (CBIR)
codes (for an explanation of the difference between the two please refer to Section 3.3.2).
The previous dataset [10] had around 17 times more images, but preliminary experiments
showed that with this smaller counterpart the training time decreased significantly and
the performance of the system on simulated images was not significantly hindered and
even improved on real images (further details in Section 4.1). Another difference between
both datasets is related to the dimensions of the images, where instead of images of
512 x 512 pixels in size, we generate images with the same resolution as the real ones, i.e.,
1280 x 720 pixels, in an effort to further approximate the two domains.

For the sake of consistency and comparability with previous works [10,30], we main-
tain the real test set of 10 videos of 10 different vehicles collected on the real assembly line,
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resulting in 100 test images. Note that we do not have bounding box annotations for these
images; we have, for each video/car, a list of its constituent parts.

3.3. Automated Detection
3.3.1. Related Work

Deep learning-based solutions require large amounts of labeled data, which is time-
and resource-wise costly to obtain. This is aggravated in object detection, where each
object needs to be localized and classified. Using synthetic data from simulators is a viable
alternative; although developing a 3D model is challenging and time consuming, it is
a one-time investment that can produce an unlimited amount of automatically labeled
data [10,31] and the resulting model can be used for visualization.

Notwithstanding, there is an inherent domain gap between simulated and real data,
that can be bridged by several strategies [32], including image-to-image translation. An
unpaired translation model converts one domain into the other, reducing distribution shift
such that the detector performs better on the target data [33-35]. However, the detector
never sees images from the target domain, given that they are usually unlabeled. Pseudo
labeling is able to leverage the unlabeled instances by fine-tuning the detector on highly-
confident predictions, progressively improving them [32,36].

Inoue et al. [37] combine both paradigms to perform cross domain object detection.
However, traditional pseudo labeling was not designed for object detection, so Liu et al. [9]
propose an unbiased mean teacher to tackle the inherent foreground /background imbal-
ance of these tasks. After training on labeled source data, a teacher model generates pseudo
labels for the unlabeled target domain, which are used as supervision for a student model,
that, in turn, updates the teacher with what it has learned via Exponential Moving Average
(EMA). The process is repeated so both evolve jointly and the pseudo labels given to the
student are continuously being improved. Thus, the teacher can be regarded as a temporal
ensemble of the student at different time steps.

The teacher-student learning paradigm suffers from bias towards the source domain,
so Deng et al. [38] convert target images using a Cycle Generative Adversarial Network
(CycleGAN) [7] to give as inputs to the teacher, while the student receives original target
images, to perform knowledge distillation. The student is also trained with both original and
target-like source images, mitigating its bias towards the source domain. Although powerful,
this approach requires translation in both directions, implying having either a cyclic model
or training two translation models. Therefore, we hypothesize that combining the approach
from [37] with an object detection-specific pseudo labeling method such as [9] might be more
suitable for our particular application.

Despite the plethora of works on semi-supervised cross domain object detection using
simulated data, this is, to the best of our knowledge, the first work to incorporate all these
concepts and methods to automatic quality control in the automotive industry.

3.3.2. Baseline

The automated inspection of the assembled vehicle is performed by an ad hoc hier-
archical deep learning-based architecture introduced in [10] and improved upon in [30].
It is represented at the top of Figure 3: in a first stage, Detectron2 [39] performs object
detection, considering macro categories, i.e., the location (front, back, left and right) and
part (e.g., mirror, light, etc.) codes. Each detected object is cropped and given to the
CBIR module of its detected category. In this second stage, a feature extraction network
(ResNeXt-50 32x4d [40] pretrained on ImageNet) obtains a latent representation of the
cropped object, which is compared via Euclidean distance to the representations of all the
training set objects of that same macro class. Then, the part codes of the top-3 instances
with the lowest distances are voted to obtain the predicted code of the object. This code
now includes the brand, model and material information for each object (e.g., the light of a
commercial Peugeot). After all images of a vehicle are processed, a list of the detected parts
is generated for comparison with the corresponding production list.
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Automated Detection Overview

@
Class 0 D Part 1

@ Part 2

[:] Part 3
@ Detected Parts List
—_—

Class N-1

Object Detector

Object Detector Training

Unlabeled Real Images
Domain v

Adaptation Teacher
Object Detector

Labeled Images

l pre-train

Object Detector |-~

Real Images
lfine—tune ‘Lfine—tune
Student
____________ > i AU U U —
Object Detector Object Detector

pseudo
labeling

EMA

Labeled Converted Images

Figure 3. Overall architecture of the hierarchical automated detection module (top) and its iterative
training process (bottom). First, an object detection neural network identifies vehicle parts (e.g., left
rear view mirror) and each object is forwarded to the corresponding retrieval sub-module, responsible
for outputting the final code for each part (e.g., left rear view mirror of a commercial Peugeot). The
training process can be viewed as a semi-supervised object detection pipeline with 3 main stages:
pretraining on labeled simulated images which are later converted into more realistic versions, which,
in turn, are used to fine-tune the detector. Training is completed by combining both labeled converted
images with pseudo labeled real images, in a teacher-student framework with Exponential Moving
Average (EMA) updates of the teacher. The dashed arrows represent the weight transfer between the
models obtained at each stage.

The hierarchical nature of the system is based on the premise that new vehicle com-
ponents are far less likely to be introduced than new versions of existing components. As
such, this two-stage approach allows increased scalability and versatility since introducing
a new version of a given part (e.g., another version of a tire cover) only implies adding
(unlabeled) examples to the corresponding CBIR database and avoids retraining the whole
object detector from scratch.
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3.3.3. Improvements

The baseline was trained solely on simulated images, the only ones that had bounding
box annotations. Despite the realness of these simulated images, there is still a domain gap
between the simulated and real data distributions, as can be perceived by looking at the
second and last columns of Figure 6.

Previous work [30] tackled this issue by training a CycleGAN [7] with an added
semantic consistency loss. More recently, the CycleGAN authors proposed Contrastive
Unpaired Translation (CUT) [8], which outperforms CycleGAN while being faster and
more lightweight, since the conversion is now unidirectional instead of bidirectional. CUT
achieves this by employing contrastive learning at the patch level: a generated patch is
encouraged to map to a similar point in the learned latent space as its corresponding input
patch, while being further apart from other (random) patches. Similarly to what had been
done in [30], we also introduced DiffAugment (Differentiable Augmentation) [41] in CUT.

Hyperparameter selection was done empirically taking into account the suggestions
offered in the original CycleGAN and CUT papers and, to compare both domain adaptation
approaches, both models were trained for 100 epochs with an initial learning rate of
2 x 107* and a batch size of 1. The images were resized to 256 x 256 pixels by center
cropping after resizing the longest edge, and DiffAugment involved color, translation and
cutout transformations. For the source domain we used the 1960 images from the simulated
train set and for the target domain we used 2285 images sampled from videos collected
on the real assembly line. For more details on the training hyperparameters of CycleGAN
please refer to [30]. With CUT, after preliminary experiments with lower values, we set the
PatchNCE loss scaling hyperparameter to 5 to obtain more conservative translations.

After training the Detectron2 on simulated images and fine-tuning on their domain
converted versions, inspired by [37,38], we employed pseudo labeling to be able to fine-
tune the model on real unlabeled images. We focused on the work of Liu et al. [9],
because, besides the advantages stated in Section 3.3.1, the authors made their PyTorch
code publicly available (https:/ /github.com/facebookresearch/unbiased-teacher, accessed
on 8 January 2022) and it is directly built upon Detectron2. It is worth noting that in this
process the labeled instances are still being used together with the pseudo labeled examples.
The authors also include a confidence threshold to filter predicted bounding boxes with
low confidence and prevent confirmation bias or error accumulation. In our experiments
we set this threshold to 0.7 and the unsupervised loss weight to 2.

In summary, the whole object detection training process can be divided into 3 phases,
as depicted at the bottom of Figure 3: training on labeled simulated images, fine-tuning on
their domain adapted versions, and fine-tuning on the latter together with pseudo labeled
real images.

For all phases we resized the images to 640 x 360 pixels, used a learning rate of 0.01,
a batch size of 4 (In the pseudo labeling stage, each batch included 4 labeled simulated
images and 4 pseudo labeled real images.), a confidence threshold on the Detectron2’s
predictions of 0.5 and 0.1 for the Non-Maximum Suppression (NMS) threshold. Similarly
to what had been proposed in [30], global NMS was applied in every experiment to reduce
the number of bounding boxes in the same location, keeping only the most confident ones.
Training was conducted for 58.8k, 29.4k and 20k iterations for each phase, respectively.

All developed code was implemented in Python 3.8, more specifically in PyTorch
[42]. We adapted the original code from the Detectron2 (https://github.com/facebookr
esearch/detectron2, accessed on 23 November 2021), CycleGAN (https:/ /github.com/j
unyanz/pytorch-CycleGAN-and-pix2pix, accessed 5 December 2021), CUT (https:/ /gith
ub.com/taesungp/contrastive-unpaired-translation, accessed on 17 December 2021) and
Unbiased-Teacher https:/ /github.com/facebookresearch /unbiased-teacher, accessed on
8 January 2022) repositories. In terms of computational frameworks, CycleGAN and CUT
were trained on an NVIDIA GeForce RTX 2080Ti graphics card with 11 GB of memory and
an Intel i7-9700K processor, taking approximately 21 and 11 h, respectively. All Detectron2
models were trained on an NVIDIA GeForce RTX 3080 graphics card with 10 GB of memory
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https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/facebookresearch/unbiased-teacher
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and an AMD Ryzen 7 3700X processor. Regarding training times, the three training phases
took approximately 7, 3 and a half and 5 h, respectively.

We further improved the performance when inferring on real images by domain
adapting the retrieval databases. The rationale is that performing the search of a real object
in databases whose images are closer to this real domain will refine the retrieval stage.

3.3.4. Fixed Camera Setup

We also hypothesized that training with images collected by fixed cameras, as opposed
to the current generalist scenario that simulates real data collection via a mobile device,
would further improve the detection performance in the context of an automotive assembly
line. In this fixed camera setup (FCS), besides keeping the image capturing conditions
constant, it would be possible to have one object detector per camera and obtain more
specialized and accurate models.

In the current solution the detector needs to be able to detect 53 classes. We esti-
mate that in a FCS each detector would have to detect a minimum of 12 and a maximum
of 26 classes (This estimate was reached by considering that we have collected 10 sam-
ples/views/perspectives from the videos of each test car and by computing the average
number of object classes visible in each view.). This would not only increase the overall de-
tection performance, but the detection speed as well, due to the possibility of parallelization.
To test the viability of this option, the following steps were followed:

* each image in the real test was labeled with its visible vehicle view(s) and their
corresponding objects

* any left/right discrepancies were corrected, by switching the incorrectly detected
sides to match the one present in the corresponding view(s) (this was only applied to
images with one visible side of the vehicle, not to images where both left and right
sides are visible)

* the detected objects that did not belong to the given view(s) were eliminated

Note that these situations would never occur in a FCS, because the corresponding
detector would only have been trained on objects specific to that view, meaning it could
not detect an object from the right side of the car if trained with images from the left view.

Since the adopted class taxonomy separates front/back and left/right objects, there
are no repeated classes (e.g., although there are 4 car rims, they each have their own
Detectron2 macro class), which means that multiple detections of the same object stem
from having 10 views of the same vehicle and not from more than one object with the same
class. Therefore, we can use any of the detections (or combinations of them such as majority
voting, for example) to produce the final CBIR code for a given object. Taking this into
account, we post process (PP) the final list of predicted vehicle parts by the code with the
minimum ratio between the CBIR distance (This corresponds to the Euclidean distance
between the query object and its closest training data neighbor of the same macro class.)
and its Detectron2’s confidence score. This way we are able to choose the detections with
the best trade-off between both Detectron2 and CBIR modules.

3.4. Information Visualization

While the automated detection subsystem aims to eliminate human errors caused
by inattentiveness or fatigue, by performing a preliminary inspection of the vehicle’s
parts and providing a list of the non-conforming elements for the workers to validate, the
information visualization module aims to convert those results into a more meaningful
format to aid the workers. By providing a visual representation of each part that composes
the tailored conformity list with the detection results highlighted, the workers can interact
with a wearable device through an intuitive interface that streamlines the inspection tasks.
The goal of the final quality control support tool is to increase the worker’s speed and
efficiency, while also reducing fatigue through the removal of the mental strain caused by
constant memorization and recall. This requires an interface that is effective and efficient at
presenting the information.
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In order to determine which of the multiple interface designs best met the workers
needs, a preliminary study was performed on the information visualization of the confor-
mity list and highlighting of the non-conforming parts (Figure 4). Each paper prototype
was evaluated on their effectiveness at quickly and easily conveying information and ease
of interaction, until 5 design choices were selected for full development:

¢  Part buttons with the visual example and name label;

*  Part buttons show/hide according to the side of the vehicle being viewed;

* 3D visual representation of the fully conforming vehicle;

¢ Buttons’ font and 3D parts’ color changes to signal non-conformities;

e  Text and photo icons on each part button to signal which individual report was
attached to the non-conformity.

Embellisher Back Door Mirror Short Rail .
Neutral Color in Sheet Metal Neutral Color Black Matte Embellisher

Neutral Col
ae an as e SHE RO

Grille Rim Model Logo Side Panel Tire Cover

Grey Rifter Neutral Color 15P Grey

Rear Bumper
Neutral Color

Model Logo Tire Cover
Rifter 15P Grey

Door Handle
Neutral Color Rear Bumper | Door Handle
. . Neutral Color f§ Neutral Color

Figure 4. Examples of different studies of the information visualization of the conformity list, with

particular focus on the highlighting of the non-conforming parts.

This final interface study (Figure 5) was presented to 2 factory quality control experts,
prior to its full implementation on the factory floor, to confirm the internal validity of
the information presented (e.g., incorrect part names) and to determine the usability and
usefulness of the current design. This was done by having them perform their inspection
tasks with the digital replacement of the paper conformity list and ask a Technology
Acceptance Model (TAM) on the Task-Technology Fit Model (TIF) questionnaire [2]. The
integration with the automated detection results was not performed at this stage, as that
information was not relevant for the test.

The test is composed of 2 applications, an assembly line simulator that represents the
vehicles to be inspected, and the support tool prototype that simulates the mobile device
the workers will perform the inspection with. Both were developed in Unity3D.

The goal of the assembly line simulator is to provide a controlled test environment
where all the vehicle configurations and respective non-conformities are known ahead of
time. Thus, it avoids dependence on a list of real vehicles, ordered by the clients, that might
not contain enough diversity for this test’s purposes. The simulator uses the previously
developed kSim9 [10,27] to generate the list of 6 conforming kSim9 vehicles (3 Citroén
and 3 Peugeot, 3 commercial and 3 private models) and adds the predetermined non-
conformities (tire covers, brand and model logos) to some of them. It also generates the
vehicle’s barcode with the ZXing plugin [43]. This application is meant to be viewed on a
PC monitor, so the inspectors can circle the vehicle via the arrow keys or navigation buttons
and click on the list of parts to zoom in to inspect in more detail.
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Figure 5. Smartphone design of the conformity list interface of the information visualization proto-
type. The worker can use the four navigation buttons on the bottom to rotate the 3D representation of
the fully conforming vehicle and compare it with its assembled counterpart. The list of scrollable part
buttons on the right changes according to which face of the vehicle is being viewed. Any signaled
non-conformity changes the color of the respective button and 3D part model to red, and adds a text
and/or photo icon to the button as a visual reminder of the type of report the worker performed.

As mentioned, the goal of the interface prototype is to simulate almost all of the
support tool’s functionalities for the inspectors to test, validate the accuracy of all the
information presented and provide important feedback. Its results also inform some of
the design decisions on how to best integrate the automated detection in later tests. Once
the prototype reads the barcode presented by the simulator with the ZXing plugin [43], it
uses the kSim9 to generate both the visual representation of the correctly assembled vehicle
and the images for each of the parts buttons. When a button is clicked, the non-conformity
is flagged as red by changing both the button’s font and the 3D component’s color, while
a text and/or photo icon shows on the button to signal the type of report submitted in
each (Figure 5). An Android smartphone was selected as the stand-in wearable device for
its inherent interaction familiarity, quicker prototyping and closer size to wrist mounted
devices. Other devices were considered, such as HMD, but several outside factors restricted
our choices at the time of this research.

The questionnaire (Table A2 in Appendix A) was performed remotely, due to Covid
restrictions, by monitoring each interaction with the software individually and then have
each worker rate their subjective impression with a Likert scale from 1 (strongly disagree)
to 5 (strongly agree). The questions measured [2]:

¢ Perceived Useful Scale (6 questions)—how much the individual perceives the use of
the software can enhance their work performance;

e Perceived Ease of Use Scale (4 questions)}—how much the individual perceives the
software to make tasks be easy to perform;

¢ The Right Data and Right Level of Detail (5 questions)}—how well the individual felt
the software provided the correct amount of information in the right amount of detail;

*  Ease of Software Use (2 questions)—how easy it felt to the individual to learn how to
use the software without prior practice;

* Look and Feel (2 questions)—how intuitive and visually appealing the individual
found the software to be.

Additionally, 4 open questions were asked regarding the worker’s general opinion
of the support tool, which features were particularly good, which were bad, and if they
considered it a useful tool to their work.
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4. Results and Discussion
4.1. Automated Detection

Results from the first 2 training stages can be found in Table 2; these refer to the results
on labeled simulated images (before and after domain adaptation) in terms of the mean
average precision (mAP) over all intersection over union (IoU) thresholds from 50% until
95% with 5% increments and AP at 50% and 75% IoU. Although the new version of the
simulated dataset has around 17 times less examples, the performance of the detector is
not severely hindered, having gone from 86.76 [10] to 82.13 mAP, and, more importantly, it
improved on the real test dataset, as will be discussed later.

Table 2. Detection results obtained on simulated images, before and after domain adaptation, in
terms of mAP and AP at 50% and 75% of IoU. The first column refers to the training process and the
second specifies the test data for each scenario; for example, the 3rd row refers to the performance
when training on simulated images and testing on CycleGAN converted images, while the 6th row
refers to fine-tuning and testing on simulated images converted by CycleGAN. We include the results
from [10] for comparison.

.. Detection
Training Data
mAP AP@50 AP@75
simulated 82.13 93.99 90.38
From scratch CycleGAN 69.23 83.91 78.66
CUT 42.89 58.43 49.15
. . simulated 77.41 90.80 86.71
Fine-tuning w/CycleGAN ¢ oGAN 80.53 93.08 89.53
. . simulated 75.25 89.45 84.43
Fine-tuning w/CUT CUT 77.26 92.15 86.76

As expected, the performance of the detector trained on unaltered simulated images
decreases when testing with domain converted images (2nd versus 3rd and 4th rows of
Table 2) due to the domain gap introduced. When fine-tuning on the adapted data, mAP
increases without significantly decreasing on original images; for example, after fine-tuning
with CUT converted images, the performance improves from 42.89 to 77.26, while the mAP
on the original set only decreases from 82.13 to 75.25. Interestingly, this improvement (and
the decrease on original images) is more accentuated with CUT than with CycleGAN. This
hints that CUT is able to better approximate the simulated to the real domain, which is also
corroborated by the Fréchet Inception Distances (FID) [44] presented in Table 3: after the
conversion with CUT, the FID between the resulting distribution and the real domain is
lower than with CycleGAN (56.87 vs. 60.04), while being higher for the original domain
(58.17 vs. 35.40) (The closer two distributions are, the lower the FID.). These conclusions can
also be visually verified in Figure 6, where the progression from the simulated (“Simulated
(new)”) to the real domain via CycleGAN and CUT is shown, as well as a comparison
with the old version of the simulated dataset. In general, both methods tend to darken the
original image, make the surface finishes less dull/more metallic, and introduce reflections,
but these are more accentuated with CUT (see the 3rd and 6th rows). It is also interesting
to note that CUT introduces more texture to the floors (1st and 5th rows), transforms the
background pillars into vertical lights (rows 2, 3, 4 and 6), and makes the glass windows
more see-through (2nd row).

The results regarding the performance of the system on real unlabeled images, the
main focus of this work, can be found in Table 4 and Figure 7. Similarly to previous
works [10,30], due to the lack of ground truth bounding boxes for real images, we frame
the problem as multi-label multi-class classification, in which for each vehicle we obtain a
list of detected parts and compare it to the ground-truth list.
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Simulated (old)

Table 3. Fréchet Inception Distances (FIDs) between the simulated/real domains and the domain
adapted versions of the simulated images by CycleGAN and CUT. Lower FIDs mean closer distribu-
tions, so CUT achieves better approximation to the real domain.

FID w/ CycleGAN FID w/ CUT
Simulated vs. Adapted 35.40 58.17
Real vs. Adapted 60.04 56.87
Simulated (new) Adapted w/ CycleGAN Adapted w/ CUT Real

Figure 6. Examples of domain adapted images with CycleGAN and CUT, and their comparison to
real images collected on the factory floor. We also include a comparison between the old and new
versions of the simulated datasets on the first two columns.

Table 4 contains the label- and example-based metrics of the improvements proposed:
the baselines of previous published works (Baseline [10] and CycleGAN [30]), the updated
Detectron2 baseline trained on the new simulated dataset, the fine-tuned versions with
CycleGAN and CUT converted images, and the remaining improvements upon CUT,
including pseudo labeling (CUT + PL), the conversion of the CBIR databases (CUT + PL +
CC), the simulation of a fixed camera setup (CUT + PL + CC + FCS), and post processing
(CUT + PL + CC + FCS + PP). For label-based precision, recall, F1-score and Matthews
Correlation Coefficient (MCC) we report both macro and micro averages. For every metric
higher is better, except for the Hamming loss. As stated in Pinho et al. [30], our primary
metric of interest is the example-based F1-score because we prefer high detection rates for
each vehicle in detriment of high detection rates for each category (i.e., the label-based
alternative) and, more importantly, the F1-score not only takes into account both precision
and recall, but does not consider true negatives. This is paramount in our context, since
one vehicle does not include all possible parts. As such, one model might have higher
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accuracies by increasing the number of true negatives at the expense of true positives,
which is less reflected in the F1-score. Thus, the last two columns of Table 4 include the F1-
score improvements upon the baselines, in percentage and percentage points (pp). Finally,
we present the multi-label multi-class metrics for the final 150 CBIR codes and for the 53
Detectron2 macro classes.

Table 4. Multi-label multi-class classification results on the real test set. We present label- and
example-based metrics for both stages of the hierarchical process (detection and CBIR). For label-
based precision, recall, F1 and MCC we include both macro and micro averages. Our main per-
formance metric is the example-based F1 score, for which we include the improvement relative to
the corresponding baselines in percentage and percentage points (pp). For every metric except the
Hamming loss, higher is better.

Label-Based Example-Based
Method Acc Prec. Rec. F1 MCC Acc. Prec. Rec. Hamm.(]) F1 | F1 . 1
improv. % improv. pp
Detectron2 Macro Categories

Baseline [10] 0.656 0462 0.647 0419 0449 0394 0.530 0.198 0.284 | 0.357 0.647 0.446 0.344 0.528 - -
CycleGAN [30] 0.652 0491 0.594 0550 0.616 0455 0.605 0.166 0.294 | 0435 0.600 0.617 0.348 0.609 15.34 8.10

New Baseline 0.642 0.800 0.954 0535 0581 0.599 0.722 0.093 0.372 | 0576 0.958 0.596 0.358 0.735 - -
CycleGAN 0.692 0.730 0.965 0585 0.640 0.623 0.769 0.107 0.435 | 0.635 0.964 0.653 0.308 0.778 5.850 4.30
cuT 0.753 0.898 0.951 0.683 0.729 0.734 0.826 0.134 0473 | 0.706 0.950 0.738 0.247 0.830 12.93 9.50
CUT +PL 0.794 0.870 0914 0812 0.821 0.808 0.865 0.173 0.450 | 0.759 0911 0.824 0.206 0.865 17.69 13.0
CUT +PL + FCS 0.857 0.874 0923 0.889 0.896 0.868 0.909 0.218 0.569 | 0.830 0.919 0.899 0.143 0.909 23.70 17.4

CBIR Final Codes

Baseline [10] 0.709 0.295 0438 0322 0359 0264 0395 0.154 0207 | 0244 0426 0.356 0.291 0.388 - -
CycleGAN [30] 0.671 0.284 0.401 0428 0498 0293 0444 0.140 0217 | 0289 0.403 0.497 0.329 0.445 14.70 5.70

New Baseline 0.709 0.326 0.484 0372 0421 0305 0450 0.185 0.255 | 0295 0.478 0.435 0.291 0.455 - -
CycleGAN 0.703 0.305 0.476 0.400 0468 0311 0472 0.176 0.266 | 0.326 0.479 0.487 0.297 0.483 6.150 2.80
CuT 0.707 0.394 0484 0458 0529 0371 0.506 0.224 0298 | 0.347 0.484 0.545 0.293 0.513 12.75 5.80
CUT +PL 0.692 0.360 0.468 0536 0.645 0395 0.543 0.220 0.328 | 0.374 0.469 0.651 0.308 0.545 19.78 9.00
CUT+PL+CC 0.713 0403 0495 0528 0.635 0412 0.556 0.264 0.355 | 0.398 0.503 0.646 0.287 0.565 24.18 11.0
CUT + PL + CC + FCS 0.721 0424 0506 0.565 0.680 0.445 0.580 0.291 0.388 | 0.423 0.513 0.691 0.279 0.589 29.45 13.4
CUT+PL+CC+FCS+PP 0.773 0.440 0.603 0482 0586 0425 0.594 0.326 0.437 | 0.440 0.605 0.598 0.227 0.601 32.09 14.6

The new baseline clearly outperforms its older version, achieving 0.735 (macro) and
0.455 (CBIR) example-based F1-scores compared to the previous 0.528 and 0.388. It even
performs better than the previously domain adapted version (CycleGAN [30]). This allows
us to conclude that the updated dataset with its improved vehicle colors and textures,
although 17 times smaller than the original, is clearly more adequate for our task.

Fine-tuning with CUT converted images leads to a 5.8pp improvement over the new
baseline compared to the 2.8pp improvement obtained with CycleGAN, which is consistent
with previous observations. Pseudo labeling further boosts performance, resulting in a
9pp improvement, and converting the CBIR databases with CUT improves the Fl-score
from 0.537 to 0.565, an overall improvement of 11pp.

Detection examples can be found in Figure 7. After fine-tuning with CycleGAN and
CUT converted data there is a slight increase in the number of detected instances and a
reinforcement of the confidence scores. Pseudo labeling greatly improves the number of
detected instances. However, there are still some failure cases, mainly switches between
left and right (note that we consider the left side the driver’s side) and in particular the
image on the 4th row. The detector identifies some objects as belonging to the back of the
car, (e.g., door handles identified as plate lights, B.PILi, on columns 2 and 3). After pseudo
labeling they are identified as door handles, but still from the back of the car (B.Hn instead
of SFL.Hn). Moreover, there seems to be an excessive amount of detections inside the
window. However, these are not completely misplaced: there is a reflection of the rear view
mirror (pink SFL.MrBs bounding box) on the left side of the vehicle, the rear view mirror
on the right side (blue and orange SFL.MrBs boxes) is visible through the windows, one of
the headrests (white SFL.MrBs box) looks similar to the back of a rear view mirror, and the
right door pillar (red SFL.DrPi box) is visible through the windows. In fact, side views of
the vehicles are currently the most challenging, since these are the most discrepant from
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Baseline
-

the simulated image (in most simulated images of the side of the car more than 50% of the
vehicle is visible, while in the real images the perspective includes only the front or the back
halves of the car separately). We wish to correct this in future versions of the simulated
data if the collection of real images continues to be done in this mobile scenario. Another
alternative is the fixed camera setup described in Section 3.3.4, whose simulation improved
the example-based F1-score from 0.565 to 0.589 and 0.601, before and after post processing,
respectively. The results can be observed in the last column of Figure 7, where there is a
correction of the left/right mismatches (e.g., on the first row the light blue bounding box
of the car rim SFR.Tr was switched to SFL.Tr) and a decrease in the number of detected
objects, especially on the 4th row. This confirms the viability of the solution, especially
considering that we are interested in solving this specific problem for this particular factory
environment, as opposed to finding a general approach.

CycleGAN ) CUT + PL CUT + PL + FCS

5instances g 0 10instances g

Figure 7. Examples of detection results on real test images with different improvements upon the
Baseline, including fine-tuning with CycleGAN and CUT converted images and fine-tuning the
latter model with pseudo labeling (PL) of real images. The last column represents the results of the
simulation of a fixed camera setup (FCS).

4.2. Information Visualization

While the number of samples collected does not provide enough variation to be statis-
tically significant, the goal of only having 2 experts performing the qualitative evaluation
was to validate the design choices by argument from authority, so glaring errors that can
negatively impact worker performance, and thus skew the results, could be corrected
before proceeding with the test on the factory floor. Only minor text corrections were
requested, but the qualitative evaluation of each criteria the questions belong to provided
useful insight on the workers’ priorities, needs and capabilities that inform future design
decisions. One of the questions in the Perceived Ease of Use criteria was excluded due to a
semantic misinterpretation resulting in a missing value.

As seen in Table 5, all criteria were rated above 3.50 (1 to 5 Likert scale). Both workers
show a great degree of internal consistency, with the reason for Inspector 2 giving a
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lower average score being different standards of evaluation, as confirmed by the feedback
provided in the open questions. Inspector 1 put particular emphasis on how the support
tool would help reduce fatigue, the skill gap between workers and factory costs, while
Inspector 2 paid more attention to design flaws and pointed out some improvements (larger
screen and button image resolution and removal of the 3D visual representation). Both
stated how useful this tool would be to their line of work, particularly at how easy and fast
it makes the identification and reporting of non-conformities, and how much the existence
of an integrated camera and the notes options facilitate the documentation process.

Table 5. Mean and standard deviations of the quantitatively measurable criteria of the TAM and TIF
questionnaire, presented to quality control inspectors for validation of the information visualization module.

Criteria Inspector 1 Inspector 2

Perceived Usefulness 4.83 +0.37 4.50 + 0.50
Perceived Ease of Use 4.50 = 0.00 4.00 = 0.00
Right Data and Level of Detail 5.00 + 0.00 4.00 £ 0.00
Ease of Software Use 5.00 = 0.00 4.50 + 0.50
Look and Feel 5.00 £ 0.00 3.50 + 0.50

A set of clarification questions were made outside of the questionnaire, which provided
additional insight into the answers provided:

*  The 3D vehicle representation was considered unnecessary because of their level of
expertise no longer requiring a visual aid to know where each part should be located
in the vehicle. The label description suffices;

* In the paper version the reporting of a non-conformity requires a lengthy written
description of the occurrence, which the support tool partially eliminates just from
having each button associated with the respective part;

e In the paper version the photographic and additional written details of the non-
conformity are optional, due to the additional hassle of uploading the information in
the physical terminal under tight time constraints.

5. Conclusions and Future Research

We proposed replacing the traditional paper-based conformity list, a limited approach
still frequently used in quality control in the highly automated automotive industry, with a
digital version. With this we tackle two major issues, mental and physical fatigue, since the
worker no longer needs to have a detailed mental image of all the items on the lists, nor
needs to physically access a terminal at the end of the assembly line to submit the report,
which also represents an increased inspection time.

Our fully hybrid quality control system aims to integrate the automated detection
of the vehicle parts with an information visualization interface to present the digital
conformity list to the worker, allowing them to verify the non-conforming parts and
wirelessly submit the final report. One of the core building blocks of both modules is a
3D vehicle generator that is used to generate the vehicle parts for the digital conformity
list and to train the automated detection system. The use of simulated data allows us not
only to have unlimited amounts of data with sufficient variability regarding environment
conditions, but also to automatically annotate the images while avoiding the time and
resource consuming process of data collection and manual labeling.

We show that, through incremental improvements upon a hierarchical object detec-
tion baseline trained solely using simulated data, which included domain adaptation of
simulated images and pseudo labeling of real images, we are able to improve by 11pp
the baseline and achieve a final 0.565 example-based F1-score on real images in an uncon-
strained scenario, without any recourse to annotated real data. Moreover, we simulated a
fixed camera setup in which data collection would be performed in a very controlled envi-
ronment and there would be one object detector for each view of the vehicle, and validated
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the viability of this solution, having improved the baseline by 14.6pp (corresponding to
0.601 F1-score).

Furthermore, the internal validation questionnaire conducted with the factory’s quality
control experts confirmed the extreme usefulness of this solution, especially when compared
to the paper one. They found the support tool to be very fast and easy to use, its design
simple and intuitive enough for them to figure out how to navigate and report the non-
conformities without any prior training. Testing the proposed system on the factory floor,
rather than in a simulated environment, would be necessary to confirm how much this
solution would improve the worker’s inspection performance. However, the experts
showed absolute certainty that the support tool would greatly ease the documentation and
submission of the reporting process and prove to be a major asset in aiding their quality
control inspection tasks.

The lack of bounding box annotations for the real data, coupled with the fact that this
work constitutes a preliminary validation before testing on the factory floor, are the main,
current limiting factors of the proposed solution. As such, the immediate next step is to
obtain the aforementioned fine grained annotations and to perform extensive testing on the
factory floor and compare the mobile and fixed camera scenarios. Following the validation
of our hypothesis that a more constrained ad hoc solution specific to the final deployment
scenario is preferable to a generalist approach, it would be interesting to further improve
the system by employing prior knowledge ensuring that vehicle parts that do not physically
fit a certain chassis would not be detected. This is only possible because, in the proposed
Industry 4.0 scenario with a digital conformity list, the system knows, at any given moment,
which vehicle version is being assembled and, thus, which parts would (not) fit its chassis.

Depending on the results obtained on the factory floor, we plan on replacing the kSim9
vehicle generator with official Computer Aided Design (CAD) part models, for higher
fidelity and better automated detection results. We also intend to expand the part library to
include a wider variety of vehicles beyond the k9 van model and adapt the visualization
module into a wider variety of mobile devices, that best suit different workers” needs. Other
next steps include closing the loop by integrating the workers’ validation of the detected
conformities and non-conformities to correct the automated detection module in an active
learning setup. We also plan on further integrating the worker’s expertise by adding to
the visualization module the pseudo labeled real images for each button for individual
evaluation, rather than only presenting the simulated version of the parts. This way the
worker can give the object detector more fine-grained feedback regarding the detection
itself and not only about the classification. Thus, this would constitute a truly hybrid
assembly line, where the machine helps the worker and vice-versa, and where the overall
accuracy and efficiency of the quality control process is improved because it leverages the
best of both worlds in true symbiosis.
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kSim9 Name of the 3D k9 Vehicle Generator

mAP mean Average Precision

MCC Matthews Correlation Coefficient

MLP Multi Layer Perceptron
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YOLOv3 3rd version of the You Only Look Once algorithm



Appl. Sci. 2022,12, 5687 20 of 23

Appendix A

Table Al. Description of every vehicle part code, organized by location. The code is built by
combining the location of the object followed by its initials, for example B.Bb is the bumper bar
located at the back of the vehicle. The following mapping is used: B—back, F—front, S—side, T—top,
M—middle, L—left and R—right. Combinations of the latter can also occur, for example FL—front
left or SBR—side back right.

Location Code Object Description
B.Bb Bumper bar
B.Bm Bumper
B.Hn Door handle
B.Lg Brand logo
B.PILi Plate lights
Back B.TLi Top light
B.Tx Model logo/text
B.Wn Window
B.WnHg Window Hanger
B.Wp Wiper
BL.SLi/BR.SLi Side light
F.Bb Bumper bar
F.BGi Bottom grille
F.Bm Bumper
ETGi Top grille
Front FL.Em/FR.Em Fog light embellisher
FL.FLi/FR.FLi Fog light
FL.MLi/FR.MLi Middle headlight
FL.TLi/FR.TLi Top headlight
FT.GiLg Grille logo
SBL.DrCp/SBR.DrCp Door curved panel
SBL.DrSb/SBR.DrSb Door side bar
SBL.DrWWn/SBR.DrWn Door window
Back Side SBL.Hn/SBR.Hn Door handle
SBL.R1/SBR.R1 Rail
SBL.Tr/SBR.Tr Tire rim
SBL.Wn/SBR.Wn Window
SFL.DrPi/SFR.DrPi Door pillar
SFL.Hn/SFR.Hn Door handle
Front Side SFL.MrBs/SFR.MrBs Rear view mirror
SFL.Tr/SFR.Tr Tire rim
SFL.Tx/SFR.Tx XTR logo
Side SL.Sp/SR.Sp Side panel
Top TL.Br/TR.Br Roof bar

Table A2. List of the TAM and TIF questionnaire questions presented to the the factory’s quality

control inspectors to measure the support tool’s usefulness and how well it meets their needs.

Criteria

Questions

Perceived Usefulness

The tool helps me do the inspections faster.

The tool helps me perform my work in a more systematic way.
The tool allows me to report the non-conformities more quickly.

The tool makes the inspection work easier.

The tool helps me to identify the non-conformities more easily.
I find the tool useful for the tasks performed during the inspection.
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Table A2. Cont.

Criteria Questions

The use of the tool is easy to understand.
The use of the tool is flexible.
It’s easy to perform the inspection tasks using the tool.
The tool is easy to use.

Perceived Ease of Use

The information presented by the tool is the one I need to perform the inspections.
It’s more difficult for me to perform the inspections using the tool because the necessary information
Right Data and is lacking,
Level of Detail The tool provides enough textual and visual information.
In the case of non-conformities, the tool allows the recording of the necessary details.
The tool allows me to read the information and to visualize the parts simply and quickly.

It’s easy to learn how to use the tool.

Ease of Software Use The inspection support tool is adequate and easy.

Using the tool is intuitive.

Look and Feel I like the look of the tool.

What's your general impression of the tool?
Are there any positive aspects that you want to highlight about the tool?
Are there any negative aspects that you want to highlight about the tool?
Would you like to use a tool like this to support you in the inspection tasks you perform?

Open Questions
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