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Abstract: During the exploration and visualization of big spatio-temporal data, massive volume
poses a number of challenges to the achievement of interactive visualization, including large memory
consumption, high rendering delay, and poor visual effects. Research has shown that the development
of distributed computing frameworks provides a feasible solution for big spatio-temporal data
management and visualization. Accordingly, to address these challenges, this paper adopts a
proprietary pre-processing visualization scheme and designs and implements a highly scalable
distributed visual analysis framework, especially targeted at massive point-type datasets. Firstly, we
propose a generic multi-dimensional aggregation pyramid (MAP) model based on two well-known
graphics concepts, namely the Spatio-temporal Cube and 2D Tile Pyramid. The proposed MAP
model can support the simultaneous hierarchical aggregation of time, space, and attributes, and
also later transformation of the derived aggregates into discrete key-value pairs for scalable storage
and efficient retrieval. Using the generated MAP datasets, we develop an open-source distributed
visualization framework (MAP-Vis). In MAP-Vis, a high-performance Spark cluster is used as a
parallel preprocessing platform, while distributed HBase is used as the massive storage for the
generated MAP data. The client of MAP-Vis provides a variety of correlated visualization views,
including heat map, time series, and attribute histogram. Four open datasets, with record numbers
ranging from the millions to the tens of billions, are chosen for system demonstration and performance
evaluation. The experimental results demonstrate that MAP-Vis can achieve millisecond-level query
response and support efficient interactive visualization under different queries on the space, time,
and attribute dimensions.

Keywords: spatial-temporal data; multi-dimensional; hierarchical aggregation; distributed database;
visual analysis

1. Introduction

As data collection methods have matured and diversified, e.g., personal smart devices, intelligent
vehicles, Internet of Things (IoT), etc., data sources have become increasingly richer and richer, and the
amount of collected data has continuously accumulated in an explosive way. These massive amounts
of streaming-generated data are usually arranged in the structure (S, T, A1, . . . , An); here, S describes
the spatial location of the record, T specifies the time moment, and A1, . . . , An are n attributes attached
to the target object.

Exploration and visualization over these accumulated, spatio-temporally referenced data can
help users to identify inherent patterns, infer correlations and causal relationships, and support

Appl. Sci. 2020, 10, 598; doi:10.3390/app10020598 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0865-3850
http://dx.doi.org/10.3390/app10020598
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/2/598?type=check_update&version=2


Appl. Sci. 2020, 10, 598 2 of 19

decision-making activities [1–4]. However, traditional visualization methods and systems are not
well-suited to large-scale data; these approaches not only suffer from long rendering latency and
large memory consumption but are also affected by poor perceptual and interactive scalability [5–7].
A variety of data reduction mechanisms, including sampling/filtering and aggregation, are used to
tackle these problems [8]. Many visualization systems have also exploited distributed computing
architectures to improve the horizontal scalability of data capacity.

In line with the above, our research leverages both data aggregation and distributed computing to
tackle the previously noted visualization problems associated with big spatio-temporal data, especially
big POI datasets (e.g., taxi point data, check-in data, etc.). Firstly, a generic multi-dimensional
aggregate pyramid (MAP) model is proposed to achieve hierarchical aggregation. This model is
extended from two well-known graphics concepts—namely, the Spatio-temporal Cube [9] and the 2D
Tile Pyramid [10]—and can support the hierarchical aggregation of time, space, and attributes
simultaneously. The aggregated structures are then transformed into discrete key-value pairs
for subsequent scalable storage and efficient retrieval. Following this MAP model, a distributed
visualization framework named MAP-Vis is designed and implemented for big spatio-temporal data. In
MAP-Vis, the high-performance Spark cluster is used as a parallel preprocessing platform to transform
the raw dataset into the target MAP structures. These generated structures are then bulk-loaded to the
distributed HBase database as final storage. Furthermore, an open-source visualization interface is
also developed that enables users to interactively explore these spatio-temporal data.

Subsequently, a collection of spatio-temporal point-type datasets are processed to facilitate
system performance evaluation. With the help of a distributed computing framework, MAP-Vis can
support efficient interactive visualization under different queries on the space, time, and attribute
dimensions and further exhibits great scalability in terms of its pre-processing capability and storage
capacity. Experimental results demonstrate that our proposed approach can achieve a millisecond-level
query response.

The main contributions of this work are summarized as follows:

(1) We introduce a generic hierarchical aggregation model, named MAP, designed to organize,
explore, and visualize massive multi-dimensional spatio-temporal data.

(2) We leverage distributed computing to develop a prototype system, MAP-Vis, which implements
the proposed MAP model; this system supports parallel model generation, scalable storage and
efficient interactive visualization, especially for spatio-temporal point-type data.

(3) We use several real spatio-temporal datasets to validate the performance and efficiency of both
the proposed MAP model and the MAP-Vis system.

The remainder of this paper is organized as follows. Section 2 provides a short review of the
related work on parallel implementations for big data visualization. Section 3 presents the proposed
hierarchical MAP model, while Section 4 introduces the MAP model-based MAP-Vis framework. The
evaluation of our system is presented in Section 5. Finally, Section 6 concludes this paper.

2. Related Work

When the target data become too large to fit in a computer’s main memory, input/output
communication and data processing time will cause a substantial bottleneck during interactive
visualization. Different solutions to this problem have been proposed, such as hardware upgrades
(vertical scalability) and distributed computing (horizontal scalability), along with other optimization
strategies including out-of-core [11], data reduction, precomputation, and prefetching [12].

2.1. Data Reduction Techniques for Big Data Visualization

Since the number of pixels on the screen is physically limited, large amounts of visual elements will
either be difficult to fit in or will become visual clutter. Thus, several data reduction techniques—i.e.,
sampling, filtering, and aggregation—are proposed for big data visualization. Oliveira et al. [8]
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surveyed the use of visualization for data mining and discussed some standard techniques for
abstracting large-scale datasets, including dimension reduction [13,14], subsetting (e.g., random
sampling, filtering, level of details), segmentation (e.g., cluster analysis), and aggregation. These
data reduction methods can also be categorized in terms of whether they are online or offline [15]:
online aggregation means the aggregates are calculated in real time, while the offline mode refers to
preprocessing or precomputation being conducted in advance.

Among the above-mentioned approaches, the sampling approach involves selecting a subset of
the raw dataset, while filtering is conducted with a user-defined spatial/temporal/attribute search.
These two methods control which data entities of raw dataset can be visualized, then help users to
focus on the information of interest. However, the selected subset may still be too large to visualize
effectively; moreover, it may not be representative and may cause important structures or outliers to
be missed.

Data aggregation refers to a statistical grouping of original data items into a hierarchical tree
structure of data aggregates by counting the number of data items that fall within each predefined bin.
For example, histograms and heatmaps are typical 1D and 2D binned aggregations [16]. Different types
of input values have different bin definitions, for example, adjacent intervals for numerical variables,
each value for categorical variables, and day-week-month for temporal variables. Other advantages of
the binning technique include its rapid computation speed and its ability to be easily computed in
parallel, since the binning process is independent for each data item.

In fact, the aggregation process relies on the widely used concept of the “data cube”, first introduced
by Gray et al. [17]. The data cube is designed for the hierarchical aggregation of multidimensional data
structures and supports rich operations such as scrolling, drilling, slicing, dicing, and rotation. It can
also provide a multidimensional view of the original data and allows the user to quickly calculate the
data aggregates [2,9,18–22]. However, for high-dimensional cubes, most of the cube cells are empty;
this results in very high storage redundancy and excessive consumption of internal/external storage.

To solve this storage redundancy problem, a number of scholars have proposed a variety of
extended structures to reduce the memory usage among the sparse data cubes; these include Dwarf [23],
imMens [24], Nanocubes [18], Hashedcubes [20], Gaussian Cubes [21], NeuralCubes [25], etc. Dwarf
compresses data cubes using prefix and suffix redundancy to reduce the consumption of memory.
imMens divides the high-dimensional data cube into multiple sub-cubes, thereby reducing total
memory consumption, and decreases the query time delay through the use of GPU parallel processing
rendering. Nanocubes extends the Dwarf concept by proposing a memory-based tree structure,
which aggregates the spatial, time, and attribute dimensions at different levels and supports quick
multi-dimensional space-time interactive queries. Hashedcubes is a fast, easy-to-implement and
memory-efficient data structure that can answer queries from interactive visualization tools when
exploring and analyzing large, multidimensional datasets. Moreover, Gaussian Cubes and NeuralCubes
utilize other components (multivariate Gaussian and neural networks) in addition to the traditional
data cube structure to support advanced data analysis with data visualization.

However, although these compact structures have improved the visualization efficiency, the data
scalability problem remains inadequately resolved. For example, imMens only supports a maximum
of four dimensions and cannot be freely extended to further dimensions; moreover, Nanocubes is
a tightly coupled structure that can only reside in the internal memory of a single computer. Due
to the advent of cloud computing, it is of great importance to simultaneously leverage distributed
architectures and exploit horizontal scaling so as to obtain better visualization efficiency.

2.2. Parallel Implementations for Big Data Visualization

Along with data reduction, researchers have also recently proposed parallel implementations
to address scalability issues; these approaches include many-core GPUs, distributed clusters, or
hybrid architectures.
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Compared with multi-core processors, many-core GPU processors exhibit a higher degree of
explicit parallelism and higher data throughput and have been widely used to accelerate index
generation, offline preprocessing, and rendering during visualization. Doraiswamy et al. proposed a
novel indexing scheme that makes use of modern GPUs to efficiently support spatio-temporal queries
over massive point datasets, and that also achieves interactive, sub-second response times for queries
over 1.1 billion tweets [26]. Moreover, Perrot et al. designed a distributed visualization framework
with Hadoop/Spark that leverages GPU to compute data aggregates with kernel density estimation [27].
The open-source project MapD [28] uses GPU to accelerate the processing of complex, real-time
spatio-temporal data and can process billions of rows of data in milliseconds. Finally, imMens [24] also
uses the GPU-based WebGL to conduct data processing and rendering.

Distributed clusters with commodity hardware are also very commonly used in big data
visualization applications. For example, VisReduce is built on a distributed NoSQL database and
implements both online aggregation and data compression [29]. Moreover, the tile-based visual
analytics system (TBVA) performs the offline preprocessing of big data through a Spark cluster,
generating the tile data of different spatial levels in advance and calculating the statistical values of the
attribute dimensions of each tile to achieve an interactive visualization effect [30]. GeoMesa/GeoWave
uses NoSQL databases to store spatio-temporal data in a distributed manner and can further use
MapReduce or Spark to accelerate data processing and visualization [31,32].

Most of these implementations concentrate on using parallel/distributed platforms for data
processing and online rendering, while very few of them consider using these resources to develop a
unified solution for big data visualization, from quick pre-processing to scalable storage, and further
to efficient online query/filtering.

3. The Hierarchical Multi-Dimensional Aggregate Pyramid (MAP) Model

By reviewing the characteristics of the target datasets, the generic multi-dimensional aggregate
pyramid (MAP) model is built from two well-known graphics concepts: namely, the Spatio-temporal
Cube and the 2D Tile Pyramid. The former is extended with the attribute dimension to
Space-Time-Attribute Cube and provides the building blocks for the proposed MAP model; while the
latter implements the idea of 2D spatial aggregation and provides a good implication for the further
simultaneous aggregation of space, time, and attributes.

3.1. Space-Time-Attribute Cube

The massive datasets are transformed and aggregated along three dimensions—namely, S (Space),
T (Time), and A (Attributes)—so that the Cartesian product S × T × A can metaphorically define the
abstract concept of the space-time-attribute cube, as illustrated in Figure 1. In fact, in real datasets, the
S × T × A cube is still a multidimensional (nD) structure; this is because the spatial coordinates contain
longitude and latitude, and the objects have several different attributes.

As building blocks for future aggregation, the S × T × A cube requires discrete and finite units in
all three dimensions. However, the spatial and temporal domains are continuous; thus, the space and
time should first be discretized via partitioning into suitable regions and time intervals, respectively.
Here, space discretization is accomplished using a regular rectangle grid, i.e., GeoHash. In the
temporal dimension, the data is divided and reorganized by a predefined granularity (i.e., day, week, or
month); in the attribute dimension, moreover, the categorical values are aggregated using a hierarchical
tree structure.

The S × T × A cube supports two types of aggregation: cube aggregation and face aggregation.
As illustrated in Figure 1, cube aggregation can be viewed as a contraction of eight cubes into a cube of
coarser granularity. Cube aggregation resembles a common concept in computer graphics, namely
Level of Details (LoD), in which complex objects are represented with varying levels of granularity so
as to achieve a trade-off between the model fidelity and visualization performance. Cube aggregation
provides the required function for hierarchical pyramid construction.
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Figure 1. Cube aggregation operations of the S × T × A cube. 
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As shown in Figure 3, the tile map pyramid model is widely used for 2D map display [10,33,34]. 
This is a typical LoD example, supported by hierarchical spatial aggregation, in which the resolution 
becomes increasingly coarser from the bottom to the top. Each layer of the pyramid contains a 
collection of square tiles, while each tile is composed of pixels (usually 256 × 256). 
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Figure 1. Cube aggregation operations of the S × T × A cube.

Face aggregation can be metaphorically seen as a projection of the cube onto one of its faces along
one dimension (see Figure 2). For example, for a given attribute, we can study the variation of the
aggregate measures over space and time by means of this face aggregation process. Face aggregation
will be used in client visualization due to the 2D display environment.
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3.2. Definition of the 2D Tile Pyramid Model

As shown in Figure 3, the tile map pyramid model is widely used for 2D map display [10,33,34].
This is a typical LoD example, supported by hierarchical spatial aggregation, in which the resolution
becomes increasingly coarser from the bottom to the top. Each layer of the pyramid contains a collection
of square tiles, while each tile is composed of pixels (usually 256 × 256).
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Concepts:

(1) Pixel

The Pixel, which is the smallest building block of the 2D pyramid, can be represented by
Equation (1); here, l refers to the level of the pyramid; x, y represents the spatial coordinates of
this pixel; and p represents the attribute value of the pixel (or an aggregated statistical value, i.e.,
average/sum/min/max).

Pixel =
{
l, x, y, p

}
(1)

(2) Tile

A Tile is a group of spatially adjacent pixels, usually a 256 × 256 square grid. The tile can be
represented by Equation (2); here, l is the level of the pyramid, X, Y denote the tile’s column/row
number in this level, and the last union represents the set of pixels within this n*n tile.

Tile =
{
l, X, Y,

n∗n
∪

i=1
Pixel} (2)

(3) Pyramid

A collection of M*N tiles are grouped into one layer, after which all L layers are stacked to form a
multi-scale spatial Pyramid, as shown in Equation (3).

Pyramid =
L
∪

i=1


M∑

j=1

N∑
k=1

{
li, X j, Yk

} (3)

Operations:

(1) Extract

The Extract operation converts one or more raw data records into a pixel in the bottom level,
as shown in Equation (4); here, ln refers to the bottom level of the pyramid; lon, lat represents the
geographical position of the original records; and w is the pixel resolution of the output tile.

Extract(ln, [lon, lat], w, record) = Pixel([ln, x, y])
r = log2 w , x = lon+180

360 · 2ln+r ,

y =

1−
ln

(
tan(lat· π180 )+

1
cos(lat· π180 )

)
π

 · 2ln+r−1

(4)

(2) Group

The Group operation establishes the direct relationship between the pixels and the target tile. As
shown by Equation (5), it groups the related pixels to enable the tile to be derived.

Group(Pixel([ln, x, y])) = Tile([ln, X, Y,
n∗n
∪

i=1
Pixel){

X = (x/w)

Y = (y/w)

(5)
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(3) Aggregate

The above-mentioned Extract and Group operations are combined to produce tiles at the bottom
level of the pyramid. Unlike these two operations, which function at the bottom level, the Aggregate
operation is conducted level-by-level from the bottom to the top to calculate all the tiles remaining in
the whole pyramid. The Aggregate operation is as shown in Equation (6).

Aggregate(Tile(ln, X2i, Y2i), Tile(ln, X2i, Y2i+1), Tile(ln, X2i+1, Y2i), Tile(ln, X2i+1, Y2i+1))

= Tile(ln−1, Xi, Yi)
(6)

(4) Key-value Pair (KVP)

For each tile in the pyramid, a key can be generated by using a space-fill curve (e.g., Z-curve),
such that the set of pixels of the tile are packaged as a value, as shown in Equation (7). The key-value
conversion is conducted for later persistent storage.

KVP(Tile(ln, X, Y)) = Tuple(s f c_key, value) (7)

3.3. Multi-Dimensional Aggregated Pyramid Model

As illustrated in Figure 4, the S × T × A cube and the 2D tile pyramid are combined to define the
multi-dimensional aggregation pyramid (MAP) model; this enables the hierarchical aggregation to be
achieved not only on the spatial dimension but also on the temporal and attribute dimensions.
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Similarly, the four basic operations involved in constructing the proposed multi-dimensional
aggregate pyramid are as follows:

(1) Flattened Attribute Aggregation Tree (faa_tree)

The aggregation of the different attributes of the spatio-temporal objects will result in a tree-shaped
structure, faa_tree, after which the derived tree structure can be flattened using a breadth-first traversal
to simplify later access and also preserve level locality. As illustrated by Figure 5, there are four
taxi records in the sample table, each of which has three attributes, namely, guest, car color and
driver gender.
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The faa_tree of these four records, as shown on the right side, are derived through hierarchical
aggregation; subsequently, the faa_tree is flattened to a fixed-length one-dimensional (1D) array (as
expressed by Equation (8)), in which the total count is arranged in the first position. Compared to the
original tree structure, the fixed-length 1D array structure is much more convenient for subsequent
storage and processing.

f aa_tree = {aall, a1, a2, . . . , an} (8)

(2) Spatio-temporal Pixel (st-pixel)

We define the smallest S × T × A cube as the Spatio-temporal Pixel (st-pixel), as shown in Figure 6.
Due to the existence of faa_tree, the st-pixel is actually a 4D unit structure; it can be located by both the
spatial coordinates (longitude x, latitude y) and temporal position t and is also labeled with a cell from
the faa_tree array. As shown in Equation (9), t represents the transformed coordinates in the predefined
temporal granularity, and aj is one cell in the faa_tree, while l, x, y are the same as in the 2D pixel.

st− pixel =
{
[l, x, y, t], a j

}
(a j ∈ f aa_tree) (9)
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(3) Spatio-Temporal Tile (st-tile)

The S × T × A cubes in the lower level can be aggregated level by level to the cube in the higher
level. Since the st-pixel is now a 4D unit structure, it is inconvenient for 2D map display in the client. A
similar 2D concept, Spatio-Temporal Tile (st-tile), is defined in Figure 7. As a 2D tile with pixels, st-tile
contains a collection of st-pixels that have the same time tag and attribute value. The tile size is still
256 × 256.

Here in Equation (10), l also refers to the level in the pyramid; X and Y refer to the row and column
of the tile; tk represents one position in the discretized temporal intervals, and aj is still one cell in the
faa_tree.
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st− tile =
{
[l, X, Y], tk, a j

}
(tk ∈ T, a j ∈ f aa_tree) (10)
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(1) In a similar way to the above, there are four basic operations involved in constructing the proposed
multi-dimensional aggregate pyramid, which are listed as follows:Extract

Both the geographic location information and temporal information are transformed to the st-tile’s
coordinates. As shown in Equation (11), all attribute information is used to generate and serialize the
st-tile’s faa_tree.

Extract(l, [Lon, Lat], w)

= st− pixel([l, x, y], t, f aa_tree)
(11)

(2) Group

The Group operation is conducted in two steps, as shown in Equation (12): firstly, the mapping
relationship between st-pixel and st-tile is established so that it can be determined which st-tile the
St-Pixels should belong to; secondly, all st-pixels are reduced into one st-tile, and a new faa_tree is
calculated from all the st-pixels.

Group(st− pixel([ln, x, y, t])) = st− tile([l, X, Y], tk, a j,
n∗n
∪

i=1
st− pixel)(tk ∈ T, a j ∈ f aa_tree) (12)

(3) Aggregate

As also illustrated in Figure 7, by integrating both the cube aggregation and face aggregation
functions in the S × T × A cube, we can define the aggregate operation for the MAP construction. Like
the aggregate operation of the 2D tile, it is also conducted level by level from the bottom to the top,
enabling all st-tiles in the pyramid to be obtained. The aggregate operation is as shown in Equation (13).

Aggregate(st− tile(ln, X2i, Y2i, T, f aa_tree), st− tile(ln, X2i, Y2i+1, T, f aa_tree),
st− tile(ln, X2i+1, Y2i, T, f aa_tree), st− tile(ln, X2i+1, Y2i+1, T, f aa_tree))
= st− tile(ln−1, Xi, Yi, T, f aa_tree)

(13)

(4) Key-Value Pair (KVP)

Each entity in the faa_tree, along with the SFC coding of each st-tile are jointly encoded to generate
a Key; subsequently, each node plus a collection of st-pixels are packed as a Value.

KVP(st− tile(l, X, Y, f aa_tree)) = Tuple(key, value) (14)
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4. Spatio-Temporal Big Data Visualization Framework

4.1. The MAP-Vis Framework

Following the proposed MAP model, we implement a prototype system for spatiotemporal data
visualization, which we refer to as MAP-Vis. As shown in Figure 8, the MAP-Vis system adopts the
B/S architecture and can be divided into three components; from the bottom to the top, these are
high-performance clusters, middleware, and visualization clients.
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The underlying Linux cluster is mainly responsible for the generation and storage of the
multi-dimensional pyramid from the raw dataset. The middleware parses the query requests from
the client through a data access interface, then filters out the results from the database for client
visualization purposes. The client is used to visualize the heat map, time series, and attribute histogram
in different views.

4.2. The Generation of the MAP Pyramid

During the construction of the MAP pyramid, the input raw dataset is processed and hierarchically
aggregated from bottom to top. First, the bottom layer is calculated, after which the upper layers are
iteratively derived layer by layer. The pseudocode of the hierarchical aggregation process is presented
in Algorithm 1; moreover, the complete preprocessing steps are explained as follows:

Step 1: Define the required input parameters, including the maximum pyramid level ln and
the time granularity tb. Via the Extract operation defined in Section 3.2, the spatial and temporal
coordinates are extracted from the original records along with the faa_tree. As a result, the discrete
st-pixels are obtained.

Step 2: With help from Spark’s Map/Reduce function also, the st-pixel in the same st-tile in the
same time interval tk and the same faa_tree cell aj are grouped into one st-tile using the Group operation.

Step 3: The st-tile level l, the space-filling curve code of the tile k, the time t, and the faa_tree cell are
joined to generate a Key, after which the st-tile is assigned as a Value to form a key-value pair with the
KVP operation introduced in Section 3.2. Finally, the bottom level ln in the MAP pyramid is obtained.

Step 4: After Step 3 is complete, the iterative aggregation can be conducted continuously to obtain
the ln−1, ln−2, ..., 1 layer by layer and construct a multi-dimensional aggregation pyramid using the
Aggregate operation.

Since all the steps are pure loops, they can be implemented using the Spark’s Map/Reduce function
and executed in a distributed Linux cluster.
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Algorithm 1 The pseudocode of the MAP preprocessing algorithm

Input: Original record, Rm(lng, lat, time, attributes), m = 1, 2, . . . , N;
Input: The maximum map level, ln;
Input: The time granularity;
Output: ln (i = 0, 1, 2, . . . , n), hierarchical aggregation result;

1: for each record Ri in original records do
2: faa_tree = flatten(attributes)
3: tj = tBin(time)
4: ST-Pixelij = Extract(lng, lat, ln, faa_tree, tj)
5: end for
6: for each Pixelij in the same Tile with Tilekj do
7: Group Pixelij to Tilekj
8: end for
9: for each Tilekj with Faa_tree = Aall, A1, . . . , As do
10: Key-Value Tilekj to Tilekjs
11: end for
12: Tileln ←All(Tilekjs)
13: for i = ln−1, ln−2, . . . , 1 do
14: Tileli = Aggregate(Tileli+1)
15: end for
16: return Tileli, i = 0, 1, 2, . . . , n;

4.3. Distributed Storage of the MAP Pyramid in Hbase

In order to improve the storage scalability of MAP-Vis, we chose HBase (a distributed, column-
oriented non-relational database) as the storage database. Unlike traditional relational databases, data
in HBase are organized in a sorted list of key-value pairs. Each row stores one object, represented by
the designed unique rowkey, while each column belongs to a particular column family. At the physical
level, the data are physically sorted by rowkey, column name and timestamp; thus, the design of the
rowkey and column family in HBase are vital to the efficiency of the multidimensional query.

The height of the pyramid in the spatial dimension is usually very high (e.g., 12 levels in GeoHash),
resulting in the explosive increase of decomposed spatial cells. For the time series of data, moreover,
the record number along the temporal dimension is also very large; on the contrary, the attached
attributes are usually of limited sizes and the faa_tree length is short. Accordingly, the spatial and
temporal information are put together in the Row dimension, while the faa_tree information is placed
in the Column Family.

The spatial coordinates of each record are firstly encoded into sfc_code using the Z curve, which is
one of the most widely used space filling curves. As shown in Table 1, the level l, sfc_code and time
interval t are then joined in the form of a rowkey for each row, and two column families (Heatmap and
Sum) are then defined. Each column of the Heatmap column family is set according to the faa_tree node
and used to store the st-tiles; in addition, each column of the Sum column family is used to store the
total value of all st-pixels at time interval t.

Table 1. The HBase storage schema for MAP-Vis.

Rowkey CF:Heatmap CF:Sum

F1 F2 . . . Fn F1 F2 . . . Fn

L_T _Z2 Aall A1 . . . An Sall S1 . . . Sn

A rowkey design of this kind exhibits high spatial-temporal aggregation and ensures that objects
close in spatial-temporal distance can be stored closely on disks. This storage schema can also fully
leverage the column-oriented advantages of HBase, as well as scaling well with the dataset size.
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4.4. Multidimensional Query for Interactive Visualization

Generally, HBase supports two methods of retrieving data: Get and Scan. The Get operation
is performed with a given rowkey to fetch a single row in the HBase table, while the Scan operation
filters the entire table with a rowkey range defined by the start-key and end-key. Our multidimensional
query is implemented with HBase scan operations. The pseudocode of the multidimensional query is
illustrated in Algorithm 2, while the details are explained below:

(1) The interactive visualization operations will produce a collection of requests, which will later
be sent to the server separately in an asynchronous mode. When the server receives the query
request, the middleware parses the request parameters into the space/ time/attribute filters.

(2) For the spatial filters, the query geometry will be recursively divided into multi-level SFC cells,
while the translated spatial ranges are calculated using our recursive approximation algorithm,
published in [35];

(3) The temporal and attribute filters will be discretized and appended to the translated spatial
ranges and derive the final scan ranges according to the rowkey schema;

(4) The scan ranges are sent to HBase for scan operations, filtering out of false positive data from the
initial scan results and aggregating final query results for client rendering.

Algorithm 2 The pseudocode of the multidimensional query in MAP-Vis

Input: Qtime(Tstart,Tend)
Qbbox (minLat,minLon,maxLat,maxLon)
AttributeList
Output: ResultSet

1: SpatialRanges = getSpatialRangeswithSFC(Qbbox);
2: QtimeBins = getTimeBins(Qtime,timeCoarseBin);
3: AttributeFilter = getQualifierFilter(AttributeList);
4: for each timeBin in QtimeBins do:
5: for each range in SpatialRanges do:
6: strartRowkey = Tstart + range.rangeStart;
7: endRowkey = Tend + range.rangeEnd;
8: rowkeyRange = (startrowkey, endrowkey);
9: Scan = scan(rowkeyRange, AttributeFilter);
10: ResultScanner = table.getScanner(Scan);
11: for each Result in ResultScanner do:
12: if Result in Qrange and Result in Qtime:
13: Resultset.add(Result);
14: end if
15: end for
16: end for
17: end for
18: return ResultSet

In order to avoid excessive I/O communication between servers and clients, the mechanism of the
HBase CoProcessor is used to implement the above-mentioned multidimensional query algorithm, as
illustrated in Figure 9. HBase’s coprocessors, which are modeled after Google’s BigTable, resemble
the stored procedures in the relational databases and can be invoked as a service by the client at any
time. When invoked, the coprocessor program is executed remotely at the target HBase regions; the
execution results can be processed before being returned to the client. Here, HBase CoProcessor mainly
accelerates the exclusion of false positive points and the post-processing before visualization in the
former Step 4.
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5. Experiments and Discussions

5.1. Experimental Environment and Datasets

Figure 10 depicts the visualization interface implemented of the proposed MAP-Vis framework,
which includes three correlated views: map view, timeline view, and attribute histogram view. In the
map view, the brightness indicates the spatial distribution of spatial objects, i.e., the brighter place
contains denser objects while the darker place means relatively sparse ones. The MAP-Vis framework
is implemented using several open source projects and libraries. Leaflet and OpenStreetMap are used
for the background map display, while the timeline and attribute histogram use the d3 library to
support user interaction.

The MAP-Vis framework is deployed on a nine-node Linux cluster. Each node in this cluster
is equipped with two six-core Intel Xeon E5-2620 2 GHz CPUs, 32 GB memory and connected with
1 GB Ethernet. The operating system is CentOS 6.2 64 bit; the required HBase 1.2 and Spark 1.6 is
also installed.

To determine the efficiency and performance of the proposed MAP-Vis framework, we selected
four datasets ranging in size from four million to over one billion records. Each of these datasets
includes geospatial, temporal, and domain-specific attribute dimensions. A summary of all datasets,
including the number of records, the original data size, timespan, and data size in database, are
presented in Table 2. Shown from Table 2, the size of the generated MAP data in NYC Taxi is about half
of the raw datasets, while the other three increase about three to 80 times. The size difference can be
attributed to the sparsity degree of input datasets, i.e., more dense and compact data after aggregation
will be less, while more sparse data will become much bigger by blank filling.

Table 2. Detailed information of our experimental datasets.

Name Records Raw Data Size Time Span Table Size

NYC Taxi 1.17 billion 170 GB 2008.01–2015.12 90 GB
BrightKite 11.19 million 740 MB 2008.04–2010.10 50 GB

China Enterprise Data 20 million 2.3 GB 1945.01–2010.12 7 GB
Global Earthquakes 3.38 million 580 MB 1970.01–2018.12 41 GB
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5.2. Validation of the MAP Model’s Efficiency

The client users’ interaction operations on the map (zoom in/out and pan) will generate a sequence
of spatial/temporal/attribute filters to enable retrieval of the st-tiles from the underlying HBase database.
To simulate the real interaction process, 16 filters with different spatial and temporal size were
defined in this experiment; i.e., four spatial rectangles (illustrated in Figure 11), three temporal spans
(day/month/year), and all/single attribute(s).
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The average database response time is recorded in Table 3. From the table, it can be seen that
as the size of the spatial temporal extent increases, the response time remains at around 10 ms and
does not show a significant increase. This indicates that the MAP model can scale well with different
spatiotemporal query sizes and can also guarantee a millisecond-level response. Therefore, the
pre-aggregation model guarantees a constant query time for different spatial-temporal filters generated
by any interaction event (zoom in/out or pan).

Table 3. Query time of different spatial-temporal filters.

Group
No.

Spatial
Extent

GeoHash
Search Depth

Temporal
Span

Attribute
Filter

Tile
Number

Time Size
(MB)

Query
Time (ms)

1 0.58 × 0.22 12

1 year All 32 0.874 6

1 month
All 32 0.391 6

Single 32 0.255 6
1 day All 32 0.155 6

2
0.08 × 0.03

(urban) 15

1 year All 32 3.808 10

1 month
All 32 2.204 10

Single 32 1.311 9
1 day All 32 0.370 6

3
0.08 × 0.03
(suburb) 15

1 year All 36 0.889 7

1 month
All 36 0.238 7

Single 36 0.097 7
1 day All 36 0.041 6

4 0.018 × 0.008 17

1 year All 40 5.538 12

1 month
All 40 1.853 12

Single 40 0.609 9
1 day All 40 0.110 10
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5.3. Experiments on Data Preprocessing Capability

During the data preprocessing, the number of worker nodes in the Spark cluster is altered to
measure the changes in the pre-processing time (excluding the time required to import into the HBase
database). This experiment uses a total of 54 GB NYC Taxi data span about 30 months (from January
2014 to June 2016). All the observed preprocessing times are shown in Figure 12. From the figure
it can be seen that the increase in the number of Spark worker nodes leads to obvious reduction in
pre-processing time, from 360 min to 160 min, while the efficiency is improved by about 1.3 times.
Therefore, by using more computing nodes, the Spark cluster has more worker nodes available to share
the pre-processing tasks, thereby significantly improving the pre-processing efficiency. However, as
the Spark node number is over eight, the speedup efficiency increases very slowly. This phenomenon
coincides with the well-known Amdahl’s law and shows there exist some pre-processing operations
which cannot be parallelized between nodes, i.e., I/O communication.
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6. Conclusions and Future Work

Owing to the massive volume, high number of dimensions, and spatial-temporal correlations
involved, spatial-temporal big data faces many visualization challenges, including large memory
consumption, high rendering delay, and poor visual effect. Accordingly, in order to solve these
problems, this paper proposes a novel spatio-temporal big data organization model, namely, the
multi-dimensional aggregation pyramid (MAP), which integrates the merits of both the tile pyramid
model and key-value pair model. The MAP model supports quick aggregation on the space, time, and
attribute dimensions, as well as efficient distributed storage with key-value conversion. Based on the
proposed MAP model, an open-source visualization framework, MAP-Vis, is implemented on a Linux
cluster. The MAP-Vis system uses Spark as a pre-processing tool and HBase as a distributed storage
platform. Several key features, namely, distributed storage and distributed computation, enable our
solution to scale to large datasets.

The MAP-Vis realizes millisecond-level multidimensional data querying and achieves good
interactive visualization. Experimental results validate the efficiency of both the MAP model and
the MAP-Vis framework, both of which can provide high scalability for processing capability and
online visualization.

Future work can be conducted to explore the following aspects:
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(1) Our research work currently concentrates on massive point data; however, polyline or polygon
types of spatio-temporal big data (e.g., vehicle trajectory) are not well-addressed. Thus, we will
extend our proposed framework to accommodate these more complex data types.

(2) Other acceleration mechanisms, e.g., GPU, will be considered for quicker pre-processing.
In addition, parallel generation of query ranges will be also implemented to improve the
query efficiency.

(3) Direct GPU-based rendering methods such as WebGL will be further used to increase the data
visualization speed.

(4) Current functions provided by the MAP-Vis framework are still limited. More analysis functions
(including point distribution pattern, time-series prediction, etc.) will be added in the near future.
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