
fnsys-15-786252 December 22, 2021 Time: 9:25 # 1

HYPOTHESIS AND THEORY
published: 23 December 2021

doi: 10.3389/fnsys.2021.786252

Edited by:
Robinson E. Pino,

Office of Science (DOE), United States

Reviewed by:
Maryam Parsa,

George Mason University,
United States

Gina Adam,
George Washington University,

United States
Todd L. Hylton,

University of California, San Diego,
United States

*Correspondence:
Yan Yufik

imc.yufik@att.net

Received: 30 September 2021
Accepted: 24 November 2021
Published: 23 December 2021

Citation:
Yufik Y and Malhotra R (2021)

Situational Understanding
in the Human and the Machine.

Front. Syst. Neurosci. 15:786252.
doi: 10.3389/fnsys.2021.786252

Situational Understanding in the
Human and the Machine
Yan Yufik1* and Raj Malhotra2

1 Virtual Structures Research, Inc., Potomac, MD, United States, 2 United States Air Force Sensor Directorate, Dayton, OH,
United States

The Air Force research programs envision developing AI technologies that will ensure
battlespace dominance, by radical increases in the speed of battlespace understanding
and decision-making. In the last half century, advances in AI have been concentrated
in the area of machine learning. Recent experimental findings and insights in systems
neuroscience, the biophysics of cognition, and other disciplines provide converging
results that set the stage for technologies of machine understanding and machine-
augmented Situational Understanding. This paper will review some of the key ideas
and results in the literature, and outline new suggestions. We define situational
understanding and the distinctions between understanding and awareness, consider
examples of how understanding—or lack of it—manifest in performance, and review
hypotheses concerning the underlying neuronal mechanisms. Suggestions for further
R&D are motivated by these hypotheses and are centered on the notions of Active
Inference and Virtual Associative Networks.

Keywords: understanding, neuronal packet, active inference, complexity, cognitive effort

INTRODUCTION: DEFINING SITUATIONAL AWARENESS AND
SITUATIONAL UNDERSTANDING

The notions of Situational Awareness and Situational Understanding figure prominently in
multiple DoD documents, predicating the achievement of battlespace dominance on SA/SU
superiority as, for example, in the following:

“Joint and Army commanders rely on data, information, and intelligence during operations to develop
situational understanding against determined and adaptive enemies. . . because of limitations associated
with human cognition, and because much of the information obtained in war is contradictory or false,
more information will not equate to better understanding. Commanders and units must be prepared
to integrate intelligence and operations to develop situational understanding” (The United States Army
Functional Concept for Intelligence, 2020–2040, TRADOC 2017 Pamphlet 525- 2-, p. iii).

Distinctions between SA and SU are defined as follows:

“Situational awareness is immediate knowledge of the conditions of the operation, constrained
geographically in time. More simply, it is Soldiers knowing what is currently happening around them.
Situational awareness occurs in Soldiers’ minds. It is not a display or the common operating picture; it
is the interpretation of displays or the current actual observation of the situation. . . .

Situational understanding is the product of applying analysis and judgment to relevant information
to determine the relationships among the mission variables to facilitate decision making. It enables
commanders to determine the implications of what is happening and forecast what may happen.” The
United States Army Operations and Doctrine. Guide to FM-3-0.

Frontiers in Systems Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 786252

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2021.786252
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnsys.2021.786252
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2021.786252&domain=pdf&date_stamp=2021-12-23
https://www.frontiersin.org/articles/10.3389/fnsys.2021.786252/full
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-786252 December 22, 2021 Time: 9:25 # 2

Yufik and Malhotra Human/Machine Situational Understanding

Definitive publications by the originator of SA/SU concept
and theory (Endsley, 1987, 1988, 1994; Endsley and Connors,
2014) identify three levels of situation awareness and associate
understanding with Level 2, as shown in Figure 1.

According to the schematic in Figure 1, understanding
mediates between perception and prediction. The question
is: what does such mediation involve, what, exactly, does
understanding contribute? The significance of such a
contribution can be questioned by, for example, pointing at
innumerable cases in the animal domain of going directly
from perception to prediction (e.g., intercepting preys requires
predators to possess mechanisms for movement prediction, as in
frogs shooting their tongues to catch flying insects). The bulk of
this paper is dedicated to analyzing the role and contribution of
understanding in human performance, pointing, in particular,
at uniquely human forms of prediction involving generation of
explanations derived from attentively (deliberately, consciously)
constructed situation models. Because prediction necessarily
entails the consequences of action, these models must include the
(counterfactual) consequences of acting. In turn, this mandates
generative models of the future (i.e., with temporal depth) and
implicit agency. The ensuing approach differs from that adopted
in the conventional AI, as follows.

Behaviorist psychology conceptualized the brain as a “black
box” and was “fanatically uninterested” in reports concerning
events in the box (Solms, 2021, p.10). Borrowing from this
expression, one might suggest that cognitivist psychology and AI
have been “fanatically uninterested” in the role of understanding;
focusing predominantly on learning and reasoning (this
contention will be re-visited later in the paper). This paper
argues that the capacity for understanding is the definitive
feature of human intellect enabling adequate performance in
novel situations when one needs to act without the benefit
of prior experience or even to counteract the inertia of prior
learning. The argument is presented in five parts: the remainder
of part I analyzes the notions of situation awareness and situation
understanding, focusing on the latter; part II outlines Virtual
Associative Network (VAN) theory of understanding, part III
places VAN theory in a broader context of Active Inference, part
IV considers implementation (machine understanding), followed
by a concluding discussion in part V. In the remainder of this
part, we define some of the key notions that set the stage for and
will be unpacked in the rest of the paper.

The central tenet of this paper boils down to the notion
that understanding involves self-directed construction and the
manipulation of mental models. In short, planning (as inference).
This idea is not original but suggestions concerning the structure
of the models and the underlying neuronal mechanisms are
(Yufik, 1996, 1998; Yufik and Friston, 2016; Yufik, 2018, 2021b).
Figure 2 introduces some key notions in the proposal, seeking
to position mechanisms of awareness and mental modeling
within the brain’s functional architecture. Stated succinctly,
the following treatment builds upon an understanding of the
computational architecture of the only systems that evince
“understanding”; namely, ourselves.

Figure 2 adopts the classical three-partite
model of brain architecture in Luria (1973, 1974);

Sigurdsson and Duvarci (2016), except for the inclusion of
the cerebellum and Periaqueductal Grey (PAG) structure, whose
role in cognitive processes—in particular the maintenance of
awareness—was recently discovered (Solms, 2021). It was found
that removing the bulk of cortex (in both R and M systems)
while leaving the PAG intact preserves a degree of awareness
(Solms, 2021). For example, hydranencephalic children (born
without cortex) respond to objects placed in their hands,
and surgically decorticated animals remain capable of some
responses and even rudimentary learning (moreover, in some
cases a casual observer might fail to notice differences in the
behavior of decorticated animals and intact controls) (Oakley,
1981; Cerminara et al., 2009; Solms, 2021). By contrast, lesions of
the PAG and/or reticular structure obliterate awareness (reticular
structures project into cortex while PAG receives converging
projections from cortex) (Solms, 2021). The architecture in
Figure 2 indicates that intact PAG and RAS support minimal
awareness (link from PAG to MSP indicates awareness achieved
in the absence of the cortex) while an interplay of all the other
functional systems produces a hierarchy of awareness levels
above the minimal.

Levels of Awareness
To define levels of awareness, one needs to conceptualize the
world as generating a stream of stimuli and cognition as a process
of assimilating sensory streams aimed to extract energy and
sustain energy inflows (these crucially important notions will be
re-iterated throughput the paper). With these notions in mind,
the following levels of awareness can be identified.

1. Minimal awareness (“vegetative wakefulness,” the term is
due to Solms, 2021, p. 134). Streams of sensory stimuli are
experienced as flux (noise).

2. Selective awareness. Organism responds to fixed
combinations of contiguous stimuli as they appear in
the flux (as in frogs catching flies).

3. Discriminating awareness. “Blobs” with fuzzy boundaries
emerge in perceptual synthesis comprising some
contiguous stimuli groupings with varying correlation
strength inside the groups.

4. Differentiating awareness. Different stimuli compositions
are assimilated into “blobs” that are sharply bounded and
segregated from the surrounds (“blobs” subsequently turn
into distinct “objects,” as in telling letters apart).

5. Recognition-based awareness. Variations in stimuli
compositions in the objects are differentiated (stated
differently, different stimuli compositions are experienced
as manifestations of the same object, as in recognizing
letters in different fonts or handwriting).

6. Context-based awareness. The perceptual recognition of
objects is influenced by their surrounds (think of the
often-cited example of perceiving a shape that looks like
a distorted letter A or distorted letter H, depending on its
appearance in the middle of C_T or the beginning of _AT).

7. Understanding-based awareness. This level is qualitatively
different from the preceding levels: all levels deal with
learning, i.e., developing memory structures reflecting the
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FIGURE 1 | Three levels of Situation Awareness (adopted from Endsley and Connors, 2014).

statistics of correlation, contingencies and contiguity in the
world. By contrast, this level produces and manipulates
complex relational structures (mental models) uprooted
from such statistics (accounting for non-contiguous and
weakly correlated, sparse stimuli groupings) — in other
words, compositions and counterfactuals. To illustrate the
distinction: the statistics of English texts would suffice
for resolving the “_AT or C_T” ambiguity but not for
understanding the expression “hats on cats” (when was the
last time you saw or read about cats wearing hats?).

Arguably, Figure 1 refers primarily to understanding-based
situation awareness. It is informative to note that cells in
prefrontal cortices represent the association of sensory items of
more than one sensory modality, integrate these items across
time and participate in performing tasks requiring reasoning
and manipulation of complex relational structures (Kroger
et al., 2002). Construction and manipulation of complex
relational structures underlies understanding. More precisely,
understanding enables construction of models expressing
unlikely correlations (like cats in hats), while sometimes failing
to register some precise and routinely encountered ones (e.g.,
medieval medicine for centuries failed to see the relation
between a beating heart and blood circulation, placing the
source of circulation in the liver). This paper offers ideas seeking
to account for both the strengths and the weaknesses of the
understanding capacity. Three pivotal notions (work, switching,
and arousal) are referenced in Figure 2 (labeled in italics).

Work (Mental Work)
Operations on mental models demand effort and energy, in
the same manner as are those demanded by any bodily (i.e.,
thermodynamic) work, such as running or lifting weights.

Switching
The functional architecture in Figure 2 is shared across many
species, except for the capability to temporarily decouple mental
models from the motor-sensory periphery and environmental
feedback. The emergence of this regulatory capacity—to
allow such decoupling— underwrites the development of an
understanding capacity that is uniquely human and enables
uniquely human skills, such as extending the horizon of
prediction reach from the immediate to an indefinitely remote
future and extending actions reach from objects in the immediate
surrounds to indefinitely distant ones, etc.

Arousal
Regulation of arousal (energy distribution in the cortices) is an
integral and critical ingredient of mental modeling. In particular,
modeling is contingent on maintaining the stability and integrity
of neuronal structures in the cortices implementing the models.
Resisting entropic erosion and disintegration of the structures
require sustained inflows of metabolic energy. These ideas will
be given precise definitions that will be mapped onto a simple
mathematical formalism.

To summarize, three different brain mechanisms have been
identified: those that circumvent the cortex, those that engage
the cortex, and those mechanisms that are realized in the
cortex and are temporarily disengaged from the motor-sensory
periphery (switching). The former two mechanisms underlie
learning and are shared among multiple species, including
humans, while the latter is unique to humans and underlies
understanding. The proposal so far is derived from the following
conceptualization: (a) the world is a process or stream (not
a “static pond”), (b) cognition is a process of adapting an
organism’s state and behavior to variations in the stream, and (c)
the adaptation are powered by energy (work) extracted from the
stream and distributed inside the system (regulation of arousal).
Understanding complements learning: learning extrapolates
from past experiences, while understanding overcomes the
inertia of learning when encountering new conditions with no
precedents. Overcoming inertia is an effortful process that can fail
but provides unique performance advantages when it succeeds.
It was noted that AI and the cognitivist school of thought have
downplayed the role of understanding in performance.

The concept of Situation Awareness in Figure 1 predicates
awareness on understanding, consistent with the notion of
understanding-based awareness introduced in this section
(note that Figure 1 does not address learning. Accordingly,
this article does not expand on relations between learning and
understanding, except for the comments in the preceding
paragraph). The next section takes a closer look at the
process of understanding and provides examples of its
successes and failures.

Situational Understanding
Colloquially, “understanding” denotes an ability to figure
out what to do when there is no recipe available and
no precedent or aid to consult. The dictionary formulation
captures the essence of that ability defining understanding
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FIGURE 2 | Mental models are structures formed in Memory System (M) and manipulated by Regulatory System (R). Manipulation is enabled by activation (arousal)
arriving from the Activation System A (includes Reticular Activating System) and serves to organize activities in Motor-Sensory Periphery (MSP) in such a way that the
resulting changes in world states are consistent with the intent originating in R.

(comprehension, grasp) as “apprehending general relations in a
multitude of particulars” (Webster’s Collegiate Dictionary). In
science, relations are expressed by equations. Accordingly, in
understanding scientific theory T, apprehending general relations
takes the form of “recognizing qualitatively characteristic
consequences of T without performing exact calculations”
(Criterion for Intelligibility of Theories) (de Regt, 2017,
p. 102). The experience of attaining scientific understanding was
described by Richard Feynman as having

“some feel for the character of the solution in different
circumstances. . . . if we have a way of knowing what should
happen in given circumstances without actually solving the
equations, then we “understand” the equation, as applied to
the circumstances. A physical understanding is a completely
unmathematical, imprecise, and inexact thing, but absolutely
necessary for a physicist (Feynman, c/f de Regt, 2017, p. 102).

The Criterion subsumes epistemic and pragmatic aspects of
theoretical understanding, i.e., producing explanations of various
phenomena and applications in various situations. Figuratively,
understanding cuts through the “fog of war” (Clausewitz,
2015/1835) when apprehending battlefield situations and the “fog
of mathematics” when apprehending scientific theories.

These notions are consistent with conceptualizations of
understanding in psychology [theory of understanding (Piaget,
1975, 1978), theory of fluid and crystallized intelligence

(Cattell, 1971, 1978)], emphasizing ability to apprehend relations
under novel conditions and in the absence of practice or
instruction [fluid intelligence (Cattell, 1971, 1978)]. The term
“situational understanding” connotes changing conditions, with
situations transforming fluidly into each other (e.g., attack-
halt - withdraw - attack. . ., etc.). The remainder of this
section presents examples of situational understanding, prefaced
by a brief analysis (anatomy of the process) in the next
two paragraphs. These examples are followed by preliminary
suggestions regarding the underlying mechanisms.

Reduce a multitude of objects to just two, A and B, and
consider situation “A moves towards B.” In reaching decision
that A attacks B, three stages can be identified, with the first
one being readily apparent, while the significance of the second
is easily overlooked. First, one must perceive A and B, which
involves distinct activities (alternating attention between A and
B) producing two distinct memory elements (percepts). Second,
percept A and percept B must be juxtaposed (grouped), i.e.,
brought together and held together in memory (call it “working
memory”). The task appears to be easy when the activities follow
in tight succession (e.g., both A and B are within the field of
view) but not so easy when they are separated by large time
intervals. The third stage involves establishing a relation, which
is predicated on the success of the preceding stages. The second
stage is crucial: arguably, the development of understanding
was launched by the emergence of mechanisms in the brain
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allowing juxtaposition of percepts separated by large stretches
of time. At this point, it is informative to note that a recent
theory concerning the origins of language capacity in the humans
associated this capacity with the emergent availability of mental
operation (called Merge) where disjoint units A and B are
brought together to produce a new unit (A B) → C amenable
to subsequent Merge, (C Q) → Z, and so on (Chomsky, 2007;
Berwick and Chomsky, 2016).

Identifying stages in the understanding process helps to
appreciate the staggering challenges it faces. When experiencing
A, how does the idea of relating A to B come to mind? Figuring
out this relation takes effort but the very expression “coming
to mind” connotes spontaneity. Accordingly, understanding
can break down if the effort is insufficient and/or spontaneous
mechanisms fail to deliver. The point is that understanding
involves dynamic interplay of deliberate operations and
automatic memory processes triggered by the operations that
might or might not converge in a grasp. To exemplify the point,
consider a syllogism (say, “all humans are mortal, Socrates is a
human, therefore Socrates is mortal”). It might appear that the
conclusion inescapably follows from the premises but that’s an
illusion: one might be aware of each of the premises individually
but fail to bring them together, and/or the conclusion might
either not come to mind or get suppressed upon arrival.
Some extreme examples of failed and successful situational
understanding are listed next.

On May 17, 1987, the USS Stark on patrol in the Persian
Gulf was struck by two Exocet AM-39 cruise missiles fired from
an Iraqi F-1 Mirage fighter. An investigation revealed that the
aircraft was detected by AWAC (Airborne Warning and Control)
patrolling in the area and identified as “friendly.” Due to the
erroneous initial identification, the captain and crewmembers
on the frigate ignored subsequent aircraft maneuvers that were
unambiguously hostile (turning, descending and accelerating in
the direction of the ship) which resulted in a loss of 37 lives and
severe damages to the ship (Miller and Shattuck, 2004).

Between May 9th and June 14th in 1940, France was invaded
by the German army. France was one of the major military
powers in Europe that maintained adequately equipped forces
and, besides, invested tremendous resources in erecting state-
of-the-art fortifications on its northern border (the Maginot
Line). Despite these preparations, France suffered a historic
defeat. Massive literature has been produced over many decades,
analyzing the course of events and suggesting various reasons
for this colossal and catastrophic failure. A book published
in 1941 by a competent French author (served as a liaison
officer in the British army during WWI) summarized discussions
with French and British officers and political figures before and
after the events in question, His analysis offers what appears
to be a plausible account and explanations (Maurois, 1941).
In particular, the book pointed out that French military and
political authorities overestimated the efficiency of the Maginot
defenses which stemmed, interestingly, from French technical
advances and a sense of engineering superiority. French generals
determined Maginot fortifications to be impenetrable on the
grounds that they “can be built so rapidly that, in the time
necessary for an enemy to take a first line, the defending army

can construct a second . . .” (Maurois, 1941, p. 42). A full range
of state-of-the-art technologies (reconnaissance photography,
advanced communications, etc.) was employed, the terrain was
meticulously examined and mapped out and artillery ranges were
calculated in advance. “These painstaking labors assured absolute
precision of fire. The spotters in front of the forts had before
them photographs of the country divided into numbered squares.
Perceiving the enemy in square 248-B, all they would have to
do was murmur “248-B” into the telephone, and 10 s later the
occupied zone would have been deluged with shells and bullets”
(Maurois, 1941, p. 48). In short, a confident consensus was
predicting that the Maginot fortifications will never be broken
through. These predictions turned out to be correct: Germans
went around and bypassed the Maginot Line entirely, invading
Paris on June 14, 1940.

On January 15th, 2009, the Airbus A320-214 flying from
LaGuardia Airport in New York struck a flock of geese during
its initial climb out. The plane lost engine power, and ditched
in the Hudson River off midtown Manhattan just 6 min after
the take off. The pilot in command was Captain Sullenberger
(CS), the first officer was Skiles. The bird strike occurred 3 min
into the flight and resulted in an immediate and complete loss
of thrust from both engines. At that instant, Skiles began going
through the three-page emergency procedures checklist and CS
took over the controls. In about 30 s, he requested permission
for an emergency landing in a nearby airport in New Jersey (NJ)
but decided on a different course of action after the permission
was granted. Having informed controllers on the ground about
his reasons (“We can’t do it”) and intents (“We’re gonna be in
the Hudson”), CS proceeded to glide along and then ditch the
aircraft in the river. All the 155 people on board survived against
a staggeringly bad odds (Suhir, 2019).

The underlying mental process in all three incidents involves
item grouping, success or failure in the overall task performance
depended on how that step was accomplished. One more example
will help to illustrate this contention. Analysis of eye tracking
records of ATC controllers revealed latent grouping of aircraft
signatures on ATC displays which appeared to be motivated
by gestalt criteria (e.g., relative proximity). The probability of
detecting possible collision was higher for the aircraft residing
in the same group (A B) than for those residing in different
groups, (A B) (C D). It was hypothesized that novice controllers
could not disable gestalt grouping but the more skilled ones
developed a capacity for overcoming its impact on performance
(Landry et al., 2001; Yufik and Sheridan, 2002). We now turn to
analyzing these examples.

In the USS Stark incident, three items had to be accounted
for in the Captain’s decision process: A = own ship, B = AWAC,
and C = F1 Mirage. In the Captain’s mental model, grouping
(A B) was the dominant one (i.e., attributing significance to
any item C respective A relied entirely on B). The “friendly”
determination rendered C irrelevant to A and removed it from
consideration. Hence, the “blind spot” on the Iraqi F-1 Mirage
fighter whose behavior was displaying signs of attack that could
not be any clearer: the aircraft was ascending away from the ship
but then sharply changed its course and started descending and
accelerating toward the ship.
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FIGURE 3 | Situational Understanding is a product of background (knowledge, training) and mental skills. A solid horizontal line underscores that skills operate on
top of the background.

French military planners recognized the possibilities of
German bypassing maneuvers (e.g., attacking through Belgium)
but “rationalized them away,” i.e., worked out lines of reasoning
that rendered them highly unlikely and, ultimately, have forced
them out of consideration. French strategic thinking was
structured by the experience of trench warfare in WWI when
opponents were facing each other from fortified positions and
conducted frontal assaults to break through each other’s defenses.
As a result, the mental models of the leading strategists were
focused on the fortifications and defended areas in front of
them (A B) while turning a “blind eye “ to the adjacent areas
(C). Because of the influence earned by the generals in their
past victories, these models became the dominant view across
the French military, intelligence and political communities.
Common sense would suggest that the Maginot Line needed
to be “prolonged along the Belgian frontier by fortifications
that were perhaps less strong but nevertheless formidable. I
received one of the greatest shocks of my life when I saw the
pathetic line. . .which was all that separated us from invasion
and defeat” (Maurois, 1941, p. 19). The point is that experience-
sculpted models can produce pathological tunnel vision which
cannot be remedied by reasoning – to the contrary, reasoning
confined to the same tunnels can only make them more rigid.
Practical validation, an otherwise uncompromisingly reliable
criteria, could also do a disservice (one can imagine placing
targets in front of the fortifications and, after some extra practice,
having them destroyed, not in 10 but in 8 s).

The Airbus A320-214 incident prompted a thorough
investigation and analysis that engaged the most advanced
investigative and analytic tools available (Suhir, 2012, 2018,
2019; Suhir et al., 2021). Unlike in the previously cited scenarios,
this analysis had unlimited access to complete records and
could use computer modeling and testing in flight simulators
to validate the conclusion. The analysis was centered on
probabilistic risk estimates accounting for the human error
stemming from imbalances between human capacities (Human
Capacity Factor, or HCF) and mental workload (MWL). Ten
major contributors into HCF were identified: (1) psychological
suitability for the given task, (2) professional qualifications and
experience, (3) level, quality, and timeliness of past and recent
training, (4) mature (realistic) and independent thinking, (5)
performance sustainability (predictability, consistency), (6)
ability to concentrate and act in cold blood (“cool demeanor”)
in hazardous and even in life threatening situations, (7)
ability to anticipate (“expecting the unexpected”), (8) ability to
operate effectively under pressure, (9) self-control in hazardous

situations, and (10) ability to make a substantiated decision in
a short period of time. Captain Sullenberger was expected to
score high on the majority of these factors. In simulator tests,
four pilots were briefed in advance about the entire scenario in
full detail and then exposed to simulated conditions immediately
after the bird strike. Knowing in advance what to expect, all four
were able to land the aircraft. However, when a 30 sec delay was
imposed (the time it took Sullenberger to assess the situation
and decide on the course of action), all four pilots crashed
(Suhir, 2013).

Applying the HCF metric to other examples, it can be
suggested that HCF scores reflect capacity for situational
understanding, ranging from the bottom low to exceptionally
high. For the purposes of this paper, the ten factors can be divided
into four groups three of which can be roughly mapped onto
components in the architecture in Figure 2 (roughly, factors 2
and 3 relate to Memory, factors 1, 5, 6 relate to Activation and
factor 4 and 9 relate to Regulation) while the forth group is made
up of 7, the ability to anticipate (“expecting the unexpected”), and
10, the ability to make a substantiated decision in a short period
of time) relate to Situational Understanding, conceptualized here
as a product of interplay between the other three groups. Figure 3
re-phrases this suggestion.

Mental skills operate on top of background, including
knowledge and skills acquired in training, but are qualitatively
different from those. The distinction extends from responding
to unexpected eventualities to constructing scientific proofs or
theories where the process of selecting and applying the rules
of the theory at each stage cannot be itself governed by another
set of rules (de Regt, 2017). In the Airbus incident, emergency
rules and training dictated either consulting the emergency
checklists or seeking possibilities for heading to the nearest
airport. Following either of these courses of action would be
both rational (not random or unreasonable) and in line with
the cumulative experience in the aviation community, but would
have surely killed all on board.

There are five points to be made here. First, an NJ landing was
initially considered by CS and implicitly supported by controllers
on the ground, as evidenced by the granting landing permission.
Second, CS could not even start analyzing the NJ option (i.e.,
considering the current altitude, airspeed, distance, wind, aircraft
characteristics, etc.) but could only develop a “feel” that it would
not work out. Third, despite the absence of analysis, the “feel”
allowed a substantive decision (“We can’t do it”). Forth, having
developed the “feel,” CS acted on it resolutely, entailing another
substantive decision (“We’re gonna be in the Hudson”). Fifth,
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CS did not know the future but performed comparably to or
better than pilots who knew the scenario in advance. In short,
CS understood the situation in a process involving three distinct
mental operations, as follows.

1. Forceful re-grouping, not derived from any rule or
precedent (jump, �).
(A B) � (A C), here A is the aircraft, B is the New Jersey
airport and C is the Hudson River.
The expression reads as “group (A B) is jumped to group
(A C).”

2. Alternating attention between members inside a group
while envisioning variations in their characteristics
(coordination,
 ).
[var (A) 
 var (C)], attention alternates between
envisioning variations in the aircraft behavior [var (A) (e.g.,
changes in attack angle) and changes along the riverbed
(var (C)] (e.g., changes in width, curvature, etc.). Reads as
“A is coordinated with C.”

3. Forcefully iterating coordination until a particular
coordination pattern (relation) is apprehended (blending,
!).
[(var (A) ! var (C)], reads as “A is blended with C.”
Blending transforms a coordinated group into a cohesive
and coherent functional whole so that, e.g., envisioning
variations in one member brings to mind the corresponding
variations in the other one (thinking of ditching near a
particular spot brings to mind the required changes in
aircraft behavior and, vice versa, envisioning changes in
the behavior brings to mind the corresponding changes
in the location of the spot). Blending establishes relation
R on the group [var (A) 
 var (C)] → (A R C) which
gets expressed in substantive decisions (“We’re gonna be
in the Hudson”) and gives rise to probability estimates for
coordinated activities (“chances of a successful ditching
are not too bad”) and their outcomes (more on that in
the next section).

Operations jump, coordination, and blending participate in the
construction of mental models, culminating in blending which
makes one aware of, i.e., anticipate direct and indirect results
of one’s actions without considering situational details. Intuitive
appreciation of this dualistic relationship between awareness and
understanding seems to be the motivation in the Situational
Awareness concept and the SA schema in Figure 1.

To summarize, understanding involves the construction of
mental models that make an adequate performance possible
when exploring unknown phenomena and/or dealing with
unforeseeable eventualities in the otherwise familiar tasks. In
the latter case, understanding enables decision processes that
are substantive, short (as compared to the duration of the
task), rely on minimal information intake, and achieve results
approximating those one would achieve had all the eventualities
been known in advance. Importantly, mental models not only
generate likelihood estimates for future conditions but make one
envision them and then actively regulate motor-sensory activities
consistent with the anticipated conditions and in coordination

with motor-sensory feedback (hence, the “expecting of the
unexpected”). Note that simply to decide or choose immediately
requires there to be a space of policies or narratives to select
from. The position offered in this paper is that this necessarily
entails the ability to represent the (counterfactual) consequences
of two or more courses of action—and to select optimally among
these representations. What brain mechanisms could underlie
this capability?

THE VIRTUAL ASSOCIATIVE NETWORK
THEORY OF MENTAL MODELING

The VAN model was motivated by one paramount question
(“How does understanding work?”) and stems from the three
already familiar ideas that can be re-stated as follows:

(1) The world is a stream, and brain processes are
dynamically orchestrated to adapt organism’s behavior to
variations in the stream.

(2) The brain is a physical system, wherein all processes need
to be powered by energy extracted from the stream.

(3) Physical systems are dissipative, so any re-organization
takes time (instantaneous reorganization would require
infinite energy). As a result, adaptive re-organizations are
necessarily anticipatory.

Taken together, these ideas entailed the following two
hypotheses:

(a) the evolution of biological intelligence has been
(selectively) pressured to stabilize energy supplies
above some life-sustaining thresholds and

(b) human intelligence was brought about by biophysical
processes—discovered by evolution—that allowed for
two fundamental mechanisms to emerge: mechanisms
that stabilized energy supplies from the outside and those
minimized dissipative losses and energy consumption
inside the brain. These mechanisms culminate in the
uniquely human capacity for understanding, as outlined in
the remainder of this section. The next section will suggest
a hand-in-glove relationship between thermodynamic
efficiency and variational free energy minimization
(VFEM) (Friston, 2009, 2010).

Note that the VAN approach is orthogonal to that expressed
in the perceptron (neural nets) idea: dynamically orchestrated
neuronal structures vs. fixed structures (after the weights are
settled), input streams where stimuli combinations are never
twice the same vs. recurring inputs. Crucially, accounting for
energy and time is integral to the VAN model and alien to the
perceptron framework. In short, the VAN and perceptron models
reside in different conceptual terrains. The appeal of the former
is the possibility of quickly reaching a point where a theory of
understanding can be articulated. Technically, the distinction
between perceptron and related reinforcement learning and VAN
is the distinction between an appeal to the Bellman optimality
principle (any part of an optimal path between two configurations
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of a dynamical system is itself optimal) and a more generic
principle of least action where action corresponds to energy times
time. VAN and the free energy principle (a.k.a. active inference)
share exactly the same commitments. Note that formulating
optimal behavior in terms of a principle of least action necessarily
involves time—and the consequences of behavior.

To set the stage, return to Figure 2, and think of the world
as a succession or stream of states Si, Sj . . . arriving with
time interval τ1, and think of the brain as a pool of N binary
neurons. Interaction is driven by the need to extract energy
from the world in the amounts sufficient for the pool’s survival.
Anthropomorphically, this entails recurring cycles of inquiring
(What is the current state of affairs in the world?) and forming
responses (What shall I do about it?). The sequence of “inquiries”
at each cycle can be expanded: What is the state? What can I do
about it? What shall I do about? How shall I do it? and so on. Also,
different types of neurons can be envisioned and mapped onto
different components in the architecture in Figure 2 (sensory
neurons, motor neurons, etc.).

Whatever the composition of the pool and the content and
order of the inquiries, activities in the pool boil down to
selectively flipping (exciting or inhibiting) neurons in a particular
order. Make two assumptions: (a) each state Si can emit energy
reward i ranging from 0 to some maximum 4

max
i , depending on

the order and composition of “flippings” in the pool and (b) each
“flip” consumes energy d (at the first approximation, let all flips
be powered by the same energy amount). The problem facing
the pool can be defined now as maximizing energy inflows while
minimizing the number of flips. It will be argued, in four steps,
that understanding involves a particular strategy for satisfying
this dual objective (step 4 defines architecture for understanding).

Step 1. Neuronal Groupings
A pool of N binary neurons admits 2Nconfigurations so that,
in principle, selecting a rewarding configuration for a particular
world state can pose a problem that grows in complexity with the
size of the pool (associating complexity measure with the number
of options). The problem is alleviated when choices are dictated
by the world state itself (i.e., each stimulus in the composition of
Si excites particular neurons) but, otherwise, the pool needs to
choose between 2N options.

Assume that a mechanism exists to partition the pool into m
groupings [call them neuronal assemblies (Hebb, 1949, 1980)]
such that all the neurons in every group behave in unison. Such
partitioning would offer more efficiency, reducing the number
of choices from 2N to 2m. The remedy is radical because it not
only puts a lid on complexity growth but causes complexity
to decrease steeply with the size of the pool (e.g., partitioning
pool of 10 neurons into 5 groups yields 25: 1 reduction in the
number of options while having 5 groups in a pool of 100 neurons
obtains 295: 1 reduction). Complexity reduction translates into
an increase decision speedup (e.g., equating complexity to time-
complexity, by assuming one choice per unit time) and internal
energy savings. Indeed, complexity reduction can be regarded
as underlying all (i.e., universal) computation; in the sense of
algorithmic complexity and Solomonov induction. The benefits
of compression and complexity minimization come at a price:

FIGURE 4 | Self-partitioning in the neuronal pool radically impacts pool’s
capacities in responding to world streams and involves trade-offs between
time and accuracy, as a function of group size. The relationship is non-linear,
creating long tail areas where, on the one side, sacrificing speed (increasing
the number of groups) produces no appreciable improvements in accuracy
(“useless details”) and, on the other side, small speed gains produce quickly
increasing errors (“useless generalities”). A narrow inflection zone (Ockham’s
point, or O-point) lies between the tail areas.

imploding complexity is accompanied by exploding error — as
the loss of degrees of freedom precludes an accurate prediction.
This trade-off between accuracy and complexity is illustrated in
the notional diagram in Figure 4 (error ηi is measured by the
difference between energy gain 4

N
i obtainable in the pool without

partitioning and gain 4
m
i yielded by m- partitioning).

To illustrate, veering to the left of the O-point in the
Airbus accident would be akin to CS receiving advice “aviate,
navigate, communicate” from the ground controllers, which
is a paramount principle in aviation human factors (Wiener
and Nagler, 1988) but hardly a useful guidance under the
circumstances, while veering to the right would be like offering
a refreshment course in plane aerodynamics. Depending on the
task, the relative width of Ockham’s zone on the group size axis
can be very small so the ability to stay within it (e.g., not going
through emergency checklists, discontinuing communications,
etc.) can make vital differences in the performance outcomes. Put
simply, there is a right level of “grouping” or “course graining”
that provides the right balance between accuracy and complexity.
Statistically speaking, this corresponds to maximizing marginal
likelihood or model evidence.

Arguably, the emergence of grouping mechanisms in the
neuronal substrate was a major discovery in the evolution
of biological intelligence (from sensing to understanding).
Accordingly, the concept of neuronal assembly remains the
single, most revealing idea at the foundation of neuroscience
(Hebb, 1949, 1980). Neuronal grouping opened new avenues for
development, via fine-tuning and manipulation of the groups.
Pursuing such adaptive improvements equates to bending curves
and “pushing” the Ockham’s point toward obtaining minimal
error in the smallest number of groups (see Figure 3). It was
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FIGURE 5 | (1) Patterns of excitation-inhibition within groups can be varied,
which can be expressed as rotation of group response vectors (symbol y
denotes operation “rotation of group response vector”). (2) Movements of
group response vectors can be coordinated: every position of GRVA

determines a range of admissible positions for GRVB, and vice versa,
movement of one vector causes re-positioning of the other one (i.e., thinking
of changes in A brings to mind the corresponding changes in B).

subsequently argued that thermodynamics has been doing the
“pushing” (Yufik, 1998, 2013), we will touch on that later.

Step 2. Varying and Coordinating Group
Activities
On-off decisions on neuronal groups can be dynamically nuanced
to allow more close tracking of the world stream, by, first,
tuning receptive fields in individual neurons and, second, by
varying excitation–inhibition balance within each. A convenient
expression of that strategy can be obtained by summing up
response vectors of all the participating neurons in a group to
obtain “group response vector” (GRV) and then characterizing
activity variations inside a group as patterns in the movement
of GRV. Finally, mechanisms for inter-group coordination
would develop on top of the mechanisms for controlling intra-
group variations. Coordination involves mutual constraints, i.e.,
variations in one group can both trigger and limit the range
of variations in another one. Mutual constraints reduce the
number of options, thus shifting the O-point down and to the
left. Figure 5 depicts progression from intra-group variation to
inter-group coordination.

One of the cornerstone findings in neuroscience revealed that
movement control (e.g., extending hand toward a target) involves
a rotation of response vectors in groups of motor neurons, as in
Figure 5.1 (Georgopoulos and Massey, 1987; Georgopoulos et al.,
1988, 1989, 1993). Accordingly, complex coordinated movements
can involve coordinated rotation of group response vectors in
synergistic structures in the motor cortex comprising multiple
neuronal groups (Latash, 2008).

Step 3. Neuronal Packets and Brain
Energy Landscapes
The following hypotheses is central in the VAN model: neuronal
assemblies are formed as a result of phase transitions (Kozma
et al., 2005; Berry et al., 2018) in associative networks,
when tightly associated subnets become separated by energy
barriers from their surrounds (c.f., the formation of droplets in
oversaturated vapors). The term “neuronal packet” was coined
in Yufik (1998) to denote neuronal assemblies bounded by

energy barriers. It can be argued that Hebb’s insight recognizing
assemblies as functional units in the nervous system (as
opposed to attributing this role to individual neurons) necessarily
implied the existence of biophysical mechanisms that keep
such assemblies together, separate them from the surrounding
network and make it possible to manipulate them without
violating their integrity and separation. On that argument, the
VAN theory only makes explicit what was already implied in the
idea of neuronal assembly. Figure 6 elaborates this contention.

Associating boundary energy barriers with biological neuronal
groups expresses a non-negotiable mandate that operations on
such groups, including accessing the neurons inside, varying
excitation-inhibition patterns in the groups, removing neurons
from a group, etc. all involve work and thus require a focused
energy supply to the group’s vicinity sufficient for performing
that work. Multiple packets establish an energy landscape in the
associative network, as shown in Figure 7.

Packets are internally cohesive and externally weakly coupled
(i.e., neurons in a packet are strongly connected with each
other and weakly connected with the neurons in other packets),
the cohesion/coupling ratio in a packet determines the depth
of energy “well” in which it resides: the deeper the well, the
more stable the packet, which translates into reduced amounts
of processing and higher degree of subjective confidence when
packet contents are matched against the stream [packets respond
to correlated stimuli groupings, the number of matches sufficient
for confidently identifying the current input decreases as the
cohesion/coupling ratio increase (Malhotra and Yufik, 1999)].
Changes in the landscape, as in Figure 6, result from changes in
arousal accompanying changes in subjective values (importance)
attributed to the input (objects, situation): the higher the value
attribute to an object, the deeper the corresponding well becomes
(more on that shortly).

The notions of neuronal packets and energy landscape in
Yufik (1996, 1998); Yufik and Sheridan (2002) anticipated
experimental and theoretical investigations of cortical energy
landscapes (Watanabe et al., 2014; Gu et al., 2017, 2018; Kang
et al., 2019). However, packet energy barriers are amenable to
direct experience, as was first intimated by William James in his
classic “The Principles of Psychology” back in 1890, as follows. To
access an item in memory, one must make attention

“linger over those which seem pertinent, and ignore the rest.
Through this hovering of the attention in the neighborhood of the
desired object, the accumulation of associates become so great that
the combined tensions of their neural processes break through the
bar, and the nervous wave pours into the track which has so long
been awaiting its advent” (James, 1950/1890, v. 1, p. 586).

To appreciate the insightful metaphor “breaking through
the bar,” think of desperately trying to recollect the name of
an acquaintance that escaped you just at the moment you
were making an introduction. With a stunning insight and
vividness (Figure 8), James describes the experience of mounting
mental effort to access packet’s internals from the surrounding
associative structure:

“Call the forgotten thing Z, the first facts with which we felt it was
related, a, b, c and the details finally operative in calling it up, l,
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FIGURE 6 | The idea of assembly expresses the notion that groups of tightly associated neurons form cohesive units distinct from their surrounds in the network
(associative links are not shown). The notion of a neuronal packet expresses, in the most general terms, a mechanism for forming and stabilizing such units in a
material substrate (i.e., phase transition and emergence of an energy barrier in the interface between the phases). PRVA denotes “packet response vector.”

FIGURE 7 | Associative structures reside in continuous energy landscape.
Coordinating objects A and B occupying different minima (A B) → (A� B)
requires repetitive climbing over the energy “hill” between the minima.
Deformation in the landscape (lowering the “hill”) enables blending
(A� B) → (A! B), producing a structure where A and B remain distinct
and, at the same time, capable of constraining each other’s behavior.

m and l. . . .The activity in Z will at first be a mere tension, but
as the activities in a, b and c little by little irradiate into l, m, n,
and as all these processes are somehow connected with Z, their
combined irradiation upon Z . . .succeed in helping the tension
there to overcome the resistance, and in rousing Z to full activity”
(James, 1950/1890, v. 1, p. 586).

Building on the notions in Figure 7, assume, first, that Z
admits a number of distinguishable states Z = Z1, Z2, . . ., Zk,
second, another packet Q = Q1, Q2, . . .., Qm exists somewhere
in the associative network, third, attention alternates between
varying states in Z Z1 → Z2 → ...→ Zk and Q Q1→ Q2→

. . .. →Qm (i.e., rotating packet vectors) until, finally, a particular
form of coordination between the variation patterns is established
(relation r), producing a coordinated relational structure Z r
Q. With that, a model is formed expressing variations in the
world stream in terms of objects, their behavior and inter-
object relations (more on that shortly). Transporting James’ vivid
account into modern context, “hovering of the attention” can
be compared to burning fuel in a helicopter hovering over a
particular spot, and inter-packet coordination is like keeping
two helicopters airborne and executing different but coordinated

FIGURE 8 | Accessing contents of packet Z requires sustained attention in
the associative neighborhood until effort is mounted sufficient for overcoming
“resistance”(i.e., boundary energy barrier) (adopted from James, 1950/1890,
v. 1, p. 586).

flight patterns. Finally, forcing changes in the landscape and
establishing coordination, as in Figure 6, is analogous to letting
the helicopters roll on the ground and having them connected by
a rod to coordinate their moves. The following two suggestions
reiterate these notions more precisely.

First, alternating between the packets is an effortful process
critically dependent on the strength of “resistance” offered by the
energy barrier: excessive height will make the packets mutually
inaccessible while low barriers will make them less stable and
thus disallow sustained and reproducible variations. In short,
the process is contingent on maintaining a near-optimal height
of energy barriers throughout the landscape, as suggested in
Figure 6.

Second, establishing relations replaces effortful alternations
between packets with effortless (automatic) “facilitation” (the
term is due to Hebb, 1949). Stated differently, a rule
“varied together, coordinated together” can be suggested as
a complement to Hebb’s “fire together, wire together” rule,
extending its application from neurons to packets. Facilitation
underlies the experience of coming to mind when thinking of
changes in Z brings to mind the corresponding changes in Q,
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as in Figure 5.2. More generally, packets become organized
(blended) into a model yielding the capacity to “have some feel
for the character of the solution . . ..without actually solving
the equations” (Feynman, see section “The Virtual Associative
Network Theory of Mental Modeling”). Stated differently, one
becomes aware of the direction in which changes in one model
component impact behavior of the other ones and of the entire
composition, consistent with the insight expressed in Figure 1.
Situational “feeling” is coextensive with reaching understanding
and obtaining complexity reduction in the modeling process on
a scale ranging from small in simple situations to astronomical
in complex ones.

To appreciate the significance of the benefit, think of a
most rudimentary task, e.g., a chimpanzee connecting sticks
and climbing on top of piled boxes to reach some fruit.
Connecting sticks involves trying out different random variations
until the proper coordination is encountered (Koehler, 1999).
Connected sticks become a physical unit that can be physically
coordinated with other units (i.e., carried on top the boxes) which
is contingent on forming and coordinating the corresponding
memory units (pairwise coordinations, i. e, stick1- fruit, stick2-
fruit, box1- fruit, etc. might never amount to a solution). Ability
to temporarily decouple mental operations from their motor-
sensory expressions and to combine coordinated packets into
stable functional units amenable to further coordination (that
is, the ability to think and understand) separates humans from
other species. Piaget articulated these notions convincingly,
by pointing at the “contrast between step-by-step material
coordinations and co-instantaneous mental coordinations”
and demonstrating in multiple experiments that “mental co-
ordinations succeed in combining all the multifarious data and
successive data into an overall, simultaneous picture which
vastly multiplies their power of spatio-temporal extensions. . .”
(Piaget, 1978, p. 218).

Step 4. Architecture for Understanding
Figure 9 positions mechanisms of packet manipulation in the
three-partite brain architecture in Figure 2 superposed on the
schema of Situational Understanding in Figure 3.

Two blocks are identified, denoting two classes of memory
processes and operations: block A is shared across many species
while block B is exclusively human, as follows. Block A limits
memory processes to the formation of associative networks and
packets, and allows for the rotation of packet vectors. Block B
allows other operations leading to construction of mental models
and operations on them.

Block A (block B is absent or underdeveloped) reflects
cognitive capacities in non-humans, from simple organisms to
advanced animals. Rudimentary forms of learning reduced
to selective formation and strengthening of associative
links are available in simple organisms (e.g., worms, frogs)
and decorticated animals [e.g., rats having 99.8% of the
cortex surgically removed (Oakley, 1981)]. Intact rodents
occupy an intermediate position in the capacity ladder
[learning involves formation of a few neuronal groups that
get selectively re-combined depending on changes in the

situation (Lin et al., 2006)]. Apes and some avians can learn to
coordinate a few objects (link C).

Block A operates on the associative and packet network
in block B while leaving the mosaic of associative links
intact. Flexible neuronal “maneuvers” [fluid intelligence
(Cattell, 1971, 1978)] underlie management of competing goals
and other executive functions (Mansouri et al., 2009, 2017)
and involve selective re-combination of packets, producing a
hierarchy of relational models (hierarchy of flexible relational
structures developing on top of an associative network is called
virtual associative network). Interactions between levels are two-
directional, with the top-down processes selectively engaging
lower levels, down to deployment of sensorimotor resources
which can entail changes in the bottom associative network due
to sensorimotor feedback (please see below).

Link D places energy distribution across the packet network
under regulatory influence (volitional control), thus making it
an integral part of a human cognitive system, as suggested in
Figure 10.

In the extreme, low barriers allow floods of irrelevant
associations while high barriers confine attention to a few familiar
associations. Accordingly, optimal arousal obtains optimal task
space partitioning (m0) yielding optimal performance.

Arousal-induced changes in the landscape account for the
levels of awareness, from vegetative wakefulness (flat landscape)
to understanding-based awareness (optimal landscape, see
Figure 1). Subjective experience of arousal varies from fear,
stress, anxiety on the one and of the spectrum to excitement
and exhilaration on the other end. Accordingly, moving along
the spectrum changes the topological characteristics of the
energy landscape: from fragmented access (i.e., some areas
are inaccessible) to the unrestricted accessibility of a flat
surface. Stress-induced changes in landscape topology are likely
to underlie the idea of “suppressed memories” treated in
psychoanalysis (disturbing memories are not erased or degraded
but become “walled off “ behind high barriers, so access to
them can be restored if the barriers are lowered. Treatment that
concentrates on the associative neighborhood (see Figure 6), as
in dream analysis, seems to be appropriate for that purpose).
Methods of memory recovery were disputed, on the grounds that
it might be as likely to conjure false memories as to recover access
to the lost ones (Loftus and Ketcham, 1996). However, creation
and suppression are two sides of the same coin, i.e., the same
mechanism that facilitates creative re-combination of memory
structures can block access to some of them. Stress-induced
landscape distortions can be responsible for other psychological
symptoms, such as obsessive thoughts.

We will now return to the examples above, this time applying
the notions of the VAN framework. The USS Stark incident
and the Maginot catastrophe were not a product of insufficient
training or illogical reasoning but resulted from understanding
failure, that is, the inability to form “mental co-ordinations . . .
combining all the multifarious data and successive data into
an overall, simultaneous picture” (Piaget, 1978, p. 218). Despite
differences in circumstances, the nature of cognitive deficiency
was the same in both scenarios: an inability to overcome
the resistance of elevated energy barriers, which resulted in
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FIGURE 9 | Architectures for understanding. This diagram represents cognition as a regulatory process that is directed at adapting (matching) behavior variations in
the organism to condition variations in the world stream and is powered by energy inflows extracted from the stream. Organization in the system comprises different
structures submitted to regulation [from tuning receptive fields in individual neurons (Fritz et al., 2003, 2005), to rotating packet vectors, to constructing and
manipulating mental models], seeking to stabilize energy inflows while minimizing metabolic costs.

fragmented (as opposed to simultaneous) “pictures.” On the
VAN theory account, the captain’s mental model in the first
scenario comprised two uncoordinated packets: A = ship, objects
relevant to the ship, and B = all other objects. A highly valued
but erroneous AWAC classification placed the Iraq jet in the
second group, and the captain’s mental skills did not allow
crossing the A | B barrier and coordinating members of B
with members of A. In the second scenario, mental model of
the high command comprised A = fortifications, defended area
in front of fortifications and B = adjacent areas, objects in
the adjacent areas separated by an energy barrier that turned
out to be insurmountable due to overvalued significance of
past experiences. French high command, as a collective entity,
demonstrated low level of self-control under fear and anxiety
brought about by the anticipated German attack, which caused
them to fall back on the past tactics and made them “fanatically
uninterested” in deviating from them.

By contrast, a high degree of self control (“ability to operate
effectively under pressure, self-control in hazardous situations”
Suhir, 2013) demonstrated in the Airbus incident made possible
suppressing fear and bringing arousal to a level enabling
situational understanding manifested in overcoming the inertia
of training and customary practices (regulations, authority of
the ground control, etc.), “feeling” the appropriate course of
action, and making decisions at a substantive level (“we can’t
do it,” “we’re gonna be in the Hudson”). The well coordinated
mental model regulated subsequent activities in a top-down
fashion, by selectively engaging skills and knowledge in the
pilot’s background repertoire as necessary for coordinating flight
pattern with river characteristics to enable a safe ditching.
Figure 11 depicts a succession of mental operations.

Figure 10 underscores that mental models are regulatory
structures that, beside supplying “pictures,” control their own
execution via dynamic coordination of various data streams in
the motor-sensory loop completed via environmental feedback
[sensory streams include visual input (e.g., river shape),

FIGURE 10 | The shape of the energy landscape is a function of interplay
between arousal and value distribution across the packets (reflecting value
distribution in the corresponding objects). Heightened arousal lowers energy
barriers across the landscape enabling coordination of distant packets, as
might be necessary for unfamiliar and complex (creative) tasks, while
decreasing arousal elevates the barriers thus restricting coordination to
proximal packets (which might suffice for simple and familiar tasks).

motor-kinesthetic input, etc.]. Execution is accompanied by
a feeling of confidence in reaching the objective (e.g., safe
ditching) that varies depending on the varying degree of
correspondence between the envisioned outcomes of control
actions and the actually observed ones. Technically, grasp can be
said to establish a functional on the space of packet vectors that
returns confidence values for different patterns of inter-packet
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FIGURE 11 | Here A - aircraft, B - New Jersey airport, C - Hudson River. Mental operations are accompanied by imagery and remain decoupled from the
motor-sensory feedback until, following grasp, the motor-sensory system gets engaged.

coordination. Behavior of the functional depends on the vector
space topology, i.e., accessibility between packets.

Following grasp, the repetitive successful exercise of a newly
formed model causes its stabilization, which is captured, to an
extent, in the concept of frame (schema, script, etc.) defined
as a fixed memory arrangement comprised of components
(slots) with variable contents (e.g., script of visiting a restaurant
comprises slots “entering,” “being seated,” “studying menu,” etc.
(Schank and Abelson, 1977; Norman, 1988). A few comments on
the frame idea are offered in the discussion part.

Since the VAN theory pivots on the notion of energy efficiency
in the brain, a brief excursion into that subject is in order. The
notion that neuronal system optimizes energy processes (Yufik,
1998, 2013; Yufik and Sheridan, 2002) is consistent with later
theoretical proposals (e.g., Niven and Laughlin, 2008; Vergara
et al., 2019; Pepperell, 2020, 2018) and an increasing number
of experimental findings (the discussion section offers a brief
review of some data). To appreciate the sources of energy
efficiency inherent in the VAN concept, consider the following.
In an associative network, excitation in any node or group of
nodes can propagate throughout the entire network. By contrast,
propagation of excitations induced within a packet is obstructed
by boundary energy barriers (i.e., crossing a barrier incurs
energy costs). Moreover, seeking further energy savings drives
the system toward constraining intra-packet activities to packet
subsets and, when crossing the barriers, to engage only packets
amenable to mutual coordination. In this way, formation of
mental models comprising entities (packets), behavior (transition
between intra-packet activity patterns) and relations (inter-
packet coordination) expresses the dual tendency to increase
the efficacy of action plans (enabled by situation understanding)
while decreasing the costs of such planning. A reference to
neuronal processes that might be responsible for some of these
phenomena will conclude this section.

Interaction between neuronal cells is mediated by several
types of substances, including neurotransmitters and
neuromodulators. Neurotransmitters act strictly locally, i.e.,
they are released by a pre-synaptic neuron and facilitate (or
inhibit) generation of action potentials in a single post-synaptic
target. By contrast, neuromodulators act diffusely, i.e., they are
released to a neighborhood as opposed to a specific synapse
and affect a population of neurons in that neighborhood
possessing a particular receptor type (metabotropic receptors).
Neuromodulators control the number of neurotransmitters

synthesized and released by the neurons, thus allowing up- or
down- regulation of interaction intensity. Neurotransmitters
move through fast-acting receptors metabotropic receptors
are slow-acting receptors that modulate the functioning of
the neuron over longer periods (Avery and Krichmar, 2017;
Pedrosa and Clopath, 2017). Neuromodulators were found to
provide emotional content to sensory inputs, such as feelings
of risk, reward, novelty, effort and, perhaps, other feelings
in the arousal spectrum (Nadim and Bucher, 2014). It can
be suggested that James’ vivid depiction of “hovering of the
attention in the neighborhood of the desired object” provides
an accurate introspective account of the work invested in
regulating neuromodulator concentration and neurotransmitter
production at the packet boundary, which amounts to lowering
the energy barrier until “the combined tensions of neural
processes break through the bar” (James, 1950/1890, v. 1, p. 586).
Since neuromodulators are slow acting, the packet remains
accessible for a period of time sufficient for the task at hand.

To summarize, psychology usually treats awareness
as a necessary but insufficient prerequisite for reaching
understanding (e.g., one can be fully aware of all the pieces
and their positions on the chessboard but fails to understand
the situation). According to the present theory, predicating
situation awareness on situation understanding, as in Figure 1,
refers to understanding-based awareness (see section “Levels
of Awareness”) and expresses a keen insight consistent with
one of the key assertions in the VAN theory: the experience of
attaining understanding accompanies emergence of a synergistic
(coherent and cohesive) mental models, simulating (envisioning)
possible actions on particular elements in such models generates
awareness of the constraints and likely consequences of those
actions in the other elements throughout the model (hence, the
situation awareness).

INTEGRATING VIRTUAL ASSOCIATIVE
NETWORK INTO THE VARIATIONAL
FREE ENERGY MINIMIZATION
FRAMEWORK

The Free Energy Minimization principle offers a “rough guide to
the brain” (Friston, 2009) and extends to any biological system,
from single-cell organisms to social networks (Friston, 2010).
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The central tenets of the VFEM come from the realization that
any living system must resist tendencies to disorder, including
those emanating from the environment, while obtaining means
for resistance from that same environment:

“The motivation for the free-energy principle . . . rests upon the
fact that self-organizing biological agents resist a tendency to
disorder and therefore minimize the entropy of their sensory
states “ (Friston, 2010, p. 293).

The success or failure of the enterprise depend on the system’s
ability to adapt, via forming models of the world used to predict
the forthcoming conditions. The VFEM principle expresses
this insight in information-theoretic terms, via the notion of
variational free energy defined as follows:

“Free-energy is an information theory quantity that bounds the
evidence for a model of data . . . Here, the data are sensory
inputs and the model is encoded by the brain. . . ... In fact, under
simplifying assumptions. . .it is just the amount of prediction
error” (Friston, 2010, p. 293).

Technically, variational free energy is Fv is defined as surprise
(or self-information) - ln p (y| m) associated with observation
y under model m, plus the difference between the expected and
the actual observations (i.e., the prediction error under model
m), measured as a Kullback-Leibler divergence DKL, or entropy,
quantifying distinguishability of two probability distributions.

This section adopts the simplifying assumptions and equates
variational free energy to prediction error. The VFEM principle
conceptualizes minimization of prediction error as a causal factor
guiding interaction with the environment, as follows:

“We are open systems in exchange with the environment; the
environment acts on us to produce sensory impressions and
we act on the environment to change its states. This exchange
rests upon sensory and effector organs (like photoreceptors and
oculomotor muscles). If we change the environment or our
relationship to it, sensory input changes. Therefore, action can
reduce free-energy (i.e., prediction errors) by changing sensory
input, whereas perception reduces free-energy by changing
predictions” (Friston, 2010, p. 295).

Adaptive capacities culminate in the ability to adjust accuracy,
or precision to optimally match the amplitude of prediction
errors, as follows:

“Conceptually, precision is a key determinant of free energy
minimization and the enabling – or activation – of prediction
errors. In other words, precision determines which prediction errors
are selected and, ultimately, how we represent the world and
our actions upon it. . . ..it is evident that there are three ways
to reduce free energy or prediction error. First, one can act
to change sensations, so they match predictions (i.e., action).
Second, one can change internal representations to produce a
better prediction (i.e., perception). Finally, one can adjust the
precision to optimally match the amplitude of prediction errors”
(Solms and Friston, 2018).

The VAN theory instantiates the VFEM principle for the
human brain, identifying understanding with a particular
strategy for predictive error reduction and a particular form of
precision adjustment. In this way, the VAN theory proposes some

substantive contributions to the VFEM framework, including the
following. Firstly, the VFEM principle envisions changing actions
to change sensations and changing internal representations in
order to change perceptions. The VAN theory envisions, in
addition, changes in the internal models to produce and change
understanding. Secondly, “the motivation for the free-energy
principle . . .. rests upon the fact that self-organizing biological
agents resist a tendency to disorder and therefore minimize
the entropy of their sensory states” (Friston, 2010, p. 293).
VAN postulates that self-directed construction of mental models
constitutes a form of self-organization in the brain that reduces
the entropy of its internal states (Yufik, 2013, 2019) (more on
that important point in the next section). Thirdly, according to
the VFEM, error minimization brings about the minimization of
energy consumption in the brain. By contrast, VAN attributes
ontological primacy to energy processes and derives error
reduction from the pressure to reduce energy consumption.

Technically, the VAN and VFT share the same commitment to
finding the right balance between accuracy and complexity, i.e.,
the right kind of grouping or course graining that conforms to
Occam’s principle. This follows because variational free energy
is a bound upon the log of marginal likelihood or model
evidence (i.e., negative surprise or self information). As noted
above, the marginal likelihood can always be decomposed into
accuracy and complexity. This means that the energy landscapes
above map gracefully to the variational free energy landscapes
that attend the free energy principle. The link between the
informational imperatives for minimizing prediction errors and
the thermodynamic imperatives for efficient processing rest
upon the complexity cost, that can be expressed in terms of a
thermodynamic cost (via the Jarzynski equality). An example
will illustrate the underlying notion of efficiency from both a
statistical and thermodynamic perspective:

Consider a frog trying to catch flies and getting disappointed
by the results (too many misses). To secure a better energy
supply, the frog can start shooting its tongue faster, more often,
etc. If the hit/miss ratio does not improve and the frog keeps
shooting the tongue in vain, it will soon sense the amplitude
of prediction error unambiguously – by dying from exhaustion.
Presume that neuronal mechanisms emerge that improve the
score by improving sensory- motor coordination. In principle,
this line of improvement could continue indefinitely making
the frog progressively more sophisticated hunter, except that the
mechanisms can require more neurons engaged in more intense
activities which will result in increasing energy demands that
can outweigh increases in the intake (besides, there are obvious
physiological and physical limitations on the brain size, and
neither neurons can become smaller, nor the underlying chemical
processes can run faster).

Consequently, radical behavior improvements are predicated
on discovering mechanisms that deliver them without increases
in the size of neuronal pool and/or neuronal activities, that is,
without increases in internal energy consumption or, better yet,
entailing energy savings. The point is that such mechanisms
might or might not emerge, and error reduction is a consequence
of their development, as opposed to such mechanisms being
a guaranteed accompaniment of error reduction. With these
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FIGURE 12 | VAN theory instantiates VFEM framework, by accounting for error optimization mechanisms underlying human understanding. The figure above the
horizontal dotted line depicts a VFEM construct where adaptive interaction between world states and the brain (internal states) is conducted via motor-sensory loop
and pivots on the mechanisms of error minimization and precision adjustment (adopted from Solms and Friston, 2018). Figure below the horizontal dotted line
summarizes the VAN approach deriving error optimization from capabilities inherent in self-directed packet manipulation (see Figure 9). Vertical dotted lines suggest
mapping between the VFEM and VAN constructs. The sensory and activity states constitute Markov Blanket that shields internal states from the world states and, at
the same, mediates interaction between them.

caveats, Figure 12 suggests a straightforward integration of the
VAN model into the VFEM framework.

MACHINE SITUATIONAL
UNDERSTANDING

This section illustrates the function of machine
situational understanding and discusses approaches toward
its implementation.

Machine Understanding
A machine can be said to possess situational understanding to the
extent it can:

(a) accept task definition from the operator expressed in
substantive terms,

(b) evaluate a novel, unfamiliar situation and develop a course
of action consistent with the task and situational constraints (the
available time, data sources, etc.) and

(c) communicate its decisions and their reasons to the
operator in substantive terms.

In other words, decision aid is attributed a degree of
situational understanding if the operator feels that the machine

input contributes into his/her situational awareness and
can be sufficiently trusted to adjust his/her own situational
understanding and to act on machine advice. In the VAN
framework, substantive expressions address objects (entities),
their behavior, and forms of behavior co-ordination (relations).
The same three examples will illustrate these suggestions.

In the USS Stark incident, an on-board situation
understanding aid (SUA) could overrule AWAC target
classification and issue a warning like “Attention: there is
0.92 probability that this is enemy aircraft.” The chances that the
warning will be trusted and acted upon will improve significantly
if, when asked “How do you know?” the system would reply
with “The aircraft was ascending but then turned sharply and
started descending and accelerating toward you.” Assuming that
the captain interacts with the ship systems via the aid, the SUA
would accept the captain’s command “Engage the target” and
initiate activities by the engagement protocol [note that learning
systems (e.g., deep learning) are capable of reliably detecting and
identifying objects but are limited in their ability to apprehend
relations and explain their decisions to the user].

In the Airbus incident, the SUA could be tasked with
interacting with ground control to request permission to land
in NJA, and could respond with “We are not going to make
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it.” Improving situation understanding in the Maginot scenario
would require breaking a rigid mental template, some (tentative)
suggestions for a possible role of SUA will be made shortly, after
introducing VAN computational framework.

Virtual Associative Network
Computational Framework and Virtual
Associative Network/Variational Free
Energy Minimization Integration
The VAN computational framework was dubbed “gnostron”
(Yufik, 2018), to underscore distinction from “perceptron”:
perceptron has a fixed neuronal structure while gnostron is a
neuronal pool where structure evolves gradually and remains
flexible. Gnostron formalism is a straightforward expression
of VAN considerations summarized in section “Integrating
Virtual Associative Network into the Variational Free Energy
Minimization Framework,” as follows.

World is a stream of stimuli S = s1, s2, . . .., sM arriving
in different combinations at a pool comprised of N neurons
X = x1, x2, xN , with each neuron responding probabilistically to a
subset of stimuli. In turn, the stimuli respond probabilistically to
the neurons that pool mobilizes and “fires at” them, by releasing
energy deposits (neuronxi has receptive field µij, µih, . . .µik, here
µih denotes probability that stimulus sh will release deposit Eh
in response to the pool having fired xi). Mobilization (selecting
neurons and preparing them to fire) takes time and neurons,
after having fired, need to time to recover, which forces the pool
to engage in anticipatory mobilization. Engaging xi consumes
energy δi comprising the work of mobilization ρi and the work of
firing νi, δi = ρi + νi (note that mental operations are constituents
of mobilization).

The pool’s survival depends on maintaining net energy inflows
(cumulative deposits minus cumulative expenditures) above
some minimal threshold, which includes the requirement that
the average mobilization period is commensurate with the tempo
of stimuli arrival. This formulation translates the problem of
survival and adaptive efficiency into that of probabilistic resource
optimization: orchestrate the pool’s activities (mobilization, firing
and inhibition, or demobilization) consistent with variations in
the stream so that energy inflows are maximized (or stabilized at
some acceptable level) while energy expenditures are minimized.
Conceptualizing cognitive processes as dynamic optimization of
neuronal resources (Yufik, 1996, 1998) is consistent with the
recent views associating advanced cognitive functions with the
ability to monitor the significance of multiple goals and flexibly
switch between them so that the rewards yielded by the goals
are maximized and the associated neuronal costs are minimized
(e.g. Mansouri et al., 2017). The gnostron framework pivots on
the notion that mechanisms of neuronal groupings envisioned in
the VAN map directly onto heuristics for probabilistic resource
optimization so that energy savings in the biological substrate
equate to reduced processing expenditures in the machine
implementation. Figure 13 returns to hunting frogs (section
“Integrating Virtual Associative Network into the Variational
Free Energy Minimization Framework”) in order to illustrate and
summarizes these notions,

Boundary energy barriers bound evidence for the
corresponding object (Yufik and Friston, 2016; Yufik, 2019,
2021a,b). More precisely, recognition confidence associated with
firing a neuron is a function of the corresponding probability
µih in the neuron’s receptive field and the strength of neuron’s
attachment to (correlation with) other neurons in the packet.
High confidence motivates leaving the packet but the fee charged
for crossing the barrier discourages premature decisions and
forces seeking confirmation or disconfirmation, in which case
paying the fee remains the only option.

Technically, formation of packets constitutes a heuristic
yielding complexity reduction in the probabilistic optimization
problem. More precisely, forming packet network atop the
associative network breaks a very large, continuous problem
into a succession of discrete problems small enough to be
solved by full search (this strategy appears to underlie the
Long Term Memory/Short Term Memory (STM) architecture
where small STM buffer [less than 10 items (Miller, 1956)]
is subject to exhaustive scanning (Sternberg, 1969). The
computational architecture of associative cortices readily affords
self-partitioning in associative networks allowing near-optimal
behavior. In Gnostron, the partitioning quality is defined by a
simple criterion: choose a particular optimization algorithm and
compare results obtained before (baseline) and after partitioning
into packets [a stripped down, proof-of-concept system for
target recognition obtained close to two orders of magnitude
complexity reduction with acceptably small error amplitude
(Malhotra and Yufik, 1999; Yufik and Malhotra, 1999)]. Figure 13
generalizes the gnostron proposal.

Figure 14 lists key neuronal mechanisms postulated in
VAN, seeking to establish three points: First, the postulated
mechanisms have algorithmic expression in the framework
of probabilistic resources optimization. Second, gnostron
framework establishes a degree of isomorphism between human
decision processes (as envisioned in VAN) and computational
procedures: both substantive decision-making and Gnostron
procedures operate with models representing objects, behavior
and relations. Moreover, lower level gnostron procedures
can be mapped meaningfully onto mental operations (for
example, computing packets involves operations on cutsets in
networks that correspond, roughly, to refocusing attention from
prominent relations between objects to background relations that
were deemed to be less significant). Finally, gnostron mediates
between human operators and other systems but does not
replace them (for example, gnostron can be calling on standard
on-board systems to estimate the chances of safe landing in
the New Jersey Airport. By the same token, it will be able to
respond to a query like “Is the NJA an option?”). In this way,
gnostron shields an operator from computation details while
maintaining interaction at a substantive level adequate for shared
situational understanding.

Strategy V involves formation of fixed templates. To
appreciate differences in performance yielded by strategies V and
VI, map them onto acquisition of chess skills, as follows: strategy
III enables one to tell apart (recognize) chess pieces, strategy
IV associates admissible behavior (rules) with the pieces, and
strategy V enables memorization of particular tactics. To take a
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FIGURE 13 | Frogs shoot their tongues at small moving objects in sufficient proximity. (A) Mobilizing, firing and inhibiting neurons consumes energy and extracts
energy deposits from the world stream (the flies). (B) Connections are formed between co-firing neurons and get strengthened with each successful episode (these
connections can be genetically fixed, as in frogs). (C) Phase transition in the network turns the associative group into a cohesive packet bounded by an energy
barrier. (D) The packet is a functional unit (has a receptive field computed as a function of receptive fields in the constituent neurons) amenable to mobilization and
allocation. In the humans, mobilizing and allocating packets is experienced as perceiving “objects,” packet “tuning” (rotating packet vector) defines the states of the
object, admissible transitions between the states define behaviors (self-directed packet manipulation is available to humans but not to frogs).

FIGURE 14 | VAN identifies six basic mechanisms employed by the brain to produce adaptive responses to variations in the world stream. The mechanisms vary
from tuning receptive fields in individual neurons (I) to constructing and manipulating mental models (VI). Gnostron architecture integrates these mechanisms.

closer look at the latter, a few chess notions will be helpful: Fool’s
mate (capital F) is a checkmate delivered in the fewest possible
moves (2–4) after the beginning of the game, fool’s mate (small f)
is a maneuver of a few moves anytime in the game that delivers
checkmate or turns opponents’ position into a hopelessly lost one,
and Sicilian defense is a particular Black move in response to a
particular White move at the opening of the game (1. e4 c5). It’s
easy to see that a novice player taught only the Sicilian template is
unlikely to seek tournaments (“what will happen after I do c5?”).
Chess books teach seven basic strategies for continuing the game
but, being taught all seven or, to take things to the extreme, having
memorized the gazillion games ever played that used Sicilian
template would make no difference: fool’s mate is guaranteed if
a more skilled opponent deviates from one of the memorized
games, or just opens the game by any move other than e4.

The argument is (a re-statement of Searle’s Chinese room
argument) that knowledge, however, extensive, neither amounts

nor guarantees understanding. Moreover, knowledge without
understanding easily becomes a vulnerability. More to the point,
the German army delivered fool’s mate to the French command
at the beginning of the campaign, taking advantage of the fact
that the latter adhered to a rigid tactical template acquired in
the WWI. Deficiencies in strategic thinking on that scale can
hardly be remedied by a decision aid (although detecting rigid
templates can be a part of gnostron tactics when interacting with
human operators).

The chess example will serve to illustrate a general contention
regarding situational understanding in both the human and the
machine, as follows. Understanding involves the ability to form
templates that is inextricably combined with the ability to re-
structure and deviate from them and to incorporate them as units
into other structures. Growing understanding is accompanied by
growing organization and global order in the neuronal pool (see
Figure 13) and growing repertoire of sensorimotor activities (e.g.,
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from acquiring a repertoire of standard procedures in managing
routine flights to safely ditching a suddenly disabled aircraft).
The expanding activity repertoire entails growing entropy in the
sensory-motor system. That is, understanding capacity brings
about reduction of entropy in the internal states while increasing
entropy in the motor-sensory periphery. Figure 15 illustrates this
important aspect of VAN/VFEM integration.

Incorporation of understanding into the VFEM schema, as
in Figure 14, suggests a modification in the formulation of
the principle, as follows: FV → min under HMB → max and
W(DKL) → max.

Here, W(DKL) denotes the amount of work invested in
minimizing discrepancy between the predicted and actual
probability distributions [the Kullback-Leibler divergence was
shown to define a lower bound to entropy production and thus
the average amount of work dissipated along the process (divided
by the temperature) (Roldan and Parrondo, 2012)].

That is, under a fixed energy budget in the brain,
understanding capacity is a result of increased organization
(decreased entropy) in the regulatory system which diverts more
energy to—and thus increasing the amount of useful work in—
the memory system, to allow expanding activity repertoires
(growing entropy) in the motor-sensory system (see Figure 2)
that in turn leads to increasing (and/or stabilizing) energy
inflows extracted from the world stream. Operations on models
underlie prediction and retrodiction: in A and B under relation
r, changes in the behavior of A predict changes in the behavior
of B and changes in the behavior B retrodict to changes in
the behavior in A, as afforded by the relation r. The process
is tightly constrained in a template (e.g., under conviction that
frontal assault is the only viable strategy, any intelligence is
interpreted as either conforming, or irrelevant, or a product of
deliberate misinformation). Transition from template-matching
to mental modeling relaxes the constraints, posing the problem
of hypotheses selection (“that does not look like preparations for
a frontal assault, what can that possibly be?”) captured in the
notion of abductive inference.

“The first starting of a hypothesis and the entertaining of it, either
as simple interrogation or with any degree of confidence, is an
inferential step which I propose to call abduction (or retrodiction).
This will include a preference for any hypothesis over others
which would equally explain the facts, so long as as this preference
is not based on upon any previous knowledge bearing upon
the truth of the hypotheses, nor on any testing of any of the
hypotheses, after having admitted them on probation. . . . the
whole question of what one of the number of possible hypotheses
ought to be entertained becomes purely a question of economy ”
(Peirce, 1901/1955, pp. 151, 154).

The thinking process naturally selects the path of least
resistance (i.e., strong associations, as in a template), and needs
to be forcefully interrupted and re-directed to paths deviating
from “any previous knowledge.” These operations are defined
as “intervention” and insertion of “counterfactuals” in a recent
probabilistic model of causal reasoning (Pearl and Mackenzie,
2018), and are represented by operations of jump, coordination
and blending in VAN (to be discussed elsewhere).

To summarize, this section mapped some of the cognitive
operations claimed to underlie understanding capacity in the
humans onto computational procedures defined within the
probabilistic optimization framework [excepting some residue
having no computational expression (Penrose, 1997)]. It was
proposed that understanding allows the brain to deal with non-
contiguous, weakly correlated stimuli groupings in the world
stream. In particular, understanding makes possible accounting
for complex interdependencies between actions and world states,
as in producing changes in objects indirectly, via coordinated
changes in some other objects. Cognitive operations boil down to
variable grouping and stabilization of the groups which enables
subsequent intra-group variation and inter-group coordination,
all serving to maximize and stabilize energy rewards (value)
while minimizing internal energy costs. These operations can
be mapped onto brain components whose functions have been
defined in classical models as well as in some recent findings
[e.g., the hippocampus has been found to be constructing
abstract values spaces (Knudsen and Wallis, 2021)]. Emphasizing
the role of coordination in understanding is consistent with
a classical theory (Piaget, 1975, 1978) and with some recent
findings concerning the role of cerebellum in the higher cognitive
functions (Cerminara et al., 2009; Schmahmann et al., 2019).

Implementing operations postulated in the cognitive
theory in tractable algorithms would endow machines with
capabilities approximating those attributed to human situational
understanding within selected situation classes. In particular,
machines could be approaching the ability to “feel” the
direction of appropriate actions without examining details
and to formulate recommendations, explain them and receive
instructions from human operators expressed in substantive
terms. Attaining situational understanding reduces operational
complexity (Yufik and Hartzell, 1989) enables explainable
predictions, identification of critical situational elements and
dynamic orchestration and optimization of cognitive and
computing resources (Lieder and Griffiths, 2019).

DISCUSSION

Arguably, foundational ideas of the cognitivist framework were
influenced by von Neumann’s conceptualization of computing
systems envisioning that data and procedures for operating on
the data are held in the same medium. The template “data –
procedures” holds no “slots” for understanding so adopting the
template in representing cognition required marginalizing the
role of that capacity in intelligent performance. Accordingly,
a definitive volume on human problem-solving mentioned
understanding once in the concluding chapters, and only to
point out that “high level of mechanization can be achieved in
executing the algorithm, without any evidence of understanding”
(Newell and Simon, 1972, p. 832). The cognitivist framework
accorded understanding no function in the architecture of
cognition (Anderson, 1983; Rosenbloom et al., 1991] nor any
place in a theory of cognition (Newell, 1992), and structured the
definition of understanding so it could be forced into the available
two “slots”:

Frontiers in Systems Neuroscience | www.frontiersin.org 18 December 2021 | Volume 15 | Article 786252

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-786252 December 22, 2021 Time: 9:25 # 19

Yufik and Malhotra Human/Machine Situational Understanding

FIGURE 15 | An absence of understanding capacity entails tendency to minimize the entropy in a Markov Blanket while understanding seeks to maximize entropy in
MB while minimizing entropy of the internal states [entropy of associative network is maximal if potential connectivity is unrestricted (Figure 14I) and minimal when
connections are restricted (by coordination demands) and sparse (Figure 14VI)].

FIGURE 16 | Adapting to world streams involves work performed by
regulatory system on a memory system. Mental models are neuronal
structures amplifying the brain’s capacity to handle challenging tasks
(non-contiguous stimuli, acting on objects to impact other objects, etc.) within
a limited energy budget (Raichle and Gusnard, 2002) (question “who is pulling
the rope in the pulley?” will be entertained elsewhere).

“S understands knowledge K if S uses K whenever appropriate. S
understands task T if S has knowledge and procedures needed to
perform T” (Simon, 1979, p. 447).

Language understanding was conceptualized as manipulation
of scripts (i.e., template matching) (Schank and Abelson, 1977).
It is interesting to note that a book addressing the practice of
problem solving as opposed to the theory of that in Newell
and Simon (1972), presented in the front-page picture some
key notions that were overlooked in the theory: the brain was
depicted as a contraption comprising a power plant, a regulator
and a system of wheels delivering power to a pulley used for
lifting weights (Fogler et al., 2013). Figure 16 borrows from that
depiction to re-state a main message of this paper.

Conceptualizing cognition as mental work invested in
dynamic orchestration and marshaling of neuronal resources
suggests a simple definition of consciousness, as follows (we are
taking the liberty of citing an earlier work):

“Virtual networks form spontaneously on top of the associative
network. By contrast, operations on the virtual network
are not spontaneous but self-directed (deliberate, attentive,
conscious) and are conducted by the control module. These
operations perform work and require cognitive effort, the term
“consciousness” denotes the experience of exerting that effort. On
that account, “cogito ergo sum” expresses not an inference but a
direct experience of cognitive strain – one can doubt the reality
of the objects of thinking and even of the subject of thinking but
cannot doubt the immediate and direct experience of an effort
exerted in the process of thinking” (Yufik, 2013, p. 50).

In short, VAN suggested that cognitive processes alternate
between conscious (deliberate, effortful) and subconscious
(spontaneous) phases. It is encouraging that later studies have
arrived at similar conclusion in treating the phenomenon of
consciousness (Solms, 2021).

In general, the VAN approach allowed drawing a line
from neuronal processes all the way up to understanding and
consciousness. The line is admittedly thin and punctuated but
short (only 4 waypoints), connecting basic experimental findings
[“tunable” neurons (Fritz et al., 2003, 2005), “tunable” assemblies
(Georgopoulos and Massey, 1987; Georgopoulos et al., 1989,
1993)] to most advanced cognitive theories (Friston and Stephan,
2007; Friston, 2009, 2010; Parr and Friston, 2019; Ramstead
et al., 2021). The approach builds on some of the key insights
at the foundation of cognitive science [neuronal assemblies
(Hebb, 1949, 1980), fluid intelligence (Cattell, 1971, 1978), mental
effort in memory retrieval (James, 1950/1890), understanding
as co-instantaneous co-ordination (Piaget, 1978, 1975), mental
modeling (Johnson-Laird, 1983), other], and anticipated some
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of the recent ideas and suggestions relating energy processes
and cognition (Christie and Schrater, 2015; Pepperell, 2018;
Vergara et al., 2019; Hylton, 2020). Consistent with the recent
analysis of different kinds of free energy in the Bayesian account
of cognition (Gottwald and Braun, 2020), the VAN model
establishes reciprocity between the minimization of variational
free energy and minimization of thermodynamic free energy
in the neuronal system (Yufik and Friston, 2016; Yufik et al.,
2016). Tentatively, the approach suggested unity of or a close
relation between the mechanisms of sensori-motor coordination
(Sparrow and Irizarry-Lopez, 1987; Sparrow and Newell, 1998;
Sparrow et al., 2007; Latash, 2008, 2021), cortical coordination
(Bressler and Kelso, 2001) and coordination in mental models
(Yufik and Friston, 2016; Yufik, 2019, 2021a,b). Finally, the
approach informs design of operator support in complex
dynamics tasks (Yufik and Hartzell, 1989; Yufik and Sheridan,
1997; Landry et al., 2001; Yufik and Sheridan, 2002) using a
transparent mathematical formalism (Yufik, 1998). Arguably, the
hierarchy of VAN processing mechanisms (as in Figure 13) is
compatible with the idea of “neuron-centered concepts” that
associates concepts with patterns of input information evoking
specific selective responses in groups of neurons (Gorban et al.,
2019) [VAN postulates existence of complex neurons responding
to specific activity patterns in lower-level (simpler) neurons
or neuronal groupings]. The VAN view is consistent with the
notion of cognition grounded in modal simulations, bodily
states, and situated actions (Barsalou, 2008), as opposed to more
conventional view in AI reducing cognition to computations
on amodal symbols. As was argued earlier in this section, the
conventional (cognitivist) approach has been downplaying the
role of understanding in intelligent performance.

With some exaggeration, the view on cognition adopted in
AI and cognitive science can be characterized as “intelligence
without understanding.” Figuratively, human intelligence can
be compared to an Egyptian pyramid visited by tourists
who are paying attention to a few stones at the bottom
(learning) and the last stone on top (reasoning) while ignoring
the rest. The pyramid holds a great promise since even
limited explorations have produced spectacular successes. In
the period of about 60 years, during which neural network
technology has progressed from handling simple tasks (like
recognizing letters) to participating in the most complex form
of scientific analysis (Krasnopolsky, 2013) and beating humans
in the games of chess and Go. The technology is based
on algebraic methods of iterative error reduction (training)
which are highly computationally intense. Accordingly, the
progress was due to increases in hardware efficiency and
the development of ingenious heuristics aimed at reducing
the computational complexity of the iteration procedures.
The hardware efficiency has increased about a billion times
[NVIDIA’s GTX 1080 GPU delivers nine teraflops for about $
500, a similar power output in 1961 would have cost about
$9 trillion for a string of IBM 1620 computers (Shepard
et al., 2018)]. For argument’s sake, assume that the efficiency
of the procedures has increased a thousand times, yielding
a trillion times increase in the overall efficiency. Consider
the following: the analysis of eye movements showed that

expert chess players immediately and exclusively focused on
the relevant aspects in the chess task while novices also
examined irrelevant aspects (Bilalić et al., 2010). The ability to
“feel” the situation, or to “know what should happen in
given circumstances” prior to examining those circumstances
in detail [(Feynman, c/f de Regt, 2017, p. 102] makes possible
competition between slow thinking human players and fast
computing chess machines.

The point is that the brain cannot accelerate either the
underlying biophysical processes or the conscious reasoning,
can neither miniaturize neurons nor increase their number, and
cannot significantly increase the average rate of ATP production.
These limitations foreclosed the paths to cognitive performance
improvements taken in AI and enforced development of radically
different strategies. A fair competition between human players
and chess algorithms would require running the algorithms on
an abacus or some manual calculator.

AI is being widely perceived as a critical and, perhaps, decisive
component in the national defense (West and Allen, 2020;
Niotto, 2021), giving an advantage that derives predominantly
from the strength of machine learning in general and neural
nets in particular. The expectation seems to be that friendly
neural nets will be victorious over the adversarial ones, which
calls for designing methods to deceiving adversarial nets (e.g.,
Nguyen et al., 2015) while ruggedizing own nets and preparing
them for frontal assaults. Conclusion of an expert group tasked
with assessing the implementation of AI for the Department of
Defense appear to be curbing the expectation:

“the sheer magnitude, millions of billions of parameters (or
weights) which are learned as part of the training. . . makes it
impossible to really understand exactly how the machine does
what it does. Thus the response of the network to all possible
inputs is unknowable” (Scharre, 2018, p. 186).

It is interesting to note that recent developments in the neural
net technology have taken a turn suggesting possible convergence
with some of the methods outlined in this paper. In particular,
clusters of neurons (called “capsules”) are being identified in
neural nets whose activity vector is taken to constitute the
instantiation parameters of a specific type of entity such as an
object or an object part. With that, the length of the activity
vector is taken to represent the probability that the entity exists
and its orientation to represent the instantiation parameters
(Sabour et al., 2017).

To main points in this paper can be summarized as follows:

1. The paper presented a definition of understanding
that is consistent with and substantiating analysis of
understanding capacity in the current literature (Piaget,
1978; de Regt, 2017), outlined several hypotheses
concerning the underlying mechanisms (the VAN theory)
and suggested that (a) understanding constitutes a
special form of Active Inference and (b) situational
understanding enables situation awareness, consistent
with the conceptualization expressed in Figure 1.

2. The active inference framework encompasses the entire
spectrum of living organisms and associates adaptive
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behavior with the minimization of variational free energy
in the nervous system (Friston, 2010). According to VAN,
understanding engages mechanisms that are unique to
humans and yield a dual benefit of decreasing both
the variational free energy and the metabolic energy
expenditures. Minimization of variational free energy
roughly equates to minimizing prediction error. Prediction
via understanding provides a uniquely efficient form of
error reduction.

3. The notion that minimization of metabolic costs can serve
as a unifying principle in considering brain processes is
not new (e.g., Hasenstaub et al., 2010; Huang et al., 2012).
The VAN proposal deviates from the other suggestions,
by (a) identifying specific mechanisms of metabolic cost
minimization and (b) associating these mechanisms with a
potentially unlimited growth in the variety and complexity
of tasks accessible to humans, including the ability to
overcome the inertia of past learning and to act efficiently
under fluid and novel circumstances having no past
precedents (Yufik and Sheridan, 2002; Yufik, 2013).

4. Understanding involves self-directed composition
of coordinated neuronal structures (mental models)
establishing relations (dependencies) between entities
perceived previously as separate and independent.
Composing such models can be highly effort-demanding.
However, such composition expenditures are compensated
by low-effort manipulations of the models making one
aware of how local changes can bring about and coordinate
with changes in the rest of the model (e.g., Yufik and Yufik,
2018). More precisely, manipulating models can “give
some feel for the character” of coordinated changes (de
Regt, 2017), which subsequently focuses attention on the
critical situation elements. In general, mental modeling
enables advances in the performance of complex tasks, by
minimizing both the internal costs of the foresight and the
risk of costly errors.

5. The paper used the notion of binary neurons, but only
to simplify the argument. The theory is not restricted
to this simplification, hypothesizing the existence of
classes of complex neurons responding to different activity
patterns in their input, to combinations of such activity
patterns in several neuronal groups, or to forms of activity
coordination [e.g., “concept cells” responding to different
images of a person as well as the written and spoken
names of that person (Quiroga, 2020) belong to the second
class]. The pivotal notion of packets defines a property of
neuronal groups that is invariant across models of neurons
[in the same way as the notion of “neuronal assembly”
(Hebb, 1980) is not committed to any particular model].
The theory builds on two experimentally established and
model-invariant characteristics of neuronal mechanisms
[rotation of assembly vectors (Georgopoulos et al., 1989)
and task-related plasticity of neuronal receptive fields (Fritz
et al., 2003)], expanding their application to complex
neurons and neuronal groupings.

6. The theory derives understanding from coordination in
the behavior (patterns of excitation-inhibition activities) of

neuronal packets, which is consistent with conceptualizing
brain as a dynamical system or “dynome” [as opposed to
static “connectome” (Kopell et al., 2014)]. By definition,
virtual network comprises a hierarchy of network types
[synaptic, associative, packet, behavioral and relational
networks (Yufik, 1998, 2019)]. Roughly, the former
two network types belong to neural and functional
connectomes while the latter three types form a dynome.
Recent literature associates advanced cognitive capabilities
in primates and humans with the ability to monitor
the significance of multiple goals in parallel, and to
switch between the goals (Mansouri et al., 2009; Mansouri
et al., 2017). The present proposal expands the scope
of advanced capabilities in the humans, to include
dynamic coordination of multiple goals within integrated
situation models.

7. The paper argues that increasing the efficiency of
human-machine systems, particularly in challenging
circumstances (short decision cycle, high cost of errors,
etc.) requires mutual understanding between the parties.
The VAN theory suggests an avenue toward meeting the
requirement, offering tractable procedures amenable to
integration with the methods of active inference. The
VAN formalism (gnostron) is orthogonal to methods
rooted in the perceptron architecture (vector movement
coordination in dynamically composed networks in the
gnostron vs. vector mapping in fixed networks with
adjustable synaptic weights in the perceptron).

8. Mental modeling constitutes a form of self-organization
in the brain. Biological processes underlying such self-
organization can be approximated computationally in
conventional (von Neumann-Turing) computers or,
potentially, emulated in devices operating on principles
different from those adopted in the conventional machines
(Hylton, 2020).

9. In machine understanding, as conceptualized in VAN,
machine processes and human cognitive processes are
isomorphic, i.e., humans think of entities, behavior
and relations and machines compute the same. Shared
situational understanding in a human-machine system
does not make the system infallible but can be expected
to amplify and accelerate human grasp, increase human
trust and confidence, and sharply reduce the likelihood of
costly errors. In the autonomous scenarios, understanding
expands the range of tasks that can be reliably delegated
to the machine (methods for measuring performance
improvements resulting from machine understanding are
beyond the scope of this paper).

The above points suggest directions for further R&D, from
developing deeper insights into the role and mechanisms
of understanding to formulating tractable computational
formalisms and designing artifacts that take advantage of those
insights. The VAN/VFEM proposal contends that the objective of
ensuring battlespace dominance brings to the fore the problem of
situation understanding enabling coordination and prediction of
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multiple activities under conditions that might be unfamiliar and
undergoing kaleidoscopic changes. The proposal complements
advances in machine learning and suggests other approaches that
might be worth exploring.

It feels appropriate to conclude the discussion with a quote
from a philosopher of mind and Nobel Laureate in physics:

“. . .it seems to me that intelligence is something which requires
understanding. To use the term intelligence in a context in
which we deny that any understanding is present seems to me
unreasonable. Likewise, understanding without any awareness is

also a bit of a non-sense. . . . So that means that intelligence
requires awareness. Although I am not defining any of these
terms, it seems to me to be reasonable to insist upon these
relations between them” (Penrose et al., 2000, p. 100).
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