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Functional magnetic resonance imaging (fMRI) at resting state (RS) has been widely

used to characterize the main brain networks. Functional connectivity (FC) has been

mostly assessed assuming that FC is static across the whole fMRI examination. However,

FC is highly variable at a very fast time-scale, as demonstrated by neurophysiological

techniques. Time-varying functional connectivity (TVC) is a novel approach that allows

capturing reoccurring patterns of interaction among functional brain networks. Aim of

this review is to provide a description of the methods currently used to assess TVC on

RS fMRI data, and to summarize the main results of studies applying TVC in healthy

controls and patients with multiple sclerosis (MS). An overview of the main results

obtained in neurodegenerative and psychiatric conditions is also provided. The most

popular TVC approach is based on the so-called “sliding windows,” in which the RS

fMRI acquisition is divided in small temporal segments (windows). A window of fixed

length is shifted over RS fMRI time courses, and data within each window are used

to calculate FC and its variability over time. Sliding windows can be combined with

clustering techniques to identify recurring FC states or used to assess global TVC

properties of large-scale functional networks or specific brain regions. TVC studies

have used heterogeneous methodologies so far. Despite this, similar results have been

obtained across investigations. In healthy subjects, the default-mode network (DMN)

exhibited the highest degree of connectivity dynamism. In MS patients, abnormal global

TVC properties and TVC strengths were found mainly in sensorimotor, DMN and salience

networks, and were associated with more severe structural MRI damage and with

more severe physical and cognitive disability. Conversely, abnormal TVC measures of

the temporal network were correlated with better cognitive performances and less

severe fatigue. In patients with neurodegenerative and psychiatric conditions, TVC

abnormalities of the DMN, attention and executive networks were associated to more
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severe clinical manifestations. TVC helps to provide novel insights into fundamental

properties of functional networks, and improves the understanding of brain reorganization

mechanisms. Future technical advances might help to clarify TVC association with

disease prognosis and response to treatment.

Keywords: multiple sclerosis, neurodegenerative conditions, time-varying, functional connectivity, resting state,

fMRI

INTRODUCTION

The human brain at resting state (RS) exhibits highly structured
spontaneous fluctuations in functional magnetic resonance
imaging (fMRI) data, which reflect the underlying network
architecture (Biswal et al., 2010). RS functional connectivity (FC)
captures the temporal associations between such fluctuations,
and has been successfully used to characterize the main networks
of the brain and map abnormalities of functional network
architecture occurring in different neurological conditions. In
healthy controls, RS FC strength was found to be associated
to age, with RS fluctuations being strongest in adulthood and
lowest in children and elderly (Mak et al., 2017). A dependency
of connectivity from sex (Biswal et al., 2010; Mak et al., 2017), as
well as from cognitive, emotional, and behavioral variables was
also detected (Kelly et al., 2012).

Multiple sclerosis (MS) is an inflammatory and
neurodegenerative disease of the central nervous system leading
to a progressive increase over time of clinical disability and
cognitive impairment (Filippi et al., 2017, 2018). Reorganization
of brain functional networks in MS has been shown from the
first RS fMRI studies (Lowe et al., 2002, 2008; Rocca et al.,
2010; Roosendaal et al., 2010), which is thought to limit the
clinical consequences of widespread tissue damage (Filippi
et al., 2013a; Sbardella et al., 2015). Cortical reorganization has
been demonstrated to be variable across the different stages of

the disease, and a progressive exhaustion or inefficiency of the
adaptive properties of the cerebral cortex is likely to be among
the factors responsible for the worsening of clinical disability
(Rocca et al., 2010, 2018; Roosendaal et al., 2010; Loitfelder et al.,
2011). In neurodegenerative conditions, RS FC studies showed
a progressive and gradual spreading of connectivity changes
from a target brain network, reflecting specific behavioral and
cognitive dysfunctions (Zhou et al., 2017). In psychiatric diseases,
disruption of fronto-parietal network connectivity seems to be
the common fingerprint across distinct forms of pathology
(Baker et al., 2019).

However, current understanding of the role of functional
abnormalities in neurological and psychiatric disorders is still
incomplete, mostly due to inconsistencies in the findings from
several studies. Specifically, in MS some investigations found
trends toward lower RS FC vs. healthy controls in the default-
mode (Rocca et al., 2010, 2012, 2018; Bonavita et al., 2011),
sensorimotor (Rocca et al., 2018) and subcortical (Liu et al., 2011;
Rocca et al., 2018) networks, while in other studies the opposite
trends were observed (Roosendaal et al., 2010; Tona et al., 2014;
Schoonheim et al., 2015). Similarly, even if RS FC abnormalities
were principally located in the core regions hit by pathology,

a certain variability of brain areas involved by RS FC changes
was detected in neurodegenerative and psychiatric conditions
(Busatto, 2013; Weiner et al., 2017).

The wide spectrum of clinical characteristics of MS patients
has been considered as one of the main causes for the
discrepancies described in RS fMRI literature (Filippi et al.,
2013a; Sbardella et al., 2015). However, technical factors might
also bias connectivity estimation, including scanner-related
signal instabilities, an inappropriate control of confounding
covariates, and the application of analysis methods based on
inaccurate assumptions.

For instance, one of the main assumptions of classical RS
FC assessment methods is that connectivity is static across the
entire fMRI examination, e.g., it can be assessed by calculating
the mean correlation between whole-length RS fMRI time
series (Biswal et al., 2010). However, as widely evident by
neurophysiological techniques, brain FC is highly variable at
a very fast time-scale. The functioning human brain during
any state of wakefulness repeatedly changes between different
combinations of cognitive, sensorimotor, attentional, emotional,
auditory, and visual-related tasks. Notably, the majority of brain
regions experience continuous functional changes even during
sleep (Tagliazucchi and van Someren, 2017). Thus, studying
time-varying RS FC patterns is likely to shed light not only on
physiological processes occurring in healthy subjects, but also
to understand clinical manifestations of different neurological
and psychiatric conditions. In fact, clinical symptoms associated
to these diseases are likely to depend not only from damage
to specific brain regions, but also from delayed (or abnormal)
communication between brain areas. The study of the temporal
reconfigurations of FC occurring within RS fMRI sessions
has been defined as time-varying functional connectivity (TVC)
(Hutchison et al., 2013; Calhoun et al., 2014; Preti et al., 2017).

The main goal of this review is to summarize the main
results obtained using TVC in healthy and diseased populations.
A particular focus is given to studies of patients with MS;
however, the main findings of investigations performed in
neurodegenerative and psychiatric conditions are also reported.
The review is structured as follows: in section Methods
Used to Assess Time-Varying Functional Connectivity, we
present the main approaches developed to investigate TVC
using fMRI data, with a main emphasis on the methods
applied to study MS patients. Then, we summarize the results
obtained applying these methods in healthy controls (section
Application of TVC to Healthy Subjects) and in patients
with MS (section Application of TVC Techniques to MS).
An overview of the results derived from other neurological
and psychiatric conditions is also given (section Application
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of Time-Varying FC Techniques to Psychiatric and Other
Neurological Diseases). In the final part (section Current
Limitations and Future Directions), current TVCmethodological
limitations are discussed and possible future developments
are presented.

METHODS USED TO ASSESS
TIME-VARYING FUNCTIONAL
CONNECTIVITY

Several analysis strategies have been applied so far to quantify
temporal variations of blood oxygenation level dependent
(BOLD) signal fluctuations (Hutchison et al., 2013; Preti et al.,
2017). Some strategies aim at capturing variations in inter-
regional associations between pairs of brain areas (Sakoglu et al.,
2010; Allen et al., 2014), while others try to detect changing
patterns of temporal synchrony at a multivariate level, e.g.,
considering all brain regions at once (Tagliazucchi et al., 2012;
Liu and Duyn, 2013). One of the most popular methods for
TVC analysis, which is based on the use of the so-called “sliding
windows” (Sakoglu et al., 2010; Allen et al., 2014), belongs to
the first category, since it relies on the calculation of a series of
pairwise correlation coefficients over small shifting segments of
fMRI time series.

Despite the great variability of available pipelines, TVC
analysis usually requires the performance of the following steps:
(1) selection of a set of regions of interest (ROIs) in the brain; (2)
assessment of time-varying correlations among the selected ROIs;
and (3) extraction of features quantifying connectivity changes
over time, as described in details in the next paragraphs.

Selection of Regions of Interest for TVC
Analysis
It is important to properly identify the ROIs (which may be areas
of the brain, or even entire functional networks) that will be
included in TVC analysis. Several factors can influence the choice
of ROIs: spatial resolution, the use of a priori hypotheses or data-
driven strategies, and the rationale of the experiment, which may
focus on selected functional circuits or on the whole brain.

The large majority of studies assessing TVC in MS patients
mainly relied on the use of a priori atlases, such as the Automatic
Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002) or
the Desikan (Desikan et al., 2006) cortical atlas (Leonardi et al.,
2013; Lin et al., 2018; van Geest et al., 2018a,b). Some studies
built ad-hoc ROIs centered in critical nodes of large-scale brain
networks (Bosma et al., 2018). However, a widely used approach
in previous literature consists in a ROI data-driven selection
through independent component analysis (ICA; Rocca et al.,
2010, 2019; Sakoglu et al., 2010; Filippi et al., 2013b; Allen et al.,
2014; Damaraju et al., 2014; Yang et al., 2014; Zalesky et al., 2014;
Bisecco et al., 2018; Castellazzi et al., 2018; d’Ambrosio et al.,
2019) (Figure 1). The broad application of ICA in previous TVC
studies can be explained by the flexibility of this approach, which
allows to extract ROIs at different spatial resolution according to
ICA dimensionality, to perfectly fit the data (avoiding non-linear
registrations with a priori atlases, which may be challenging in

diseased populations) and to reduce the impact of physiological
and motion-related noise.

Since ROIs identified by “static” a priori atlases may not
reflect significant connectivity variations occurring within brain
regions at short time scales (Ryyppo et al., 2018), recent studies
have suggested that incorporating information of time-varying
connectivity between neighboring voxels to parcellate the brain
may improve accuracy of TVC analyses (Preti and Van De Ville,
2017; Ryyppo et al., 2018).

Assessment of Time-Varying Correlations
Among Brain Regions
Sliding Window Analysis
The most popular strategy used to examine time-varying
correlations between RS fMRI time series relies on the use of
sliding windows (Sakoglu et al., 2010; Allen et al., 2014). In
this approach, a time window of fixed length is selected, and
correlations between pairs of fMRI time series are calculated
using data within that window. Then, the window is shifted in
time by a certain number of time points, and correlations are
re-assessed on the new data. This procedure results in a series
of pair-wise correlation matrices that describe the time-resolved
behavior of connectivity over the entire duration of the fMRI
experiment (Allen et al., 2014; Figure 1).

The choice of an appropriate length for sliding windows
is crucial: too short time segments may introduce spurious
fluctuations associated with intrinsic fMRI signal instability,
while with increased window size TVC estimation may
become too similar to the classic static FC (Leonardi and
Van De Ville, 2015; Preti et al., 2017). Different validation
analyses recommended to set window length around 30–60 s
(or the equivalent time expressed as repetition times, TRs),
demonstrating consistent reproducibility of the obtained results
(Allen et al., 2014; Damaraju et al., 2014; Rashid et al., 2014,
2016; Zalesky et al., 2014; Leonardi and Van De Ville, 2015; Qin
et al., 2015; Zalesky and Breakspear, 2015; Choe et al., 2017;
Zhang C. et al., 2018).

Once sliding windows correlation matrices have been
produced, different strategies can be applied to extract features
describing connectivity reorganization through time inside the
data (Leonardi et al., 2013; Allen et al., 2014;Miller et al., 2016), as
described in details in section Extraction of Features Quantifying
Time-Varying Connectivity.

Beyond Sliding-Window Analysis
A variety of approaches alternative to sliding windows have been
developed to quantify TVC in fMRI data (Preti et al., 2017).
For instance, time-frequency decomposition has been used to
represent correlations between two fMRI time series in the joint
time and frequency domain (Chang and Glover, 2010; Yaesoubi
et al., 2015a; Figure 1). Point-process analysis allowed to detect
recurring patterns of co-activation between brain regions from
a small fraction of the total scans of a RS fMRI experiment
(Tagliazucchi et al., 2012; Liu and Duyn, 2013). Phase coherence
connectivity has been proposed to calculate RS FC at each
recorded fMRI time point (Deco and Kringelbach, 2016).

In MS studies, two alternative methods to sliding windows
have been applied. One study (Bosma et al., 2018) used dynamic
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FIGURE 1 | Schematic representation of the post-processing steps used in the assessment of time-varying functional connectivity (TVC). Top row: selection of

regions of interest for TVC analysis, which can be done using data-driven approaches (e.g., independent component analysis, A) or using a priori atlases (B). Middle

row: assessment of time-varying correlations between fMRI time series. The most popular approach consists in using a sliding-window analysis (C); alternative

approaches, such as time-frequency analysis (D) or point-process analysis (E) have been also proposed. Bottom row: extraction of features quantifying connectivity

changes over time, which can be done using several techniques, such as graph theory (F), k-means clustering to estimate recurring TVC states (G), or fuzzy

meta-state analysis (H). ICA, independent component analysis; AAL, automatic anatomical labeling; ACC, anterior cingulate cortex; CAP, co-activation pattern; MCC,

middle cingulate cortex; PCC, posterior cingulate cortex; SPG, superior parietal gyrus; MFG, middle frontal gyrus; R, right; L, left.

conditional correlations (DCC) to quantify TVC. DCC were
originally proposed to study fluctuations of financial time series
(Engle, 2002) and subsequently adapted to neuroimaging data
to quantify time-varying variances and correlations between
multivariate RS fMRI time series (Lindquist et al., 2014).
DCC overcome some limitations intrinsic to sliding-window
techniques, since they do not depend from any arbitrary window
length and do not give the same weight to all time points within
the window, ignoring older observations. Moreover, DCC are not
easily confused by changes of correlation occurring in fMRI time
series merely due to random noise (Lindquist et al., 2014).

Another study (Zhou et al., 2016) quantified connectivity
reorganization over time using brain entropy (BEN). Entropy is
a statistical and physical index that measures irregularity of a
time-varying system (Sandler, 2006). In RS fMRI data, voxel-wise
assessments of entropy were performed by calculating sample
entropy, defined as the negative logarithm of the probability that
if two time series of length m have a correlation < r, then two
time series of length m+1 also have a correlation < r. A higher
entropy indicates increased randomness of a system, meaning
that the time-varying system activity is less predictable and less
organized (Wang et al., 2014).
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Extraction of Features Quantifying
Time-Varying Connectivity
Sliding-window (or alternative) techniques produce a large
amount of correlation data, calculated on several time segments.
Some features have then to be extracted from this big data mass,
to summarize to what extent functional relationships reorganize
through time. The simplest summary TVC statistic is standard
deviation (or variance) of sliding-window correlation time series
(Sakoglu et al., 2010; Choe et al., 2017) or of DCC time series
(Lindquist et al., 2014; Bosma et al., 2018). The mean TVC
(Huang et al., 2019) or the sum of absolute differences in pair-
wise connectivity between consecutive windows have also been
used as a summary TVC measure (van Geest et al., 2018a,b).
Another interesting metric assessing temporal variability of
BOLD fluctuations is the so-called amplitude of low-frequency
fluctuations functional connectivity (ALFF-FC) (Shen et al.,
2016), which sums up the spectral content of low-frequency RS
fluctuations through consecutive sliding windows.

Flexibility metrics quantifying time-varying global and
regional network properties were also calculated using a graph
theory framework (Lin et al., 2018), as described in section
Graph Theoretical Analysis. More complex strategies rely on
the identification of connectivity patterns that reoccur over
time during the course of the experiment. Reoccurring RS FC
patterns, often called “states,” can be determined using clustering
techniques (Allen et al., 2014), principal component analysis
(Leonardi et al., 2013) or tensor decomposition (Mokhtari
et al., 2018a), as detailed in section Definition of Reoccurring
Connectivity States. Finally, approaches overcoming a rigid data
decomposition into “fixed” connectivity states have been recently
proposed (Miller et al., 2016), as described in detail in section
Fuzzy Meta-State Analysis.

Graph Theoretical Analysis
Graph theory analysis can be applied to series of matrices derived
from sliding-window analysis (Figure 1). Besides the classical
network metrics (Rubinov and Sporns, 2010), which can be
quantified as a function of time (Fukushima and Sporns, 2018),
more specific metrics can be used to assess time-varying network
structure. For instance, network power measures the summed
values of TVC pairs in all windows, and density estimates how
dense, on average, connections are over time. Specific time-
resolved network features include network variation, which
describes how different are connectivity values between two
adjacent windows, flexibility of homologous, non-homologous
and intra-hemispheric connections, which quantify connectivity
differences between two consecutive windows for the specified
type of connections (Lin et al., 2018), or the Fiedler value, which
summarizes how well-connected a network is (Cai J. et al., 2018).
Recently, novel approaches have been proposed to improve
modeling of brain network TVC using graph theory (Khambhati
et al., 2018). Such modeling strategies aim to assess time-varying
patterns of connectivity (e.g., dynamic community detection
or non-negative matrix factorization), time-varying patterns of
activity, or a combination of both. A detailed review of these
methods is reported in Khambhati et al. (2018).

Definition of Reoccurring Connectivity States
One of the most diffuse approaches used to identify reoccurring
FC states from sliding-window matrices is based on hard-
clustering algorithms (Preti et al., 2017), such as the k-
means algorithm (Allen et al., 2014). In this approach,
data are partitioned into different connectivity states by
maximizing a cluster validity index, which describes the between-
cluster/within-cluster distance ratio. In this way, identified
recurring connectivity states have a minimal degree of overlap
(Allen et al., 2014). The amount of time spent in each recurring
state (dwell time) and the number of transitions between states
can be calculated and compared between groups (Figure 1).
Between-group comparisons can be also performed on pair-wise
TVC strengths within each detected state (Allen et al., 2014).

Other ways to identify FC states from sliding-window data
rely on principal component analysis (PCA) (Leonardi et al.,
2013) or tensor decomposition (Mokhtari et al., 2018a). PCA
is able to decompose sliding-window matrices into patterns of
correlated connectivities (called “eigenconnectivities”) between
brain regions. Each eigenconnectivity pattern is characterized
by a “contribution” (which can be thought as the equivalent
of dwell times for k-means clustering analysis), which varies
over time across subjects. Between-group comparisons of such
contributions may allow to characterize TVC abnormalities in
patients’ populations (Leonardi et al., 2013). Similarly, tensor
decomposition (Mokhtari et al., 2018a) is able to decompose
sliding-window connectivity matrices in a set of components,
each with an associated weight, which explain the majority of
data content.

Fuzzy Meta-State Analysis
In hard-clustering analysis, windowed correlation matrices are
forced to fit into determined TVC recurring states. However,
the existence of just one state at each time point may be a too
rigid assumption. A more flexible approach is to consider the
possibility that multiple states might be represented to varying
degrees at the same time point. The contribution of each state
for a specific time is characterized by a vector that is called
a “meta-state” (Miller et al., 2016). Four different measures
of neural reorganization over time can be associated to such
meta-states and can be calculated for each study subject: (1)
the total number of distinct meta-states that a subject assumes
during the experiment; (2) the number of changes between
distinct meta-states; (3) the range of meta-states occupied
in the n-dimensional meta-state space during the entire RS
fMRI experiment; and (4) the total distance traveled in the
n-dimensional state space (Figure 1).

APPLICATION OF TVC TO HEALTHY
SUBJECTS

Main TVC Findings in Healthy Subjects
The results of the main studies assessing TVC in healthy controls
are summarized in Table 1.

In healthy subjects, it was always possible to identify a certain
number of recurring connectivity configurations (from 3 to 12,
depending on the method applied and on RS fMRI sequence
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TABLE 1 | Summary of studies assessing time-varying resting state functional connectivity in healthy subjects and simulated data.

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

Allen et al. (2014) Siemens Trio 3T

152 volumes

TR = 2 s

1. Group ICA decomposition in 50

relevant independent

components of interest,

classified into 7 different

functional networks

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s).

3. k-means clustering (7

recurring states)

405 healthy adults

200 females (49.4%)

mean age = 21.0 years

age range = 12–35 years

- Identification of recurring TVC

states that partially diverge from

static connectivity patterns

- Regions belonging to the DMN

have highly variable connectivity

over time, while regions of the

sensory and motor networks

exhibit more stable

connectivity configurations

Allen et al. (2017) Siemens Sonata 1.5T

Eyes open/Eyes closed

255 volumes

TR = 2 s

1. Group ICA decomposition in 43

relevant independent

components of interest,

classified into seven different

functional networks

2. Sliding-window analysis, window

length = 30 TRs (60 s), steps =

1 TR (2 s)

3. k-means clustering (5 recurring

states)

4. Correlations with EEG data

23 healthy adults

7 females (30.4%)

mean age = 29 years

SD = 8.8 years

- States were replicable with those

of Allen et al. (2014)

- TVC states correspond to

neurophysiological mental states

detected with EEG

- Eyes open/eyes closed conditions

show some common and some

different connectivity patterns

Connectivity between the

thalamus and the cortex changes

from positive to negative in eyes

closed vs. open condition

Cabral et al. (2017) Siemens Avanto 1.5T

180 volumes

TR = 2 s

1. Segmentation in 90 cortical brain

regions of the AAL atlas

2. Phase-coherence connectivity at

each time point

3. Leading eigenvectors and

subsequent k-means clustering

(five recurring states)

55 healthy adults with good

cognitive performance

31 females (44.6%)

mean age = 64 years

SD = 9 years

43 healthy adults with poor

cognitive performance

29 females (66%)

mean age = 66

SD = 8 years

- More frequent switches in subjects

with poor cognitive vs. good

cognitive performances

- The lower occurrence of a state

of global, positive coherence is

associated with worse

cognitive performances

Cai B. et al. (2018) Siemens Trio 3T

126 volumes

TR = 3 s

1. Segmentation in 264 regions of

the Power atlas (Power et al.,

2011), grouped into 10

functional networks

2. Sliding-window analysis, window

length = 50 TRs (150 s), steps =

1 TR (3 s) and dynamic sparse

connectivity models

3. k-means clustering analysis (4

recurring states)

Philadelphia

neurodevelopmental

cohort database

240 young adults

146 females (60.8%)

mean age = 18.99 years

SD = 1.12 years

232 children

123 females (53%)

mean age = 10.67 years

SD = 1.09 years

- Compared with young adults,

children had increased

connectivity between the DMN

and other subnetworks

- Children had reduced connectivity

among sensorimotor, executive

control and auditory networks vs.

young adults

- Young adults spent more time in

the most connected state

Chang and Glover (2010) GE Signa HDx or Signa 750 3T

360 volumes

TR = 2 s

1. ROIs in crucial nodes of the

DMN and of the “task-positive”

(executive control) network

2. Time-frequency decomposition

using Wavelet transform

coherence;

sliding-window analysis

12 healthy adults

6 females (50%)

mean age = 27.7 years

SD = 12.4 years

- Coherence and phase between

the PCC and nodes of the

executive control network

significantly vary in time and

frequency

- High variability over time was

observed between the PCC and

brain areas involved in higher-level

cognitive functions

Chen T. et al. (2016) Siemens Skyra 3T

Eyes open

1,200 volumes

TR = 0.72 s

Test-retest data

1. Segmentation in 264 regions of

the Power atlas (Power et al.,

2011)

2. Sliding-window analysis, window

length = 55 TRs (40 s), steps =

1 TR (0.72 s)

3. Graph theoretical analysis

Human Connectome

Project dataset

77 healthy adults

50 females (64.1%)

age range = 22–35 years

- The salience network showed

highly flexible connectivity

with fronto-parietal, cingulate-

opercular, and attention networks

- The salience network maintained

a consistently high level of

network centrality over time

(Continued)
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TABLE 1 | Continued

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

Choe et al. (2017) Multi-Modal MRI

Reproducibility Resource

(Kirby) data set

Philips Achieva 3T

210 volumes

TR = 2 s

Test-retest data

Human Connectome Project

S500 Data dataset

Siemens Skyra 3T

1,200 volumes

TR = 0.72 s

Test-retest data

Kirby dataset:

1. Group ICA decomposition in 39

relevant components of interest,

classified into 7 functional

networks

2. Sliding-window analysis, window

length = 30 TRs (60 s)

Human Connectome Project

S500 Data dataset:

1. Group ICA decomposition in 50

relevant components of interest

2. Sliding-window analysis, window

lengths = 15, 30, 60, and 120

TRs (11, 22, 43, and 86 s)

3. TVC mean and variance,

k-means clustering (three

recurring states) and dynamic

conditional

correlation approaches

Kirby dataset

20 healthy adults Human

Connectome Project S500

Data dataset

523 healthy adults

- TVC can be reliably estimated in

test-retest data

- The dynamic conditional

correlation method seems to be

more reliable than

sliding-window analysis

Lim et al. (2018) Siemens Prisma 3T

Eyes open

250 volumes

TR = 2 s

1. Segmentation of 114 regions of

the Yeo atlas (Yeo et al., 2011),

classified into 17 functional

networks

2. Sliding-window analysis, window

length = 7 TRs (14 s), steps = 1

TR (2 s)

3. k-means clustering (3–7

recurring states)

21 healthy adults with

high-trait mindfulness

13 females (61.9%)

mean age = 23.7 years

SD = 3.4 years

18 healthy adults with

low-trait mindfulness

13 females (72.2%)

mean age = 21.9 years

SD = 2.3 years

- High trait mindfulness subjects

spent significantly more time in a

high within-network connectivity

state, characterized by greater

anti-correlations between task-

positive networks and the

DMN

- Transitions between brain states

was more frequent in high vs. low

trait mindfulness subjects

Lindquist et al. (2014) Philips Achieva 3T

210 volumes

TR = 2 s

Test-retest data

1. Segmentation of six spherical

ROIs (radius = 3mm) containing

regions of the DMN

2. Point-process analysis

3. Estimation of variance of

dynamic connectivity

correlations, compared with

traditional

sliding-window analysis

Multimodal MRI

Reproducibility Resource

(Kirby21) dataset

21 healthy adults

10 females (47.6%)

mean age = 31.76 years

SD = 9.47 years

- Dynamic conditional correlations

are able to quantify dynamics of

RS fMRI data

- Dynamic conditional correlations

have a similar performance as

sliding-window analysis in

quantifying TVC between

brain regions

Liu and Duyn (2013) Multicenter 3T scanners

Volumes varying from 119 to 195

TR varying from 2.3 to 3 s

1. Segmentation of two spherical

ROIs (radius = 6mm) containing

the PCC and left intraparietal

sulcus

2. Point-process analysis

3. k-means clustering of

coactivation patterns (eight

coactivation patterns for the

PCC and 12 for the left

intraparietal sulcus)

1000 Functional

Connectomes Project (FCP)

247 healthy adults

151 females (61.1%)

mean age = 22.72 years

SD = 4.61 years

age range = 18–44 years

- Point-process analysis was able

to extract correlational patterns in

RS fMRI data from relatively brief

periods of co-activation (or co-

deactivation) of brain regions

- Co-activation patterns resembled

classical networks derived from

static RS FC analysis, while more

fine-grained co-activation

patterns were detected

Marusak et al. (2017) GE Signa 3T

Siemens Verio 3T

both scanners:

180 volumes

TR = 2 s

1. Group ICA decomposition in 25

relevant independent

components of interest,

classified into 3 functional

networks

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s)

3. k-means clustering (six recurring

states)

4. Correlation with age and

internal thoughts

Stanford University dataset

73 normally

developing children

34 females (46.57%)

mean age = 12.47

SD = 1.88 years Wayne State

University dataset

73 normally

developing children

49 females (67.12%)

mean age = 12.09 years

SD = 2.54 years

- The occurrence and amount of

time spent in specific TVC states

are related to the content of self-

generated thought during the scan

- Temporal variability of TVC among

cognitive networks increases with

age

- Regions showing the highest TVC

include multi-modal areas

associated with high-order

cognitive functions, such as the

precuneus and inferior

parietal lobe

(Continued)
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TABLE 1 | Continued

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

Marusak et al. (2018) Siemens Verio 3T

390 volumes TR = 1.5 s

1. Group ICA decomposition in four

relevant independent

components of interest

2. Sliding-window analysis, window

length = 30 TRs (45 s), steps =

1 TR (1.5 s)

3. k-means clustering (5 recurring

states)

4. Correlations with

mindfulness scores

42 children

23 females (54.8%)

mean age = 10.3 years

SD = 2.9 years

age range = 6–17 years

- High-mindfulness children had a

greater number of transitions

between states than

low-mindfulness children and

showed a state-specific reduction

in connectivity between

salience/emotion and central

executive networks

Nini et al. (2017) Siemens Trio 3T

225 volumes

TR = 2.48 s

1. Segmentation in 90 regions of

the AAL atlas

2. Sliding-window analysis, window

length = 25 s, steps = 0.6 s

3. Graph theory analysis: flexibility

and variance

1,000 Functional

Connectomes Project

148 healthy young adults

74 females (50%)

age range = 18–26 years

- Flexibility of amygdala,

hippocampus, fusiform gyrus,

and temporal gyrus was higher in

males than in females

- Flexibility of middle cingulate

cortex, thalamus, precuneus, and

temporo-occipital regions was

higher in females than in males

Shi et al. (2018) Siemens Trio 3T

232 volumes

TR = 2 s

1. Group ICA decomposition in 5

relevant independent

components of interest

2. Sliding-window analysis, window

length = 30 TRs (60 s), steps =

1 TR (2 s)

3. k-means clustering (four

recurring states) and fuzzy-meta

states analyses

Southwest University

Longitudinal Imaging

Multimodal dataset

331 healthy young adults

247 females (74.6%)

mean age = 20.20 years

SD = 1.34 years

212 healthy young adults

115 females (54.2%) mean age

= 22.36 years

SD = 1.49 years

- Subjects having a high score in

subjective well being spent less

time in a state characterized by

low cross-network connectivity

and strong within-network

connectivity

- The total number of transitions

across states was correlated with

a higher subjective

well-being score

Smith et al. (2018) Siemens Skyra 3T scanner

Eyes open

1,200 volumes

TR = 0.72 s

Test-retest data

1. Segmentation of 90 regions from

Shirer et al. (Shirer et al., 2012)

2. Point-process analysis

3. k-means clustering of

coactivation patterns (four

recurring states)

Human Connectome

Project S500 Data dataset

100 healthy adults

54 females (54%)

- Brain state- properties were

reliable across days

- Summary metrics of brain

connectivity dynamics had an

adequate test-retest reliability

Tagliazucchi et al. (2013) Siemens Trio 3T

1,505 volumes

TR = 2.08 s

1. Group ICA decomposition in six

relevant independent

components of interest

2. Detrended fluctuation analysis

3. Hurst exponent (measuring

long-range

temporal dependence)

39 healthy adults - Temporal memory of RS fMRI

time series decreases from

wakefulness to deep non-rapid

eye movement sleep

- Long-range temporal

dependence decreases especially

in regions of the DMN and

attention network

Vidaurre et al. (2018) Human Connectome Project

dataset

Siemens Skyra 3T

Eyes open

1,200 volumes

TR = 0.72 s

UK Biobank dataset

Siemens Skyra 3T

Eyes open

490 volumes

TR = 0.735 s

1. Group ICA decomposition in 50

relevant independent

components of interest from the

HCP dataset, in 55 relevant

independent components of

interest from the UK Biobank

dataset

2. Hidden Markov model

3. Stochastic inference (12

recurring states)

Human Connectome

Project dataset

820 healthy adults

453 females (55.2%)

age range = 22–35 years

UK Biobank dataset

5847 healthy adults

age range = 40–69 years

- Hidden Markov models allow to

model resting (or task-related)

brain activity as a time-varying

sequence of distinct brain

networks, also when analyzing

very large amounts of data

Yaesoubi et al. (2015a) Data from Allen et al., 2014

Siemens Trio 3T

152 volumes

TR = 2 s

1. Group ICA decomposition in 50

relevant independent

components of interest

Time-frequency decomposition

2. k-means clustering (five

recurring states)

Data from Allen et al. (2014)

405 healthy adults

3. 200 females (49.4%)

4. mean age = 21.0 years

5. age range = 12–35 years

- A new time-frequency

decomposition approach, based

on wavelet transform coherence,

detected time-frequency

connectivity variations in RS fMRI

data

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 618

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Valsasina et al. TVC in Neurological Conditions

TABLE 1 | Continued

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

- Recurring connectivity patterns in

time-frequency domain revealed

significant between-group

differences based on sex

Yaesoubi et al. (2015b) Data from Allen et al. (2014)

Siemens Trio 3T

152 volumes

TR = 2 s

1. Group decomposition in 50

relevant components of interest,

classified into seven different

functional networks

2. Sliding-window analysis, window

length = 32 TRs (44 s), steps =

1 TR (2 s)

3. Clustering of sliding-window

matrices using temporal ICA to

find maximally mutually

temporally independent

connectivity patterns (five

recurring states)

4. Sex differences

Data from Allen et al. (2014)

405 healthy adults

200 females (49.4%)

mean age = 21.0 years

age range = 12–35 years

- A method alternative to k-means

clustering is proposed, based

on temporal ICA. This method

allowed to detect temporally

independent connectivity states

- Frequency of occupancy of such

states was not different

between genders

Yaesoubi et al. (2017b) Data from Allen et al. (2014)

Siemens Trio 3T

152 volumes

TR = 2 s

1. Group ICA decomposition in 50

relevant independent

components of interest

2. Time-frequency decomposition

3. k-means clustering of z-scored

time-frequency decompositions

to find recurring frequency

modes (four recurring modes)

Data from Allen et al. (2014)

405 healthy adults

200 females (49.4%)

mean age = 21.0 years

age range = 12–35 years

- Time-frequency decomposition

allowed to capture frequency

variations in individual

network time courses

- Frequency modes represent

“periodic” activities consisting of

instantaneous activations

and deactivations

Yang et al. (2014) Siemens Trio 3T

884 volumes

TR = 0.645 s

Test-retest data

1. Four spherical ROIs (radius =

3mm) in crucial nodes of the

posteromedial cortex;

segmentation of 156 regions

from Craddock et al. (2012)

2. Sliding-window analysis, window

length = 69 TRs (44 s), steps =

3 TRs (2 s)

3. Hierarchical clustering (five

recurring states)

22 healthy adults

4. 6 females (27.3%)

5. mean age = 33.5 years

6. SD = 12.5 years

7. age range = 19–60 years

- Each subregion of the

posteromedial cortex was

associated with five recurring

connectivity states

Each subregion possessed a

unique preferred state and

distinct transition patterns

Zalesky et al. (2014) Siemens Skyra 3T

1,200 volumes

TR = 0.72 s

1. Segmentation in different

numbers of ROIs (from 90 to

4,000) (Zalesky et al., 2010)

2. Sliding-window analysis, window

length = 60 s, steps = 1 TR

(0.72 s)

3. Non-stationarity of RS fMRI

fluctuations measured using an

ad hoc test statistic

Human connectome project

Q2 Data dataset

10 healthy adults

6 females (60%)

age range = 22–35 years

- A consistent set of functional

connections had pronounced

fluctuations over time

- The most dynamic connections

were inter-modular and involved

hubs of the DMN and

fronto-parietal network

Zhang C. et al. (2018) Siemens Skyra 3T

1,200 volumes

TR = 0.72 s

Test-retest data

1. Segmentation in 116 regions of

the AAL atlas and 160 regions of

the Dosenbach atlas

(Dosenbach et al., 2010)

Sliding-window analysis, window

length = from 20 TRs to 200 TRs

2. Standard deviation from the

mean and excursion from the

median. Amplitude of

low-frequency fluctuations

across sliding windows

Human connectome project

S900 Data dataset

820 healthy adults

454 females (55.4%)

age range = 22–37 years

- TVC was reliable, especially when

windows size was between 30

and 50 TRs, but less reliable than

static FC

- The highest reliability for static

and dynamic FC analysis was

found for intra-network

connections in the fronto-parietal,

DMN, sensorimotor, and

occipital networks

ΩAll RS scans were acquired in the eyes-closed condition, except where indicated.
∧TVC analysis approach summarizes: (1) ROIs used; (2) assessment of time-varying correlations between brain regions; (3) features extracted for assessing TVC.
θFor each study group of healthy subjects, sex is represented as number of females (%), mean age and standard deviation (SD).

RS, resting state; fMRI, functional magnetic resonance imaging; TVC, time-varying functional connectivity; ICA, independent component analysis; TR, repetition time; SD, standard

deviation; EEG, electroencephalographic registration; AAL, automated anatomical labeling; ROIs, regions of interest; DMN, default-mode network; PCC, posterior cingulate cortex; HCP,

Human connectome project; UK, United Kingdom; FC, functional connectivity.
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settings). The DMN was one of the functional networks showing
the highest degree of connectivity change over time, both when
analyzing within-DMN TVC (Chang and Glover, 2010; Liu and
Duyn, 2013; Lindquist et al., 2014; Zalesky et al., 2014) and
when considering connections between the DMN and other
crucial cognitive networks (Chang and Glover, 2010; Liu and
Duyn, 2013; Allen et al., 2014; Marusak et al., 2017; Vidaurre
et al., 2018). High dynamism was also observed in multimodal
brain regions, involved in high-order emotional and cognitive
processing (Yang et al., 2014; Zalesky et al., 2014; Chen S. et al.,
2016; Marusak et al., 2017; Vidaurre et al., 2018). Such quick
temporal reconfigurations may be required to facilitate transient
psychological states between different brain functions (starting,
maintenance or conclusion of the different attentional, cognitive,
and executive tasks). Conversely, networks involved in sensory
and motor processing showed more “static” connectivity profiles
(Allen et al., 2014; Zalesky et al., 2014).

TVC was also useful to characterize age- and sex-related
features. For instance, it was shown that children have higher
TVC between the DMN and other subnetworks than young
adults, but that young adults have stronger TVC than children
among sensorimotor, executive control, and auditory networks
(Cai B. et al., 2018). Moreover, variability of TVC among
cognitive networks increased with age (Marusak et al., 2017).
Overall, these results suggest that maturation is associated with
a higher flexibility of functional connections. More discrepancies
were found when analyzing sex-related characteristics of
connectivity dynamics (Yaesoubi et al., 2015a,b; Nini et al.,
2017). While some studies found no differences in TVC
configurations between males and females (Yaesoubi et al.,
2015b), other studies found that connectivity configurations
were different between genders (Yaesoubi et al., 2015a,b; Nini
et al., 2017): males showed a higher connectivity flexibility than
females in the amygdala, hippocampus, fusiform, and temporal
gyrus, whereas the opposite trend was found in the middle
cingulate cortex, thalamus, precuneus, and some temporal-
occipital regions (Nini et al., 2017).

TVC constitutes a complex and novel methodology. Studies
from healthy controls also served to test how reliable and
reproducible TVC results were across scanning sessions. This
was the goal of some recent investigations (Choe et al., 2017;
Smith et al., 2018; Zhang C. et al., 2018), which found that
TVC metrics were reliable across days (Smith et al., 2018)
and had an overall good reproducibility (Choe et al., 2017;
Smith et al., 2018; Zhang C. et al., 2018), even if lower than
that of the corresponding static FC metrics (Zhang C. et al.,
2018). The highest reliability was found for intra-network
connections in the DMN, fronto-parietal, sensorimotor, and
occipital networks (Zhang C. et al., 2018).

To better investigate the intrinsic nature of TVC states and
their electrophysiological correlates, simultaneously acquired
electroencephalography (EEG) and RS fMRI data were analyzed
and concurrent temporal variations were assessed (Allen et al.,
2017). Results indicated that connectivity states detected by
TVC analysis correspond to neuro-electric brain activity with
distinct spectral signatures. Moreover, eyes open/eyes closed
conditions show some common and some different connectivity

patterns, with a greater integration within sensory systems, as
well as reduced modularity and increased global efficiency, in the
eyes-closed compared to the eyes-open condition (Allen et al.,
2017). These results integrate and complete previous EGG/RS
fMRI studies, which showed a variable TVC configuration
between wakefulness and different stages of sleep (Tagliazucchi
et al., 2013), with temporal memory and long-range temporal
dependencies decreasing fromwakefulness to deep non-rapid eye
movement sleep.

Correlations Between TVC and
Behavioral/Neuropsychological
Performances in Healthy Subjects
To date, correlations between TVC measures and cognitive
performances in healthy controls have been evaluated by one
study (Cabral et al., 2017), which found that worse cognitive
performance in healthy elderly was associated with a lower
permanence in a TVC state characterized by strong, positive
connectivity. These results suggest that a more static pattern of
TVC may characterize poor vs. good performers.

Another study (Shi et al., 2018) analyzed the correlation
between TVC and scores obtained at questionnaires of subjective
well-being, and found that subjects with higher well-being scores
spent less time in low cross-network and strong within-network
connectivity states. The total number of transitions between
states was also higher in subjects with high well-being scores,
suggesting a more efficient transfer of information between
networks in this group (Shi et al., 2018). Finally, two studies
assessing the relationship between TVC and mindfulness in
healthy adults (Lim et al., 2018) and children (Marusak et al.,
2018) had similar conclusions, showing that high-mindfulness
subjects spent more time in highly-connected states and switched
more frequently between states than low-mindfulness subjects,
suggesting a more efficient and flexible connectivity in the
first group.

APPLICATION OF TVC TECHNIQUES TO
MS

Main TVC Findings in MS Patients
The main studies assessing TVC abnormalities in MS patients
are summarized in Table 2. As it is evident from this table,
TVC methodologies applied in MS investigations were quite
heterogeneous. Despite this, results of different studies share
some common points.

First of all, networks showing the greatest amount of TVC
abnormalities in MS patients in comparison to healthy subjects
were the DMN, salience, executive and sensorimotor networks
(Leonardi et al., 2013; Zhou et al., 2016; Bosma et al., 2018; Lin
et al., 2018; d’Ambrosio et al., 2019; Rocca et al., 2019).

The regional pattern of TVC abnormalities was quite complex,
and regions involved by TVC changes were variable across
studies, probably depending from the used TVC approach and
patients’ clinical characteristics. The analysis of eigenconnectivity
patterns helped to identify the presence of stronger TVC in
parietal regions and weaker TVC in frontal/subcortical regions
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TABLE 2 | Summary of studies assessing time-varying resting state functional connectivity modifications in multiple sclerosis (MS).

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

Bosma et al. (2018) GE 3T

277 volumes

TR = 2 s

1. Segmentation of 5 cortical

regions belonging to the DMN,

salience network, ascending and

descending nociceptive network

(according with Hemington et al.,

2016) and the primary sensory

area (Harvard Oxford Cortical

Structural Atlas, Desikan et al.,

2006)

2. Dynamic conditional correlations

3. Standard deviation of dynamic

conditional correlation and of RS

fMRI time series

31MS patients (25

relapsing-remitting MS, 4

secondary progressive MS,

3 unknown)

20 females (64.5%)

mean age = 39 years

SD = 10 years

31 healthy controls

20 females (64.5%)

mean age = 38 years

SD = 11 years

- Greater TVC between the salience

and ascending nociceptive

network in MS patients vs. healthy

controls

- Greater variability of RS FC in MS

patients vs. healthy controls

- Patients with neuropathic pain

had abnormal cross-network

connectivity between the salience

and DMN

d’Ambrosio et al. (2019) Multicenter setting: seven

centers

3T

200 volumes

TR = 3 s

1. Group ICA decomposition in 43

relevant independent

components of interest,

classified into seven different

functional networks

2. Sliding-window analysis, window

length = 22 TRs (66 s), step = 1

TR (3 s)

3. k-means clustering analysis

(three recurring states); fuzzy

meta-state analysis

4. Correlations with clinical

variables, cognitive

performance, T2 lesion volume,

and brain volume

MAGNIMS Cognition study

62 relapsing-remitting MS

patients (23 with cognitive

impairment, 39 without

cognitive impairment)

40 females (64.5%)

mean age = 39.5 years

SD = 8.5 years

65 healthy controls

38 females (58%)

mean age = 35.8 years

SD = 9.4 years

- MS patients, compared to healthy

controls, showed: (i) reduced

TVC between subcortical and

visual/cognitive networks, as well

as between visual and cognitive

networks; and (ii) increased

TVC between subcortical and

sensorimotor networks

- Compared to cognitively

preserved, cognitively impaired

MS patients showed reduced

TVC between subcortical and

DMN, lower dwell time in a

state characterized by high intra-

and inter-network connectivity,

and lower global connectivity

variations over time

- In patients with cognitive

impairment, reduced global

dynamism correlated with

brain atrophy

Huang et al. (2019) Siemens Trio 3T

240 volumes

TR = 2 s

1. Segmentation of six regions of

interest belonging to the

attention network

2. Sliding-window analysis, window

length = 40 TRs (80 s), and 20

TRs (40 s), steps = 1 TR (2 s)

3. Estimation of the temporal

correlation coefficient between

truncated time courses

22 relapsing-remitting

MS patients

15 females (68.2%)

mean age = 39.1 years

age range = 20–58 years

22 healthy controls

15 females (68.2%)

mean age = 39.6 years

age range = 26–56 years

- Compared to controls, decreased

TVC within the dorsal and ventral

attention networks, as well as

increased TVC between the dorsal

and ventral attention networks

was detected

- Decreased TVC within parietal

and between fronto-temporal

regions was correlated with a

higher white matter lesion load

Leonardi et al. (2013) Siemens Trio 3T

450 volumes

TR = 1.1 s

1. Segmentation of 88 brain

regions from the AAL atlas

(Tzourio-Mazoyer et al., 2002)

2. Sliding-window analysis, window

length = 30 TRs (33 s), 40 TRs

(44 s), 60 TRs (66 s) and 120 TRs

(132 s), steps = 2 TRs (2.2 s)

3. Principal component analysis:

10 eigenconnectivity

patterns (states)

22 relapsing-remitting

MS patients

14 females (63.6%)

mean age = 36.8 years

SD = 8 years

14 healthy controls

9 females (64.2%)

mean age = 38.4 years

SD = 6 years

- A novel data-driven approach,

based on principal component

analysis, was able to detect

large-scale recurring connectivity

patterns with similar dynamics

- Compared to controls, MS

patients showed more frequently

strong connections in parietal

regions (PCC, superior parietal

and angular gyrus) and more

frequently weak connections in

prefrontal regions and in

the amygdala

Lin et al. (2018) Philips Achieva 3T

240 volumes

TR = 2 s

1. Segmentation of 18 cortical

regions from the Freesurfer

Desikan atlas (Desikan et al.,

2006)

2. Sliding-window analysis, window

length = 20 TRs (40 s), steps =

1 TR (2 s)

37 relapsing-remitting

MS patients

28 females (75.7%)

mean age = 42.57 years

SD = 11.4 years

- Lower network variations

and higher flexibility of inter-

hemispheric connections in MS

patients compared with controls

- Better executive functions on

cognitive testing were associated

to higher connectivity dynamics

(Continued)
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TABLE 2 | Continued

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

3. Graph theory: network

variations, flexibility of

inter-hemispheric,

cross-hemispheric, and

intra-hemispheric connections

18 relapsing-remitting MS

patients (matched with healthy

controls) 15 females

(83.3%)mean age=32 years

SD=4.9 years

15 healthy controls

8 females (53.3%)

mean age = 28.93 years

SD = 5 years

Rocca et al. (2019) Philips Achieva 1.5T

200 volumes

TR = 3 s

1. Group ICA decomposition in 43

relevant independent

components of interest,

classified into seven different

functional networks

2. Sliding-window analysis, window

length = 22 TRs (66 s), step = 1

TR (3 s)

3. k-means clustering analysis (two

recurring states)

4. Fuzzy meta-state analysis

5. Correlations with clinical

variables, cognitive

performance, T2 lesion volume,

and brain volume

50 patients with CIS

suggestive of MS

30 females (60%)

mean age = 30.5 years

SD = 7.7 years

13 healthy controls

9 females (69.2%)

mean age = 33.1 years

SD = 7.8 years

- At baseline, compared to healthy

controls, CIS patients showed

TVC abnormalities between

sensorimotor and DMN with the

remaining networks

- According to type of onset,

selective baseline RS FC decrease

was detected in functional

networks more affected by the

clinical attack

- At follow-up, increased

connectivity strength and global

connectivity dynamism was

observed in patients vs. healthy

controls

- In CIS patients, higher TVC at

year 2 correlated with lower white

matter lesion volume changes

at follow-up

van Geest et al. (2018a) GE Signa HDxt 3T

RS fMRI:

202 volumes

TR = 2.2 s

Task-related (SDMT):

460 volumes

TR = 2 s

1. Segmentation of 224 regions

from the Brainnettome atlas (Fan

et al., 2016), Yeo atlas (Yeo

et al., 2011) and from FSL FIRST

segmentation

2. RS fMRI: sliding-window

analysis, window length = 27

TRs (59.4 s), steps = 5 TRs

(11 s) Task-related fMRI:

sliding-window analysis, window

length = 30 TRs (60 s), steps =

5 TRs (10 s)

3. Sum of the absolute differences

in RS and task-related FC

between consecutive windows

29 MS patients

18 females (62%)

mean age = 41.25 years

SD = 9.34 years

18 healthy controls

11 females (61.1%)

mean age = 40.68 years

SD = 13.29 years

- TVC in the DMN increased during

the task vs. rest in both controls

and MS patients

- A higher increase of TVC in the

DMN during the task vs. rest was

associated with better information

processing speed in MS patients

van Geest et al. (2018b) Siemens Sonata 1.5T

RS fMRI:

200 volumes

TR = 2.85 s

Task-related fMRI (episodic

memory):

208 volumes

TR = 2.22 s

1. Segmentation of 92 brain

regions from the AAL atlas

(Tzourio-Mazoyer et al., 2002)

2. Task-related fMRI:

sliding-window analysis, window

length = 27 volumes (59.9 s),

steps = 5 TRs (11.1 s)

3. Sum of the absolute differences

in FC between

consecutive windows

38 MS patients

26 females (68.4%)

mean age = 47.2 years

SD = 8 years

29 healthy controls

18 females (62.1%)

mean age = 43.9 years

SD = 8.4 years

- TVC of the left and right

hippocampus, as well as TVC

of the entire brain, did not differ

between healthy controls and MS

patients

- Lower hippocampal TVC was

associated with better verbal

learning and memory, and with

better visuospatial learning and

memory performances

Zhou et al. (2016) Siemens Trio 3T

240 volumes

TR = 2 s

1. Voxel-wise analysis (no ROI

selection necessary)

2. Calculation of brain entropy and

amplitude of low frequency

fluctuations

3. Voxel-wise comparison of brain

entropy and amplitude of low

frequency fluctuations

34 relapsing-remitting

MS patients

21 females (61.8%)

mean age = 42.1 years

age range = 20–58 years

34 healthy controls

21 females (61.8%)

mean age = 41.8 years

age range = 21–58 years

- Brain entropy was increased

in MS patients compared to

controls, especially in regions

related to motor, executive,

spatial coordination and memory

functions

- More severe brain entropy was

correlated with a higher

clinical disability

ΩAll RS scans were acquired in the eyes-closed condition.
∧TVC analysis approach summarizes: (1) ROIs used; (2) assessment of time-varying correlations between brain regions; (3) features extracted for assessing TVC.
θFor each study group of healthy subjects, sex is represented as number of females (%), mean age and standard deviation (SD).

RS, resting state; fMRI, functional magnetic resonance imaging; TVC, time-varying functional connectivity; TR, repetition time; DMN, default-mode network; MS, multiple sclerosis; SD,

standard deviation; AAL, automated anatomical labeling; PCC, posterior cingulate cortex; CIS, clinically isolated syndrome.
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in relapsing-remitting MS patients with mild to moderate
disability compared to healthy controls (Leonardi et al., 2013).
These patients also showed more frequently strong connections
in temporal and parietal (angular gyrus) regions as well
as weaker connections in motor and amygdalar regions vs.
control subjects (Leonardi et al., 2013). Another study assessing
TVC abnormalities in relapsing-remitting MS patients with
mild disability found an increased BEN (corresponding to an
increased connectivity disorganization) of regions involved in
motor, executive and spatial coordination, as well as reduced BEN
in memory brain areas (including temporal and hippocampal
cortices) and relay areas as the cerebellum or the brainstem
compared to healthy subjects (Zhou et al., 2016).

A recent study using DCC to quantify TVC (Bosma et al.,
2018) confirmed the results obtained by Leonardi et al.
(2013), and found an increased BOLD signal variability in
posterior regions of the DMN in MS patients vs. controls.
The same study also found an increased TVC between the
salience network and the ascending nociceptive pathway.
Conversely, divergent results were obtained by Lin et al.
(2018), who showed an overall reduction of network variation
in MS patients compared to healthy controls, suggesting a
globally more “static” FC configuration, but at the same time
found an increased flexibility of interhemispheric connections,
which was interpreted as a compensatory mechanism for the
decreased global connectivity. A complex pattern of increased
and decreased TVC was also shown by d’Ambrosio et al.
(2019), who found, in a multicenter study, a selective TVC
increase between subcortical and visual/cognitive networks,
and a TVC decrease between subcortical and sensorimotor
networks in relapsing-remittingMS patients compared to healthy
controls (d’Ambrosio et al., 2019).

Specific investigations of crucial systems involved in cognitive
functions were performed by Van Geest et al., who studied
TVC of the hippocampal network (Lin et al., 2018; van Geest
et al., 2018a,b) and of the DMN (Lin et al., 2018; van Geest
et al., 2018a,b) and by Huang et al., who investigated the
attention network (Huang et al., 2019). Overall, hippocampal and
DMN TVC were not different between MS patients and control
subjects; however, including TVC measures in multivariate
statistical models contributed to explain the performance of MS
patients at visuospatial memory (Lin et al., 2018; van Geest et al.,
2018a,b) and information processing speed (Lin et al., 2018; van
Geest et al., 2018a,b) tasks. Huang et al. detected a complex
pattern of TVC abnormalities, which was characterized by a TVC
decrease within the dorsal and ventral attention networks, as well
as TVC increase between the same networks (Huang et al., 2019).

Changes in TVC at the earliest stages of the disease
have been rarely assessed, but interesting results
have been observed. Patients with clinically isolated
syndrome (CIS) suggestive of MS exhibited, early
after the first demyelinating attack, reduced TVC in
the functional networks more affected by the clinical
onset, compared to healthy controls (Rocca et al.,
2019). These patients also showed, in the first 2 years
after the clinical event, a progressive increase over
time of TVC strength, mainly between the DMN and

sensorimotor/visual/cognitive networks, combined with a
progressive increase over time of global fuzzy meta-state
dynamism (Rocca et al., 2019).

Overall, these results suggest that, at the beginning of
the disease, TVC dysfunctions have a specific correspondence
with clinical symptoms. Then, a progressive increase of TVC
oscillations occurs, probably trying to compensate disease-related
damage. This initial phase seems to be followed by a loss of
coordination and flexibility among brain regions in MS patients
(Leonardi et al., 2013; Zhou et al., 2016; Lin et al., 2018;
d’Ambrosio et al., 2019), which may be compensated by local
increased fluctuations between specific areas (Lin et al., 2018;
van Geest et al., 2018a,b).

Recent studies tried to investigate TVC changes in MS
populations affected by specific clinical manifestations. In details,
cognitive impairment in patients with MS was associated to
reduced TVC between subcortical and DMN areas, as well
as to reduced global dynamism, compared to cognitively
preserved patients (d’Ambrosio et al., 2019). Patients with
MS suffering from neuropathic pain expressed selectively
reduced TVC strength in the salience-descending nociceptive
circuit (Bosma et al., 2018), whereas in patients without such
neuropathic pain, TVC strength was increased in the same
network (Bosma et al., 2018).

The large majority of the above-mentioned studies assessed
TVC changes in relapsing-remitting MS patients, while detailed
investigations of TVC abnormalities occurring in progressive MS
phenotypes or over the course of the disease, are still missing.

Correlations Between TVC and Clinical,
Neuropsychological, and Structural MRI
Variables in MS
Different correlation analyses have been performed in MS
patients, in order to understand the possible association between
TVC abnormalities and motor and cognitive performances, as
well as with specific clinical symptoms such as fatigue.

A higher expanded disability status scale (EDSS) score,
reflecting more severe clinical disability, was found to be
correlated with increased BEN in the bilateral supplementary
motor area and in the right precentral operculum (Zhou et al.,
2016), as well as with a more rigid (less fluid) global connectivity
in MS patients (Lin et al., 2018). Conversely, other studies failed
to show significant associations between TVC abnormalities and
disability, probably because of the relatively low sample size
and/or a narrow EDSS range (Leonardi et al., 2013).

Several correlations have been detected between TVC
abnormalities and MS patients’ cognitive performances. In
particular, better scores in tests involving executive control
functions and processing speed ability were correlated with a
higher global network dynamism (Lin et al., 2018). Similar
findings were shown by van Geest et al. (2018a), who found that a
higher dynamism in the DMN during an information processing
speed task vs. a resting state condition was associated with
better information processing speed performances. These results
are in agreement with the reduced network dynamics observed
in cognitively impaired vs. preserved MS patients (d’Ambrosio
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et al., 2019). Conversely, a lower hippocampal TVC contributed
to explain, at least partially, better verbal learning, visuospatial
learning, and memory performances (van Geest et al., 2018b).

Lower fatigue was associated with reduced TVC in the
parahippocampal gyrus, right posterior cerebellum, and
brainstem (Zhou et al., 2016). Pain interference has been
associated with increased TVC in the posterior cingulate cortex,
an associative region involved in the salience and nociceptive
networks and DMN (Bosma et al., 2018).

A few studies investigated the relationship between TVC
and white matter lesions or MS-related structural damage.
Decreased TVC between parietal and fronto-temporal regions
of the attention network was associated with an higher
lesion load in relapsing-remitting MS patients (Huang et al.,
2019). A significant association has been demonstrated between
reduced global dynamism in cognitively impaired MS patients
and brain atrophy (d’Ambrosio et al., 2019), as well as
between increased TVC and diffuse microstructural damage
in relapsing-remitting MS patients, quantified as a higher
mean diffusivity on diffusion-tensor MRI (Zhou et al., 2016).
At the earliest stages of MS, a progressive increase of TVC
over 2 years of follow-up was associated with a lower
white matter lesion volume change over the same period of
time (Rocca et al., 2019).

In summary, in MS patients, abnormal global TVC properties
of the sensorimotor, DMN and salience networks were associated
with more severe tissue damage at structural MRI, more
severe clinical disability, worse cognitive performance and
pain interference, evidencing a maladaptive neuronal response
to direct disease-related damage. Conversely, abnormal TVC
properties of the temporal network and relay areas as the
cerebellum and brainstem were correlated with better cognitive
performances and less severe fatigue, suggesting a compensatory
role of TVC changes.

APPLICATION OF TIME-VARYING FC
TECHNIQUES TO PSYCHIATRIC AND
OTHER NEUROLOGICAL DISEASES

Main Findings in Psychiatric and Other
Neurological Diseases
The main studies discussed in this section are summarized
in Table 3.

Several studies tried to characterize TVC abnormalities
present in different psychiatric and neurological diseases,
sometimes looking for an early diagnostic biomarker (Du et al.,
2018;Mennigen et al., 2018).Modification of TVC strength, dwell
time or number of transitions between states varied according to
the disease status in patients affected by bipolar disorder (Rashid
et al., 2014, 2016), schizophrenia (Yu et al., 2015; Cetin et al.,
2016; Rashid et al., 2016; Gazula et al., 2018; Yue et al., 2018;
Zhang W. et al., 2018), depression (Liao et al., 2018; Qiu et al.,
2018; Zhi et al., 2018), autism (He et al., 2018; Rashid et al.,
2018a), stroke (Chen et al., 2018), mild traumatic brain injury
(Vergara et al., 2018), epilepsy (Ridley et al., 2017; Klugah-Brown

et al., 2018), Alzheimer’s disease (Quevenco et al., 2017; Jie et al.,
2018), and Parkinson’s disease (Engels et al., 2018).

In psychiatric diseases, widespread TVC abnormalities have
been found. Patients with bipolar disorder and major depression
expressed TVC abnormalities mainly in executive (Rashid et al.,
2014; Du et al., 2017), amygdala/salience (Qiu et al., 2018; Zhi
et al., 2018), and salience/executive regions (Mokhtari et al.,
2018a,b). Schizophrenia patients showed a complex pattern of
decreased and increased TVC mainly in the DMN (Sakoglu
et al., 2010; Abrol et al., 2017), and in frontal, parietal, auditory
(Damaraju et al., 2014; Rashid et al., 2014; Du et al., 2017,
2018; Sun et al., 2018), visual (Fu et al., 2018; Rashid et al.,
2018b; Sun et al., 2018), and thalamic areas (Damaraju et al.,
2014; Rashid et al., 2014, 2018b; Du et al., 2018). Schizophrenia
patients spent less time and made fewer transitions between
states characterized by weak correlations between the thalami
and sense-related brain regions (Damaraju et al., 2014). They also
showed more lagged correlations between the DMN and sensory
networks (Yaesoubi et al., 2017a) and a higher occupancy rate of
globally disconnected states (Yu et al., 2015; Cetin et al., 2016;
Rashid et al., 2016; Gazula et al., 2018; Yue et al., 2018; Zhang W.
et al., 2018). In children with autism spectrum disorders, TVC
wasmainly decreased in DMN and insular areas (Falahpour et al.,
2016; Guo et al., 2018; He et al., 2018; Rashid et al., 2018a).

In neurological disorders, TVC abnormalities have been
mainly observed in areas directly affected by the disease.
For example, subcortical stroke and mild traumatic brain
injury patients showed TVC abnormalities in sensorimotor
networks (Chen et al., 2018; Vergara et al., 2018). Patients
with myoclonic/frontal lobe epilepsy showed reduced
TVC mainly in frontal and parietal brain regions, whereas
patients with temporal lobe epilepsy experienced TVC
decrease mainly in temporal regions (Ridley et al., 2017;
Klugah-Brown et al., 2018; Wang et al., 2018). Generalized
epilepsy was related to TVC strength changes mainly in
the DMN and cognitive networks (Liu et al., 2017; Li
et al., 2018). Patients suffering from Alzheimer’s disease
had reduced regional (nodal) TVC (Alderson et al., 2018)
and alterations in inter-network TVC of the anterior and
posterior regions of the DMN (Jones et al., 2012; Quevenco
et al., 2017), the frontal cortex and temporal areas (Jie
et al., 2018). Patients with Parkinson’s disease showed
TVC changes mainly in sensorimotor, executive, cognitive
(Liu et al., 2018), visual, and DMN areas (Diez-Cirarda
et al., 2018), combined with reduced global and nodal
TVC (Cai J. et al., 2018; Diez-Cirarda et al., 2018).

Correlations Between TVC and Clinical,
Neuropsychological, and Structural MRI
Variables in Psychiatric and Other
Neurological Diseases
In schizophrenia patients, reduced global time-resolved graph
metrics have been related to structural disease-related damage
(Yu et al., 2015), while abnormalities in TVC of auditory brain
regions have been correlated with the presence of auditory
hallucinations (Sun et al., 2018). Hallucinations were also
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TABLE 3 | Summary of studies assessing time-varying resting state functional connectivity modifications in different psychiatric and neurological pathologies (excluding

multiple sclerosis).

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

Abrol et al. (2017) Six sites: Siemens Tim Trio 3T

One site: GE Discovery MR750

3T

162 volumes

TR = 2 s

1. Group ICA decomposition in 47

relevant independent

components of interest,

classified into 7 functional

networks

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s)

4. Clustering (five recurring states)

performed using temporal ICA

3. Correlations with gray

matter volumes

FBIRN Data Repository 151

schizophrenia patients

37 females (24.5%)

mean age = 37.8 years

163 healthy subjects

46 females (28.2%)

mean age = 36.9 years

- Compared to healthy subjects,

patients with schizophrenia

exhibited higher TVC strength

between: i) sensorimotor,

precuneus and parietal areas;

and ii) frontal, temporal and insular

cortices

- In patients, TVC abnormalities

correlated with lower gray

matter volumes

Alderson et al. (2018) Philips Intera MR 3T

140 volumes

TR = 3 s

1. Group ICA decomposition in

nine relevant independent

components of interest,

subsequently segmented in 148

cortical regions from the

Destrieux atlas (Destrieux et al.,

2010)

2. Time-frequency analysis

3. Graph theory: synchrony, global

metastability, eigenvector

centrality, clustering coefficient,

local efficiency, and participation

coefficient

4. Correlation with

structural abnormalities

ADNI database 34 patients

with Alzheimer’s disease

18 females (52.9%)

mean age = 73.79 years

SD = 6.14 years

33 patients with mild

cognitive impairment

13 females (39.4%)

mean age = 73.61 years

SD = 5.6 years

36 healthy controls

19 females (52.8%)

mean age = 74.46 years

SD = 5.51 years

- In Alzheimer’s disease patients,

reduced synchrony was observed

between right fronto-parietal

regions, sensorimotor regions

and DMN, together with overall

reduced metastability

- In patients, increased eigenvector

centrality, clustering coefficient,

local efficiency, and participation

coefficient correlated with more

severe structural damage

Cai J. et al. (2018) Siemens Trio 3T

Unspecified volumes

TR = 2 s

1. Segmentation of 76 brain

regions from the Desikan atlas

(Desikan et al., 2006)

2. Sliding-window analysis, window

length = 30 TRs (60 s), steps =

2 TRs (4 s)

3. Graph theoretical analysis:

global efficiency, clustering

efficiency, modularity,

assortativity, Fiedler value

69 Parkinson’s

disease patients

30 females (43.5%)

mean age = 60 years

SD = 9.8 years

29 healthy controls

13 females (43.5%)

mean age = 58.3 years

SD = 97.5 years

- Compared to healthy subjects,

patients with Parkinson’s

disease showed lower network

connections (Fiedler value),

modularity and global efficiency

- Lower network connections in

patients with Parkinson’s disease

correlated with disease severity

Cetin et al. (2016) Siemens Trio 3T

149 volumes

TR = 2 s

1. Group ICA decomposition in 39

relevant independent

components of interest

2. Sliding-window analysis, window

length = 31 TRs (62 s), steps =

1 TRs (2 s)

k-means clustering (five

recurring states)

3. Correlations with

magnetoencephalography data

and classification performance

compared to static FC

and magnetoencephalography

47 schizophrenia patients

13 females (27.7%)

mean age = 35.18 years

SD = 11.83 years

45 healthy controls

7 females (15.6%)

mean age = 37.28 years

SD = 13.86 years

- Classification between

schizophrenia patients and

healthy controls improved with

TVC (accuracy = 82.79%)

compared to static FC metrics

(accuracy = 70.33%)

- Classification performance did

not improve when using a

combination of TVC and

magnetoencephalography

metrics (accuracy = 85.35%),

compared to the combination of

static FC and

magnetoencephalography

metrics (accuracy = 87.91%)

Chen et al. (2018) Philips Achieva 3T

170 volumes

TR = 2 s

1. Segmentation of left and right

primary motor area, premotor

cortex and supplementary motor

area (spherical ROIs, radius =

5mm)

Sliding-window analysis, window

length = 32TRs (64 s), steps = 1

TR (2 s)

2. Standard deviation of TVC

across windows

70 stroke patients

45 right-sided lesions

23 females (32.9%)

mean age = 58.44 years

SD = 11.43 years

25 left-sided lesions

8 females (11.4%)

mean age = 59.88 years

SD = 12.96 years

55 healthy controls

- Compared to healthy controls,

stroke patients showed TVC

reductions between sensorimotor

and visual-related cortices and

between the sensorimotor and

the limbic system

- In stroke patients with right-sided

lesions, reduced TVC between

the right primary motor area and

the left precentral gyrus correlated

with more severe disability

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 15 July 2019 | Volume 13 | Article 618

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Valsasina et al. TVC in Neurological Conditions

TABLE 3 | Continued

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

26 females (37.1%)

mean age = 56.73 years

SD = 10.21 years

Damaraju et al. (2014) 6 sites: Siemens Tim Trio 3T

1 site: GE Discovery MR750 3T

162 volumes

TR = 2 s

1. Group ICA decomposition in 50

relevant independent

components of interest,

classified into 7 different

functional networks

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s)

3. k-means clustering (five

recurring states)

151 schizophrenia patients

37 females (24.5%)

mean age = 37.8 years

163 healthy subjects

46 females (28.2%)

mean age = 36.9 years

- Compared to healthy controls,

schizophrenia patients showed: (i)

higher dwell time in states

characterized by overall low inter-

and intra-network TVC strength;

(ii) lower dwell time in states

characterized by high correlations

between visual, motor and

auditory networks; and (iii)

increased TVC between thalami

and sensory networks

Diez-Cirarda et al. (2018) Philips Achieva TX 3T

214 volumes

TR = 2.1 s

1. Group ICA decomposition in 29

relevant independent

components of interest,

classified into seven functional

networks

2. Sliding-window analysis, window

length = 22 TRs (44.2 s), steps

= 1 TR (2.1 s)

3. k-means clustering (two

recurring states).

Graph theory: global efficiency,

local efficiency, clustering

coefficient,

betweenness centrality

37 patients with

Parkinson’s disease

12 with normal cognition

6 females (50%)

mean age = 65.17 years

SD = 8.31 years

23 with mild cognitive

impairment

10 females (44%)

mean age = 69.17 years

SD = 4.48 years

26 healthy controls

8 females (31%)

mean age = 68.31 years

SD = 7.52 years

- Compared to healthy controls,

Parkinson’s disease patients

with mild cognitive impairment

showed lower dwell time in a

state characterized by overall

low strength of inter- and intra-

network connections, as well

as higher number of transitions

between states

- Parkinson’s disease patients with

cognitive impairment also

showed: (i) reduced clustering

coefficient in the right precentral

gyrus vs. healthy controls; and (ii)

reduced betweenness centrality

of the left paracentral gyrus vs.

patients without

cognitive impairment

Du et al. (2017) 3 sites: Siemens Trio Tim 3T

2 sites: GE Signa HDx 3T

1 site: Siemens Allegra 3T

1 site: Philips 3T

100–210 volumes

TR ranging from 1.5 to 3 s

1. Segmentation of 116 brain

regions from the AAL atlas

(Tzourio-Mazoyer et al., 2002)

2. Sliding-window analysis, window

length = 20 TRs (ranging from

30 to 60 s)

3. GIG-ICA clustering (five

recurring-states)

4. Correlations with

cognitive scores

Bipolar and schizophrenia

network on

intermediate phenotypes

113 schizophrenia patients

57 females (50%)

mean age = 35.57 years

SD = 12.29 years

132 schizoaffective

disorder patients

75 females (57%)

mean age = 36.23 years

SD = 12.23 years

140 bipolar disorder with

psychosis patients

87 females (62%)

mean age = 36 years

SD = 12.57 years

238 healthy controls

138 females (58%)

mean age = 38.15 years

SD = 12.55 years

- Compared to healthy controls (and

bipolar patients), schizophrenia

and schizoaffective disorder

patients showed increased TVC

between frontal with angular and

postcentral areas, and reduced

TVC between temporal and frontal

areas

- Compared with all remaining

study groups, schizophrenia

patients also showed reduced

TVC between the cerebellum and

subcortical and frontal areas

- Reduced TVC between cerebellar

and frontal areas correlated with

higher symptom severity scores

Du et al. (2018) Siemens Tim Trio 3T

180 volumes

TR = 2 s

1. Segmentation of 116 brain

regions from the AAL atlas

(Tzourio-Mazoyer et al., 2002)

2. Sliding-window analysis, window

length = 20 TRs (40 s), steps =

1 TR (2 s)

3. GIG-ICA clustering

(five recurring-states)

58 schizophrenia patients

20 females (35%)

mean age = 21.8 years

SD = 3.8 years

53 adults at high risk of

developing schizophrenia

21 females (38%)

mean age = 20.4 years

- Compared to healthy controls,

schizophrenia patients and adults

with high risk of developing

schizophrenia showed TVC

alterations between motor,

temporal, cerebellar, frontal and

thalamic areas

- Schizophrenia patients,

compared

(Continued)
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TABLE 3 | Continued

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

SD = 4.5 years

70 healthy controls

29 females (41%)

mean age = 21.9 years

SD = 5.6 years

to adults with high risk of

developing schizophrenia, also

showed increased TVC between

the cerebellum, temporal cortex,

frontal gyri and thalami

- Increased TVC between temporal

and cerebellar areas correlated

with higher symptom

severity scores

Engels et al. (2018) GE Signa HDxT 3T

202 volumes

TR = 2.15 s

1. Segmentation of 264 brain

regions from the Power atlas

(Power et al., 2011)

2. Sliding-window analysis, window

length = 28 TRs (60.2 s), steps

= 5 TRs (10.75 s)

3. Standard deviation of TVC

across windows

24 Parkinson’s

disease patients

7 females (29.2%)

mean age = 63.42 years

SD = 7.93 years

27 healthy controls

11 females (40.1%)

mean age = 59.37 years

SD = 8.54 years

- Compared with patients without

cognitive impairment, Parkinson’s

disease patients with mild

cognitive impairment showed

higher TVC between the DMN

and the rest of the brain

- In patients, no correlation was

found between TVC abnormalities

and motor severity

Falahpour et al. (2016) 17 sites

TR = 2 s

1. Manual segmentation of 10

spherical ROIs (radius = 6 and

10mm)

2. Sliding-window analysis, window

length = 15 TRs (30 s), steps =

4 TRs (8 s)

3. Standard deviation of TVC

across windows

Autism Brain Imaging Data

Exchange (ABIDE)

76 autism spectrum disorders

9 females (11.8%)

mean age = 16.1 years

SD = 4.9 years

range = 7–29.9 years

76 typically development

young adults

12 females (15.8%) mean age

= 15.8 years

SD = 4.5 years

range = 8–29.9 years

- No between-group differences

were observed in TVC

Fu et al. (2018) 6 sites: Siemens Tim Trio 3T

1 site: GE Discovery MR750 3T

162 volumes

TR = 2 s

1. Group ICA decomposition in 48

relevant independent

components of interest,

classified into seven functional

networks

2. Sliding-window analysis, window

length = 20 TRs (40 s), steps =

1 TR (2 s)

3. k-means clustering of dynamic

amplitude of low-frequency

fluctuations (six recurring states)

FBIRN Data Repository

151 schizophrenia patients

37 females (24.5%)

mean age = 37.8 years

SD = 11.4 years 163

healthy controls

46 females (28.2%)

mean age = 36.9 years

SD = 11 years

- Compared to healthy controls,

schizophrenia patients showed

increased dynamic amplitude

of low-frequency fluctuations in

states characterized by strong

TVC between the thalami and

sensory regions

- Patients also showed reduced

dynamic amplitude of

low-frequency fluctuations in

states characterized by weak

TVC between the thalami and

sensory regions

Guo et al. (2018) 14 sites 1. Manual segmentation of three

spherical ROIs (radius = 6mm)

2. Flexible least squares to

construct a TVC map at each

timepoint

3. k-means clustering (five

recurring states)

Correlations with clinical scores

Autism Brain Imaging Data

Exchange (ABIDE)

209 autism spectrum

disorder adolescents

0 females (0%)

mean age = 16.5 years

SD = 6.2 years

298 typical

development adolescents

0 females (0%)

mean age = 16.8 years

SD = 6.2 years

- Compared to typically developing

adolescents, autism spectrum

disorder adolescents showed

reduced TVC among the right

anterior insula, ventromedial

prefrontal cortex and the posterior

central cortex

- Reduced TVC between the right

anterior insula and the

ventromedial prefrontal cortex

correlated with higher

symptom severity

He et al. (2018) Philips Achieva 3T

TR = 2 s

1. Group ICA decomposition of the

DMN, used to select the PCC for

subsequent analyses

2. Sliding-window analysis, window

length = 50 TRs (100 s), steps =

2 TRs (4 s)

Autism Brain Imaging Data

Exchange (ABIDE)

38 autism spectrum disorders

0 females (0%)

age range = 3–7 years

41 typical

development children

- Compared to typically developing

children, Autism spectrum

disorders children showed

differences in TVC variance

between the PCC and: (1) the

whole brain; (2) the right

precentral gyrus; and (3) visual
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3. Calculation of TVC map between

the PCC and the rest of the brain

in each window; calculation of

variance of FC across windows

k-means clustering analysis (six

recurring states)

Correlation with social

behavior scales

0 females (0%)

age range = 3–6 years

areas

- In autism spectrum disorder

children, lower TVC variance

between the PCC and the right

precentral gyrus negatively

correlated with social motivation

Jie et al. (2018) Philips 3T scanners

140 volumes

TR ranging from 2.2 to 3.1 s

1. Segmentation of 116 brain

regions from the AAL atlas

(Tzourio-Mazoyer et al., 2002)

2. Sliding-window analysis,

non-overlapping windows,

window length ranging from 30

to 60 s

3. Metrics of temporal and spatial

variability of TVC across

windows

4. Six machine-learning

classification algorithms

ADNI database

43 patients with mild cognitive

impairment with late onset

17 females (39.5%)

mean age = 72.1 years

SD = 8.2 years

56 patients with mild cognitive

impairment with early onset

35 females (62.5%)

mean age = 71.1 years

SD = 6.8 years

50 healthy controls

29 females (58%)

mean age = 75 years

SD = 6.9 years

- Patients with early mild cognitive

impairment, compared to healthy

controls, showed increased TVC

variability

- TVC abnormalities helped to

identify patients with early-onset

mild cognitive impairment from

patients with late-onset mild

cognitive impairment and healthy

controls (accuracy = 74.7 and

73.6%, respectively)

Jones et al. (2012) GE Signa HDx 3T

100 volumes

TR = 3 s

1. Group ICA decomposition in 54

relevant independent

components of interest, used to

develop 68 cubical ROIs (edge

= 10mm)

2. Sliding-window analysis, window

length = 9 TRs (27 s) and 11

TRs (33 s)

3. Graph theory: variability of

modularity across windows

28 patients with

Alzheimer’s disease

Unspecified sex and age

892 healthy controls

438 females (49%)

median years = 79 years

range = 75–83 years

- Patients with Alzheimer’s disease

showed lower dwell time in brain

states with strong contributions of

the posterior areas of the DMN,

and higher dwell time in states

with strong contributions of the

anterior areas of the DMN

Klugah-Brown et al.

(2018)

GE Discovery MR750 3T

250 volumes

TR = 2 s

1. Group ICA decomposition in 50

relevant independent

components of interest,

classified into seven functional

networks

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s)

3. k-means clustering (four

recurring states)

Individual reconstruction of TVC

states using dual regression

19 frontal lobe

epilepsy patients

9 females (47.4%)

median age = 24.2 years

range = 13–51 years

18 healthy controls

5 females (27.8%)

median age = 23.9 years

range = 11–41 years

- Compared to healthy subjects,

epilepsy patients showed

reduced TVC between the

fronto-parietal network and

cerebellar/subcortical networks

- They also spent less time in

the most fundamental connectivity

state

- A lower dwell time in this state

correlated with age of

seizure onset

Li et al. (2018) GE Discovery 750 3T

240 volumes

TR = 2 s

1. Segmentation of cortical brain

regions from the AAL atlas

(Tzourio-Mazoyer et al., 2002)

2. Sliding-window analysis, window

length = 50 TRs (100 s), steps =

10 TRs (20 s)

3. Standard deviation of TVC

density (proportional to the

number of functional

connections) across windows

43 children with benign

epilepsy

(centrotemporal spikes)

19 females (44.2%)

mean age = 9.61 years

SD = 2.04 years

28 typically developing children

13 females (46.4%)

mean age = 10 years

SD = 2.31 years

- Compared to typically developing

children, epilepsy children showed

decreased TVC variability in the

orbital inferior frontal gyrus and

increased TVC variability in the

precuneus

- Patients with interictal epileptiform

discharges, compared to patients

without interictal epileptiform

discharges, showed higher TVC

variability in the supramarginal

gyrus

- Excessive TVC variability of the

precuneus correlated with a

younger onset age of seizure

Liao et al. (2018) Unspecified GE 3T

240 volumes

TR = 2 s

1. Segmentation of 200 brain

regions using the Craddock atlas

(Craddock et al., 2012)

48 major depressive disorder

37 females (77.1%)

mean age = 34.8 years

- Increased network strength and

efficiency in patients with suicide

ideation compared to healthy
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2. Sliding-window analysis, window

length = 50TRs (100 s), steps =

5TRs (10 s)

3. Graph theory analyses: network

strength, network efficiency,

nodal efficiency, small worldness

Variance of area-under-the-curve

of graph metrics

4. Correlation with suicide

ideation scores

SD = 10.3 years

30 healthy controls

18 females (60%)

mean age = 35.7 years

SD = 10.2 years

subjects and major depressed

patients without suicide ideation

- Patients without suicide ideation

showed TVC alterations within the

left middle/inferior frontal gyrus,

right superior parietal gyrus,

right postcentral gyrus and right

fusiform gyrus

- TVC network strength

distinguished patients with and

without suicide ideation from

healthy subjects

Liu et al. (2017) Siemens Trio 3T

250 volumes

TR = 2 s

1. Group ICA decomposition in 21

relevant independent

components of interest

2. Sliding-window analysis, window

length = 55 TRs (110 s), steps =

1 TR (2 s)

3. k-means clustering (six recurring

states)

4. Correlations with

disease duration

43 patients with idiopathic

generalized epilepsy

15 females (34.8%)

mean age = 23.12 years

SD = 4.8 years

48 healthy controls

19 females (39.5%)

mean age = 23.02 years

SD = 1.49 years

- Patients with idiopathic

generalized epilepsy showed

reduced dwell time in a

state characterized by strong

correlations between visual

and remaining sense-related

networks, as well as increased

dwell time in a state characterized

by strong correlations between

cognitive and sense-related

networks

- In patients with idiopathic

generalized epilepsy, reduced

dwell time in the first

above-mentioned state was

correlated with a higher

seizure frequency

Liu et al. (2018) Siemens Trio 3T

Unspecified volumes

TR = 2 s

1. Segmentation of bilateral

putamen and 56 brain regions

from the Desikan atlas (Desikan

et al., 2006)

2. Sliding-window analysis, window

length = 30 TRs (60 s), steps =

2 TRs (4 s)

3. Standard deviation of TVC

strength

4. Correlations with clinical scores

30 patients with

Parkinson’s disease

11 females (36.7%)

mean age = 57.8 years

SD = 9.9 years

28 healthy controls

14 females (50%)

mean age = 58.4

SD = 7.6 years

- Compared to healthy controls,

Parkinson’s disease patients

showed reduced TVC between

the posterior subunit in the left

putamen with the left superior

frontal gyrus, right putamen and

the right precentral gyrus, as well

as between the right posterior

putamen and bilateral pallidum

nuclei

- TVC abnormalities correlated with

more severe disability

Mennigen et al. (2018) Siemens Trio 3T

170 volumes

TR = 2 s

1. Group ICA decomposition in 47

relevant independent

components of interest,

classified into eight functional

networks

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s)

3. k-means clustering (five

recurring states). Fuzzy

meta-state analysis

53 patients with clinical

high-risk for psychosis

21 females (39.6%)

mean age = 20.4 years

SD = 4.5 years

58 schizophrenia patients

20 females (34.5%)

mean age = 21.8 years

SD = 3.8 years

70 healthy controls

41 females (58.6%)

mean age = 21.9 years

SD = 5.6 years

- Compared to healthy subjects,

schizophrenia patients showed

significantly lower global

meta-state dynamism

- Compared to healthy controls,

patients with high-risk for

psychosis showed significantly

lower meta-state dynamism

Qiu et al. (2018) GE Excite 3T

195 volumes

TR = 2 s

1. Segmentation of three

amygdalar subregions in each

hemisphere, following the

JuBrain Cytoarchitectonic Atlas

(Zilles and Amunts, 2010)

2. Sliding-window analysis, window

length = 100 TRs (200 s), step =

1 TR (2 s)

30 patients with major

depression disorder

20 females (66.7%)

mean age = 36.1 years

SD = 12.3 years

range = 18–60 years

62 healthy controls

33 females (53.2%)

- Compared to healthy controls,

patients with major depression

disorder exhibited decreased

positive TVC correlations between

the amygdala and left

centromedial and superficial

subregions, primarily in the

brainstem, decreased positive

fronto-thalamic TVC, and
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3. Voxel-wise maps of variance of

amygdalar TVC across windows

mean age = 35.1 years

- SD = 15.9 years

- range = 16–81 years

decreased negative TVC of the left

centromedial subregion with the

right superior frontal gyrus

- In patients, mean positive TVC

strength between the left

centromedial region and

brainstem was positively

correlated with the age of onset

of major depression disorder

Quevenco et al. (2017) Philips Achieva 7T

200 volumes

TR = 2 s

1. Segmentation of 90 brain

cortical regions from the AAL

atlas (Tzourio-Mazoyer et al.,

2002)

2. Sliding-window analysis, window

length = 30 TRs (60 s), steps =

1 TR (2 s)

3. Principal components analysis:

eigen-connectivity

patterns (states)

37 healthy controls divided

according to

presence/absence of

memory decline

13 females (35.1%)

mean age = 73 years

SD = 6.6 years

- Subjects with memory decline

showed reduced TVC between

anterior and posterior brain areas

- Increased global connectivity,

reduced TVC between anterior

and posterior brain areas,

increased TVC between

interhemispheric fronto-temporal

areas and reduced TVC between

parietal and temporal areas

correlated with memory decline

and apoprotein E-ε4 carrier status

Rashid et al. (2014) Siemens Allegra 3T

Eyes open

202 volumes

TR = 1.5 s

1. Group ICA decomposition in 49

relevant independent

components of interest,

classified into 7 functional

networks

2. Sliding-window analysis, window

length = 22 TRs (33 s), steps =

1 TR (1.5 s)

3. k-means clustering (five

recurring states)

60 schizophrenia patients

13 females (21.7%)

mean age = 35.85 years

SD = 12.01 years

38 bipolar disorder patients

20 females (52.6%)

mean age = 38.96 years

SD = 10.9 years

61 healthy controls

28 females (45.9%)

mean age = 35.4 years

SD = 11.57 years

- Compared to controls,

schizophrenia patients showed

increased TVC between: (i)

temporal regions; (ii) frontal

regions; (iii) subcortical regions; iv)

temporal and parietal regions, and

reduced TVC between: (i) frontal

and parietal regions and (ii) frontal

and occipital areas

- Compared to bipolar patients,

schizophrenia patients showed

increased TVC between: (i)

frontal and parietal areas;

(ii) sensorimotor areas; (iii)

sensorimotor and parietal areas

- Compared to healthy controls,

bipolar disorder patients showed

increased TVC between temporal

and parietal areas, as well as

reduced TVC within

parietal regions

Rashid et al. (2016) Siemens Allegra 3T

Eyes open

202 volumes

TR = 1.5 s

1. Group ICA decomposition in 49

relevant independent

components of interest,

classified into seven functional

networks

2. Sliding-window analysis, window

length = 22 TRs (33 s), steps =

1 TR (1.5 s)

3. k-means clustering (five

recurring-states)

4. Machine learning classification of

the study subgroups

60 schizophrenia patients

13 females (21.7%)

mean age = 35.85 years

SD = 12.01 years

38 bipolar disorder patients

20 females (52.6%)

mean age = 38.96 years

SD = 10.9 years

61 healthy controls

28 females (45.9%)

mean age = 35.4 years

SD = 11.57 years

- TVC improved classification

between patients with

schizophrenia, patients with

bipolar disorder and healthy

controls: TVC overall classification

accuracy (84.28%) was

significantly higher than overall

classification accuracy of static

FC metrics (59.12%)

Rashid et al. (2018a) GE Discovery 3T

160 volumes

TR = 2 s

1. Group ICA decomposition in 38

relevant independent

components of interest

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s)

3. k-means clustering (four

recurring states)

Generation R study

774 children

22 children diagnosed with

autism spectrum disorders

15 children with autistic traits

age range = 4.89–8.90 years

774 typical

development children

- In typically developing children,

TVC globally increased with age

in fronto-temporal, fronto-parietal

and temporo-parietal networks

- Compared to typically developing

children, autism spectrum

disorder children showed: (i)

increased TVC between the right

insula and left
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4. Sex and age association

with recurring-states

superior frontal gyrus, right

supramarginal gyrus and left

precuneus; and (ii) reduced TVC

between the right insula and the

right supramarginal gyrus, the left

supplementary motor area and

right supramarginal gyrus

- Autism spectrum disorder

patients with high level of autistic

traits showed longer dwell times

in a globally disconnected state

Rashid et al. (2018b) Siemens Trio 3T

GE Discovery MR750 3T

162 volumes

TR = 2 s

1. Group ICA decomposition in 7

relevant independent

components of interest

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s)

3. k-means clustering (five

recurring states)

Correlation with peak weights of

single nucleotide polymorphism

mostly located in chromosome 6

FBIRN Data Repository

61 schizophrenia patients

9 females (14.8%)

mean age = 38.4 years

87 healthy controls

26 females (29.9%)

mean age = 36.8 years

- Schizophrenia patients showed

a lower occupancy rate of a

state characterized by high TVC

in temporal, parietal, limbic and

occipital regions (state 1), as well

as a higher occupancy rate of a

state characterized by increased

fronto-limbic and intra-occipital

TVC (state 5) vs. healthy subjects

- Schizophrenia patients with

increased gene polymorphism

had stronger disrupted TVC in

states 1 and 5

Ridley et al. (2017) Siemens Avanto 1.5T

200 volumes

TR = 3 s

1. Segmentation of spherical ROIs

(radius = 5mm), defined by their

contact to implanted electrodes

2. Sliding-window analysis, window

length = 30 TRs (90 s), steps =

0.66 TR (2 s)

3. Correlation with EEG data

9 patients with

drug-resistant epilepsy

3 females (33.3%)

mean age = 30.4 years

SD = 4.5 years

range = 24–38 years

No control group

- In cortices not involved by

epilepsy, TVC was correlated with

EEG registration of all frequency

bands

- In epileptic cortices, TVC

correlated with EEG in alpha band

Sakoglu et al. (2010) Siemens Allegra 3T

Active fMRI (auditory oddball

task):

Two consecutive runs

249 volumes

TR = 1.5 s

1. Group ICA decomposition in 10

relevant independent

components of interest

2. Sliding-window analysis, window

length = 64 TRs (96 s), steps =

2 TRs (3 s)

3. Time-frequency analysis

4. Standard deviation of TVC

across windows, between-group

comparison of TVC in

each window

28 schizophrenia patients

5 females (17.9%)

mean age = 36.4 years

SD = 12.43 years

28 healthy controls

9 females (32.1%)

mean age = 28.8 years

SD = 10.7 years

- Compared to controls,

schizophrenia patients exhibited

reduced TVC task-modulation

between the medial temporal

network and the right lateral

fronto-parietal/frontal networks.

They also showed increased TVC

task-modulation between the

motor and frontal networks, and

between the posterior DMN and

orbitofrontal/parietal networks

Sun et al. (2018) Laboratory dataset

Philips Achieva 3T

Eyes open

240 volumes

TR = 2 s

COBRE dataset

Siemens Trio 3T

150 volumes

TR = 2 s

1. Segmentation of 90 brain

regions from the AAL atlas

(Tzourio-Mazoyer et al., 2002)

2. Sliding-window analysis, window

length = 50 TRs (100 s), steps =

3 TRs (6 s)

3. Graph theory analysis: temporal

global/local efficiency, richness,

sparsity range of

temporal networks

Laboratory dataset

18 schizophrenia patients

8 females (44.4%)

mean age = 38.8 years

SD = 9.9 years

range = 24–56 years

19 healthy controls

9 females (47.4%)

mean age = 37.7 years

SD = 9.0 years

range = 28–59 years

COBRE dataset

53 schizophrenia patients

12 females (22.6%)

mean age = 38.3 years

SD = 13.9 years

range = 18–65 years

57 healthy controls

- Compared to healthy controls,

schizophrenia patients showed

higher temporal regional efficiency

with left frontal, right medial

parietal and bilateral subcortical

areas

- Abnormalities of temporal

network efficiency correlated with

a higher presence of

schizophrenia positive and

negative symptoms

20 females (35.1%)

mean age = 35.4 years

SD = 11.9 years

range = 18–62 years

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 21 July 2019 | Volume 13 | Article 618

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Valsasina et al. TVC in Neurological Conditions

TABLE 3 | Continued

Study RS fMRI acquisition

parameters�

TVC analysis approach∧ Study subjectsθ Main findings

Vergara et al. (2018) Siemens Trio 3T

145 volumes

TR = 2 s

1. Group ICA decomposition in 48

relevant independent

components of interest,

classified in nine functional

networks

2. Sliding-window analysis, window

length = 15 TRs (30 s)

3. k-means clustering (four

recurring states)

4. Machine learning for

group classification

48 patients with mild traumatic

brain injury

25 females (52.1%)

mean age = 27.79 years

SD = 9.18 years

48 healthy controls

25 females (52.1%)

mean age = 27.40 years

SD = 8.96 years

- Compared to healthy controls,

mild traumatic brain injury patients

showed stronger TVC between

the cerebellum and sensorimotor

areas, as well as a trend toward

increased connectivity between

the cerebellum and almost all

cortical areas

- Results were similar to those

obtained with the study of static

FC (Vergara et al., 2017)

Wang et al. (2018) Siemens TIM Trio 3T

300 volumes

TR = 2 s

1. Voxel-by-voxel calculation of

connection strength index (CSI)

and connection count index

(CCI) within a whole gray matter

from the MNI template (Evans

et al., 1992)

2. Sliding-window analysis, window

length = 60 TRs (120 s), steps =

1 TR (2 s)

3. Mean of CSI and CCI

across windows

18 patients with juvenile

myoclonic epilepsy

15 females (83.3%)

mean age = 30.11 years

SD = 7.73 years

range = 20-48 years

25 young adults

10 females (40%)

mean age = 33.2 years

SD = 13.5 years

- Patients with juvenile myoclonic

epilepsy showed increased TVC

in the left dorsolateral prefrontal

cortex, dorsal striatum, precentral

and middle temporal gyri

Yaesoubi et al. (2017a) Siemens Tim Trio 3T

GE Discovery MR750 3T

162 volumes

TR = 2 s

1. Group ICA decomposition in 50

relevant independent

components of interest, using

data from a subgroup of 120

healthy subjects

2. Time-frequency analysis

3. k-means clustering (five

recurring states)

FBIRN Data Repository

163 healthy subjects

46 females (28.2%)

mean age = 36.9 years

151 schizophrenia patients

37 females (24.5%)

mean age = 37.8 years

- Using temporal and frequency

information, it was possible to

estimate TVC states present

both in healthy controls

and schizophrenia patients

(characterized by very high or very

low frequency profiles), and states

present just in one group

- Compared to controls,

schizophrenia patients showed

more connectivity patterns

characterized by anti-correlations

between the sensorimotor and

visual/auditory/subcortical

networks, as well as more lagged

correlation between the DMN and

sensory networks

Yu et al. (2015) Siemens Trio 3T

Eyes open

150 volumes

TR = 2 s

1. Group ICA decomposition in 48

relevant independent

components of interest,

classified into six functional

networks

2. Sliding-window analysis, window

length = 20 TRs (40 s), step = 1

TR (2 s)

3. Graph theory: connectivity

strength, clustering coefficient,

global efficiency; variance of

graph metrics over time.

4. Assessment of reoccurring

connectivity states based on

graph metrics (four

recurring states)

82 schizophrenia patients

17 females (20.7%)

mean age = 38 years

SD = 14 years

82 healthy controls

19 females (23.2%)

mean age = 37.7 years

SD = 10.8 years

- Compared to controls,

schizophrenia patients showed

lower connectivity strength,

clustering coefficient and global

efficiency, as well as higher

occupancy rate of a state

characterized by disconnection

between the sensorimotor, the

cognitive control, and the DMN

Yue et al. (2018) Siemens Trio 3T

240 volumes

TR = 2 s

1. Segmentation of bilateral

amygdalae, using stereotaxic

and probabilistic maps of

cytoarchitectonic boundaries

2. Sliding-window analysis, window

33 schizophrenia patients

22 females (66.7%)

mean age = 30.6 years

SD = 8.13 years

34 healthy controls

- Compared to controls,

schizophrenia patients showed

increased TVC between the left

amygdala and orbitofrontal

regions
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length = 18 TRs (36 s)

3. Standard deviation of voxel-wise

amygdalar TVC across windows

20 females (58.8%)

mean age = 28.12 years

SD = 6.5 years

- In schizophrenia patients,

variability of TVC correlated with

worse information processing and

attention performance, as well as

with more severe disease severity

Zhang W. et al. (2018) Siemens Trio 3T

1,000 volumes

TR = 0.427 s

1. Segmentation of Brodmann

areas 44, 45 (frontal), 22, 40

(auditory) (Zilles and Amunts,

2010)

2. Sliding-window analysis, window

length 100 TRs (42.7 s), steps =

2 TRs (0.85 s)

3. k-means clustering (5 recurring

states)

4. Variance of TVC strength

between ROIs across windows.

5. Correlation with clinical scales

35 schizophrenia patients

14 females (40%)

mean age = 32.61 years

SD = 11.58 years

22 healthy controls

13 females (60%)

mean age = 34.91 years

SD = 13.34 years

- Schizophrenia patients with

auditory hallucinations showed

decreased TVC between the left

frontal speech and left temporal

auditory areas vs. healthy controls

Zhi et al. (2018) Multicenter setting

Philips Achieva 3T

Siemens Verio 3T

Siemens Prisma 3T

240 volumes

TR = 2 s

1. Group ICA decomposition in 49

relevant independent

components of interest,

classified into eight functional

networks

2. Sliding-window analysis, window

length = 22 TRs (44 s), steps =

1 TR (2 s)

3. k-means clustering (five

recurring states)

4. Graph theory: global and node

properties in each connectivity

state

5. Correlations with depression

severity and cognitive score

182 major depressive

disorder patients

119 females (65.4%)

mean age = 32.0 years

SD = 10.3 years

218 healthy controls

142 females (65.2%)

mean age = 29.5 years

SD = 8.3 years

- Compared to controls, major

depressive disorder patients

showed: (i) higher TVC strength

between the superior frontal and

middle frontal gyrus; (ii) decreased

TVC between the lingual gyrus

and middle occipital gyrus; and

(iii) decreased TVC between the

superior parietal lobe and middle

frontal gyrus

- Correlation between TVC

abnormalities and: (i) more severe

depressive symptoms, impaired

attention and worse executive

functions; (ii) lower attention; and

(iii) worse performances at

working memory and

executive functions

ΩAll RS scans were acquired in the eyes-closed condition, except where indicated.
∧TVC analysis approach summarizes: (1) ROIs used; (2) assessment of time-varying correlations between brain regions; (3) features extracted for assessing TVC.
θFor each study group of healthy subjects, sex is represented as number of females (%), mean age and standard deviation (SD).

RS, resting state; fMRI, functional magnetic resonance imaging; TVC, time-varying functional connectivity; TR, repetition time; ICA, independent component analysis; FBIRN, function

biomedical informatics research network data; ADNI, Alzheimer’s disease neuroimaging initiative; SD, standard deviation; DMN, default-mode network; FC, functional connectivity; ROI,

region of interest; GIG-ICA, group-information-guided ICA; AAL, automated anatomical labeling; COBRE, center for biomedical research excellence; EEG, electroencephalographic

registration; PCC, posterior cingulate cortex; CSI, connection strength index; CCI, connection count index; MNI, Montreal Neurological Institute.

correlated with a more rigid, reduced global dynamism (Miller
et al., 2016; Mennigen et al., 2018). Autistic behavior and
diagnosis were associated with longer dwell times in a globally
disconnected state (Rashid et al., 2018a).

In patients with temporal lobe epilepsy, recurring states
characterized by high inter-network TVC expressed reduced
dwell time and correlated with an early seizure onset (Klugah-
Brown et al., 2018). Interestingly, reduced TVC in the ictal
irritative zone was associated to an intracranial EEG connectivity
increase in the same epileptic region in alpha, beta and gamma
bands (Ridley et al., 2017). In patients with Alzheimer’s disease,
TVC abnormalities between the anterior and the posterior DMN
areas correlated with poorer episodic memory performance
(Quevenco et al., 2017), while reductions in global TVC were
associated with microstructural tissue damage (Alderson et al.,
2018). In patients with Parkinson’s disease, TVC abnormalities
in the DMN have been associated with memory performance

(Engels et al., 2018), while TVC alterations in the putamen were
associated with clinical disability (Liu et al., 2018).

At this moment, TVC approaches are applicable
only at a group level. However, some preliminary
investigations have successfully used TVC abnormalities
to classify schizophrenia patients from bipolar patients
and/or healthy controls (Cetin et al., 2016; Rashid et al.,
2016), suggesting a future application of TVC at an
individual level.

CURRENT LIMITATIONS AND FUTURE
DIRECTIONS

The field of TVC is relatively new: all main technical
developments have been achieved in the last 9 years. Nonetheless,
in such short period of time TVC has provided greater
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insights into fundamental properties of functional networks,
and has improved knowledge of the pathophysiological brain
reorganization occurring in MS and other neurological and
psychiatric diseases.

However, TVC methodology presents some inherent
limitations that are likely to be overcome in the next future.
Further investigations are also needed to better understand
the physiological meaning of TVC fluctuations and their
electrophysiological correlates.

How Reliably Can Time-Varying
Fluctuations Be Detected From fMRI Data?
One of the main pitfalls of current TVC analysis approaches
consists in the fact that the mere presence of signal fluctuations
in an fMRI time series is often taken as an evidence of TVC
(Hindriks et al., 2016). This might be not necessarily true: FC
values fluctuating over time might be observed just because
of noise, or statistical uncertainty. Several measures have been
employed to test the effective presence of FC variability in fMRI
time series, including variance (Sakoglu et al., 2010), standard
deviation (Chang and Glover, 2010), kurtosis (Laumann et al.,
2017), or more complex, non-linear measures (Zalesky et al.,
2014). Usually, these metrics are compared between real fMRI
data and simulated data, constructed ad-hoc to have a static FC.
If the test is significant, the null hypothesis of stationarity can be
rejected, and TVC can be considered to be effectively present in
the data.

Results of studies assessing evidence of TVC in RS fMRI
data were quite disappointing, showing that the power of TVC
detection in typical 10-min RS fMRI acquisitions was relatively
low (Leonardi and Van De Ville, 2015; Hindriks et al., 2016;
Zhang C. et al., 2018). Solutions to improve the likelihood
of detecting TVC might be the choice of appropriate lengths
for sliding windows (Leonardi and Van De Ville, 2015) or
the concatenation of more RS fMRI sessions (Hindriks et al.,
2016). On the other hand, it is possible that measures used
to test the hypothesis of dynamism so far might be not fully
appropriate (Miller et al., 2018). Indeed, novel wavelet-based
metrics (Miller et al., 2018) seem to be more sensitive to capture
non-stationarities present in real RS fMRI data.

Improving Temporal Resolution of fMRI
Acquisitions
Results of TVC also depend upon the temporal resolution
used to acquire fMRI data. TVC studies usually investigate
modifications in RS FC occurring within seconds, by using fMRI
volumes acquired with TRs ranging from 1 s to 3 s (Chang
and Glover, 2010; Allen et al., 2017; Cabral et al., 2017; Nini
et al., 2017; Yaesoubi et al., 2017b; Marusak et al., 2018).
Investigations performed on RS fMRI data acquired with a higher
sampling rate, e.g., thanks to the use of simultaneous multi-
slice imaging techniques, may be more powerful in detecting
changing connectivity reconfigurations over time (Choe et al.,
2017). Also, the use of ultra-fast fMRI acquisition techniques,
such as inverse imaging (Lin et al., 2006), generalized inverse

imaging (Boyacioglu and Barth, 2013), or multi-slab echo-
volumar imaging (Posse et al., 2013), might constitute an
important improvement for TVC. Ultra-fast fMRI allows to
acquire a single functional volume covering the whole brain
in <300ms, resembling the results of magnetoencephalography
studies (Asslander et al., 2013). Therefore, fMRI scans acquired
with ultra-fast techniques do not include physiological aliasing
and allow the detection of more accurate BOLD signal responses
to neural activity. Seminal studies already showed that ultra-fast
fMRI significantly enhanced the sensitivity of mapping RS FC
dynamics (Posse et al., 2013).

Improving TVC Pre- and Post-processing
Regardless of the analysis method, the signal-to-noise ratio of
the BOLD signal in RS fMRI is low, especially in small temporal
segments (Handwerker et al., 2012). Non-neural processes
contaminating RS fMRI time series can affect TVC estimates
(Hutchison et al., 2013; Murphy et al., 2013; Preti and Van
De Ville, 2017). These confounds often include the effects of
motion, cardiac and respiratory activity, and fluctuations in
arterial CO2 concentration (Hutchison et al., 2013; Murphy
et al., 2013; Nikolaou et al., 2016; Glomb et al., 2018). Global
signal regression (GSR) may be useful to better denoise RS fMRI
time series (Murphy and Fox, 2017); however, it was shown to
slightly reduce reliability of the estimated TVC connectivity states
(Smith et al., 2018). Moreover, the impact of GSR was spatially
heterogeneous across brain regions and was dependent from the
amount of global signal magnitude across windows (Xu et al.,
2018). As such, caution is suggested in applying GSR to sliding-
window correlation analyses, and a control of subjects’ mental
fluctuations during RS fMRI scanning is recommended (Xu et al.,
2018). By applying accurate pre-processing steps on the fMRI
data, the rate of artifacts present in the TVC analyses will be
minimized (Murphy et al., 2013), thus increasing the quality of
the observed findings.

Improvements can still be done not only to pre-processing
of RS fMRI time series, but also to TVC post-processing,
e.g., by implementing new, accurate methods to estimate
changing connectivity over time. Recent papers proposed new
approaches to analyse TVC, which aim at capturing change
points of connectivity in functional correlationmatrices (Cribben
et al., 2012; Jeong et al., 2016; Kundu et al., 2018). Other
studies introduced tensor-based multilayer community detection
algorithms, which are able to describe how organization of
functional networks evolves over time (Al-Sharoa et al., 2019). All
these methods might be useful to complement TVC information
obtained by using more standard, state-of-art methods, such
as sliding-window analysis. Finally, improvements can still be
done in statistical thresholding strategies. TVC assessment relies
on the use of a massive amount of pairwise correlations,
stored in series of connectivity matrices, and the best way to
perform a proper adjustment for multiple comparisons is still
an open issue. Traditional methods of correction for multiple
comparisons (Friston et al., 1994) may be too conservative
and may suppress all significant results; therefore, different
approaches of adjustment for multiple comparisons might
be more suitable. For instance, network-based statistic (NBS,
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Zalesky et al., 2010) was proposed as an alternative method of
multiple comparison correction in studies using graph theory,
which suffers of similar drawbacks as TVC. NBS has been
rarely applied in TVC studies (Diez-Cirarda et al., 2018),
probably because the process to construct “components” is not
straightforward when connectivity matrices change over time.
Future studies investigating new strategies of adjustment for
multiple comparisons may propose new solutions for this issue.

Functional Interpretation of TVC Findings
Although some studies have tried to provide a functional
interpretation of TVC output, several questions remain to be
answered by future work. Preliminary data found some degree
of correspondence between EEG rhythms and TVC frequency
content (Allen et al., 2017) and hypothesized that some of
the TVC states observed in healthy subjects, especially at the
end of RS fMRI sessions, might be related to drowsiness or
light sleep (Allen et al., 2014, 2017). A preliminary study
assessing contemporary TVC and EEG registrations confirmed
the presence of connectivity changes over different phases of
sleep, with long-range temporal dependencies becoming weaker
during deep sleep (Tagliazucchi et al., 2013). Still, it is not clear
why larger TVC oscillations have been registered in functional
networks at the beginning of RS fMRI sessions (Allen et al., 2014,
2017). Theories hypothesizing the brain functional “anticipation”
(e.g., brain predisposition to switch quickly between different
psychological states; Zalesky et al., 2014) might partially explain
why more “specialized” functional networks (sensorimotor,
auditory, visual) express more constant TVC behavior, while
more complex, multi-modal networks express more dynamism.
On the other hand, constant TVC oscillations in sensorimotor,
auditory and visual networks might only reflect their lower
activity during RS (Syed et al., 2017).

From this perspective, additional multi-modal studies
integrating information from imaging and electrophysiological
modalities are necessary for a better comprehension of the neural
origin, mechanisms and function of temporal FC variations, as
well as of the physiological meaning of TVC states.

CONCLUSIONS

The analysis of time-varying FC has contributed to provide
significant information on intrinsic brain functional

organization, both in healthy and diseased conditions, which
complements data produced by static FC approaches. TVC
seems to be an intrinsic property of the brain with a neural
origin, although some open questions still remain about the
correct interpretation of TVC output.

In MS patients, TVC helped to better understand the
pathophysiological functional reorganization occurring
in the brain, with a peculiar involvement of the DMN,
salience, sensorimotor, and fronto-temporal networks. TVC
abnormalities were partially correlated with more severe
tissue damage and more severe clinical disability, while
more extensive correlations were found with abnormal
cognitive performances. In patients with neurodegenerative
and psychiatric conditions, TVC abnormalities of the
DMN, attention and executive networks were also
associated to stronger clinical manifestations. Overall,
these results suggest a maladaptive neuronal response to
disease-related damage.

There are still several unmet needs in neurological and
psychiatric conditions that TVC analysis may help to address.
First, TVC may be useful to identify multi-modal regions,
crucial for functional network plasticity, which may constitute
possible targets for motor and cognitive neurorehabilitation
protocols, as well as for symptomatic or disease-modifying
treatments. Second, trajectories of TVC changes over time
during the disease course need to be better defined, both in
MS and in psychiatric/other neurodegenerative disorders.
This may be the topic of future longitudinal studies, or
of cross-sectional studies enrolling patients at different
disease phases. Finally, it is still unclear whether TVC
abnormalities may have a prognostic value on future disease
course. The collection of clinical data at medium- or long-
term follow-up may allow to define whether some TVC
abnormalities are associated with a more favorable/worse
disease prognosis.
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