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Little is known about the microbial communities found in distribution centers 
(DCs), especially in those storing and handling food. As many foodborne bacteria 
are known to establish residence in food facilities, it is reasonable to assume that 
DCs handling foods are also susceptible to pathogen colonization. To investigate 
the microbial communities within DCs, 16S amplicon sequencing was completed 
on 317 environmental surface sponge swabs collected in DCs (n = 18) across the 
United  States. An additional 317 swabs were collected in parallel to determine if 
any viable Listeria species were also present at each sampling site. There were 
significant differences in median diversity measures (observed, Shannon, and Chao1) 
across individual DCs, and top genera across all reads were Carnobacterium_A, 
Psychrobacter, Pseudomonas_E, Leaf454, and Staphylococcus based on taxonomic 
classifications using the Genome Taxonomy Database. Of the 39 16S samples 
containing Listeria ASVs, four of these samples had corresponding Listeria positive 
microbiological samples. Data indicated a predominance of ASVs identified as cold-
tolerant bacteria in environmental samples collected in DCs. Differential abundance 
analysis identified Carnobacterium_A, Psychrobacter, and Pseudomonas_E present 
at a significantly greater abundance in Listeria positive microbiological compared to 
those negative for Listeria. Additionally, microbiome composition varied significantly 
across groupings within variables (e.g., DC, season, general sampling location).
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1. Introduction

Next generation sequencing (NGS) is providing guidance to some food safety efforts in the 
United States (US), especially outbreak traceback investigations (Ronholm et al., 2016; Jagadeesan 
et al., 2019; Stevens et al., 2022). In 2019, the US Centers for Disease Control and Prevention’s 
PulseNet laboratory network prioritized whole genome sequencing (WGS) over pulsed-field gel 
electrophoresis (PFGE) to identify the agents of foodborne illness outbreaks (Carleton, 2019; Ribot 
et al., 2019; Tolar et al., 2019). In addition to the ability to fingerprint bacterial pathogens, WGS also 
provides data to monitor phylogenetic relationships and address source attribution to prevent or 
mitigate future outbreaks (Ronholm et al., 2016; Mughini-Gras et al., 2018; Koutsoumanis et al., 
2019). Microbiome sequencing, a type of NGS, is also being employed to analyze microbial 
communities in environmental and biological samples (Jagadeesan et al., 2019; Stevens et al., 2022). 
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Microbiome sequencing can be completed with either 16S amplicon 
sequencing or shotgun metagenomic sequencing (Bharti and Grimm, 
2021). Briefly, 16S amplicon sequencing is a targeted approach using 
hypervariable regions within the 16S rRNA gene contained in bacteria 
and archaea (Bharti and Grimm, 2021). Understanding bacterial 
communities in foods and the environments where foods are produced, 
processed, and handled can provide insights into the distribution of 
bacteria throughout the food system as well as antimicrobial and 
antibiotic resistance (Durso et al., 2012; Kovac et al., 2017; Lim et al., 2021).

Analysis of microbial communities for food safety applications has 
been completed in a handful of food-related environments and foods 
(Ottesen et al., 2013; Fang et al., 2015; Jarvis et al., 2015; Leonard et al., 
2015, 2016; Dzieciol et al., 2016; Yang et al., 2016; Tan et al., 2019; Lim 
et al., 2021). For instance, shotgun metagenomic sequencing was used 
to detect pathogenic bacteria in environmental samples collected from 
groups of cattle as they moved across beef production chain stages (e.g., 
feedlots, cattle transport trucks, and holding pens; Yang et al., 2016); as 
well as to investigate the diversity and abundance of antibiotic resistance 
genes in greenhouse soils (Fang et al., 2015). Additionally, 16S amplicon 
sequencing of the V4 domain was used to determine the composition 
of microbiota in fruit processing environments (Tan et  al., 2019). 
Moreover, bacterial communities within drain water and drain biofilms 
in cheese processing facilities were examined using pyrosequencing of 
16S rRNA genes (Dzieciol et al., 2016), while 16S amplicon sequencing 
was used to identify a cross-contamination pathway of bacteria in a 
foodservice facility (Lim et al., 2021). Furthermore, bacterial foodborne 
pathogen (e.g., Salmonella, Shiga toxin-producing E. coli) detection in 
cilantro, spinach, and tomatoes has been completed using a 
metagenomic approach (Ottesen et al., 2013; Jarvis et al., 2015; Leonard 
et al., 2015, 2016).

Metagenomic examination of food facilities, such as processing 
facilities or DCs, is still lacking based on currently published data 
(Stevens et  al., 2022). One study has examined the relationship 
between the microbiome and Listeria presence in a meat processing 
facility (Belk et al., 2022). Certain microorganisms were linked to 
Listeria presence in specific rooms of the facility, and Listeria spp. were 
also distributed by room function (Belk et al., 2022). There is also 
limited research on microbial presence within DCs that handle food 
(Townsend et al., 2021, 2022). Only one study (Townsend et al., 2022) 
has explored factors affecting Listeria presence in DCs handling fresh 
produce, and found that 5% of environmental samples collected 
contained isolatable Listeria species.

In the current study, 16S amplicon sequencing of environmental 
samples was completed to investigate microbial communities in 18 
DCs across the United  States. The objectives include examining 
microbiome diversity within and between DCs, determining the 
existence of any relationships between Listeria spp.-positive samples 
and abundant taxa, and identifying top taxa across all DCs.

2. Materials and methods

2.1. Sample collection

Between December 2019 and March 2021, 18 DCs across the 
contiguous United  States were visited once per DC to collect 
environmental surface samples (Townsend et al., 2022). Samples were 
collected using sterile sponge sticks pre-moistened with 10 mL of 

Dey-Engley broth (3 M, St. Paul, MN, United States). The hygienic 
zone concept was used to classify sample sites based on likelihood of 
introducing microbiological hazards to product in the DCs. Only 
non-food contact surfaces were swabbed (40 cm × 40 cm areas); 
therefore, no zone 1 surfaces were examined. Zone 2 surfaces were 
also not examined as results from Townsend et al. (2022) indicated 
increased Listeria prevalence in DCs on zone 3 and 4 surfaces. These 
locations are also known harborage sites of Listeria spp. in food-
related environments (Carpentier and Cerf, 2011; Hoelzer et al., 2011). 
Two sponge swabs were collected in adjacent sampling areas: one for 
microbiological analysis and the other for 16S amplicon analysis 
(n = 317 for each analysis). Additional metadata, including sampling 
site location and other DC characteristics (e.g., geographic region, and 
state), were recorded (Supplementary Table S1 in 
Supplementary material).

2.2. Microbiological and 16S amplicon 
sample processing

All sponge swabs were returned to their original bags with the 
sticks removed and kept on ice during shipment. Only sponges used 
for microbiological analysis were processed using the U.S. Food and 
Drug Administration’s Bacteriological Analytical Manual (FDA-BAM) 
for Listeria detection in environmental samples (Hitchins et al., 2017). 
Upon arrival to the laboratory, 16S amplicon sponges were stored at 
−20°C. Prior to processing, sponges were thawed and kept on ice. 16S 
amplicon sponges were processed according to the methodology in 
Tan et al. (2019) and did not undergo an enrichment. Briefly, 90 mL 
of 1X phosphate-buffered saline (PBS) solution (Thermo Fisher 
Scientific, Waltham, MA, United States) was added to each sponge 
sample bag. Bags were homogenized in a Stomacher Model 400 
Circulator Lab Blender (Seward, Worthing, West Sussex, 
United Kingdom) at 230 RPM for 7 min and approximately 45 mL of 
homogenate was poured into a 50 mL sterile conical tube. Tubes were 
stored at −80°C until DNA extraction. The DNeasy PowerSoil Pro Kit 
(Qiagen, Venlo, Netherlands) was used for DNA extraction following 
the manufacturer’s instructions; extractions were stored at −80°C 
until 16S amplicon sequencing. Sample processing was completed at 
two laboratories, one at Virginia Tech and the other at the University 
of Georgia.

2.3. 16S amplicon sequencing

Extracted DNA was transported on dry ice to the Center for Food 
Safety in Griffin, GA and kept at −20°C until use. For each extracted 
DNA sample, double-stranded DNA (dsDNA) concentration was 
determined using a Qubit fluorometer (Invitrogen, Waltham, MA, 
United  States) with the Qubit dsDNA High Sensitivity Assay Kit. 
Sequencing preparation was completed using the 16S Metagenomic 
Sequencing Library Preparation method from Illumina (San Diego, 
CA, United States). Sample libraries were prepared using amplicon 
PCR to target the V3 and V4 regions of the 16S rRNA gene (Illumina, 
2021) with forward primer 5′-TCGTCGGCAGCGT CAGATGTG 
TATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and reverse 
primer 5′-GTCTCGTGGGCTCGGAGA TGTGTATAAGAGACAG 
GACTACHVGGGTATCTAATCC-3′. Qubit dsDNA concentrations 
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were determined once more after amplicon PCR. AMPure XP beads 
were used to purify amplicon libraries prior to sequencing on the 
Illumina MiSeq platform (Illumina, San Diego, CA, United States) to 
produce 2 × 300 bp paired end reads. For each amplicon PCR a 
negative control was included, for a total of three negative controls per 
sequence run.

2.4. Bioinformatic analysis

Figure  1 provides a flowchart of bioinformatic analyses. Raw 
sequence reads in FASTQ format were processed and analyzed using 
dada2 (v1.22.0; Callahan et  al., 2016a). Reads were filtered and 
trimmed using the filterAndTrim function within dada2, with a 
truncLen of 260, 220, and a maxEE of 2.5 to remove low-quality reads. 
Pooling was also completed on forward and reverse reads with dada2 
using pseudo-pooling to assist in rare amplicon sequencing variant 

(ASV) detection. Taxonomy was assigned using the Genome 
Taxonomy Database (GTDB; release 95), and frequency tables and 
taxonomic classifications were exported to R’s serialized format for 
further analysis using phyloseq (v1.38.0; McMurdie and Holmes, 2013) 
in RStudio (v4.0.0). Read characteristics after processing with dada2 
were investigated using the summarize_phyloseq function in the 
microbiome package (v1.16.0; Lahti and Shetty, 2017). Metadata, 
including sample and DC characteristics, were also included in the 
phyloseq object.

Two workflows were used to analyze the (1) Listeria-targeted 
microbiome and (2) the overall microbiome (refer to Figure 1). This 
was completed because of the relatively low abundance of Listeria-
identified reads, which were not maintained after taxonomic filtering 
with a 10% prevalence threshold. A 10% prevalence threshold was also 
used to capture high abundance taxa within each phylum and reduce 
those that did not appear to have a meaningful biological contribution. 
This cut-off was determined by plotting prevalence by total abundance 

FIGURE 1

Flow diagram of 16S amplicon sequencing workflow.
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of taxa within each phylum, as described in Callahan et al. (2016b). 
For maintaining Listeria-specific reads, only unobserved taxa (i.e., 
taxa without matched ASVs) and samples with fewer than 10,000 
reads were removed. The threshold of 10,000 reads was chosen after 
analysis of the negative PCR controls, which showed a maximum 
number of reads below 10,000. Singletons, which are individual ASVs 
matched with only one read, were maintained in the Listeria-targeted 
microbiome to evaluate richness in alpha diversity indices. After these 
processing steps, 303 samples remained (317 original samples) for 
determining the relative abundance and subsetting reads with Listeria-
identified ASVs for further analysis. Alpha diversity measures 
(observed, Shannon, and Chao1) were calculated after removing 
unobserved taxa and samples containing less than 10,000 reads. 
Kruskal-Wallis one-way ANOVA with Dunn’s post hoc test was used 
to compare alpha diversities across metadata variables (e.g., general 
location, season). NCBI BLAST (Altschul et al., 1990) was used to 
investigate ASVs of interest in the data.

For the overall microbiome, reads with unobserved taxa were 
removed. Taxonomic filtering was completed using methods from 
Callahan et al. (2016b). After pruning taxa, samples with fewer than 
10,000 reads were also removed. Taxa were agglomerated by genus 
prior to determining relative abundance, leaving 302 samples for beta 
diversity analyses. The msa (v1.26.0; Bodenhofer et al., 2015) package 
was used to complete a multiple sequencing alignment with method 
“muscle” using sequences extracted from the phyloseq object, and 
phangorn (v2.9.0; Schliep, 2011) was used to build a maximum 
likelihood phylogenetic tree. Beta diversity was completed using the 
phyloseq distance function with the unweighted UniFrac method 
(Lozupone and Knight, 2005). Analyses for determining variance and 
composition among unweighted UniFrac distances grouped by 
variable were completed with functions betadisper and adonis2 
(PERMANOVA) from the vegan package (v2.6-2; Oksanen et  al., 
2020). Plots were produced using ggplot2 (v3.3.6; Wickham, 2016), or 
with functions from previously mentioned packages. phylosmith 
(v1.0.6; Smith, 2022) was used for determining common taxa among 
samples grouped by variable levels. DESeq2 (v1.34.0; Love et al., 2014) 
was used for differential abundance analysis including a Wald test with 
a parametric fit type and significance level of 0.01. Additionally, 
ANCOM-BC (v2.0.2; Lin and Peddada, 2020) was used to infer 
differentially abundant ASVs with a significance level of 0.01.

3. Results and discussion

3.1. Sample characteristics

For microbiological samples, 18 out of 303 (5.9%) contained 
isolatable Listeria species through selective culture enrichment and 
plating. Sample characteristics, including corresponding DC, general 
and primary locations, state, geography, season, zone, site dryness, 
cleaning type, and Listeria spp. presence can be  found in 
Supplementary Table S1 (Supplementary material). The average 
number of one sample type collected per DC was approximately 17, 
with DCs D and R containing the fewest and greatest number of 
samples at 5 and 34, respectively. Table 1 provides the number of 
samples per primary location within each general location.

Six samples were collected on zone four surfaces (e.g., floors 
distant from produce storage/transit areas), while the remaining 297 

samples were collected on zone three surfaces (e.g., cleaning-related 
surfaces, floors in closer proximity to produce storage/transit areas). 
Sample site dryness was also recorded, with 271 (89.4%) samples 
collected on dry surfaces and 32 (10.6%) on wet surfaces. For cleaning 
type, most samples were from sites that experienced dry and wet 
cleaning (148/303, 48.8%), followed by wet cleaning only (68/303, 
22.4%), no cleaning (61/303, 20.1%), and dry cleaning only 
(26/303, 8.58%).

Samples were collected primarily in Michigan (69/303, 22.8%), 
followed by Pennsylvania (43/303, 14.2%), Maryland (33/303, 10.9%), 
New York (31/303, 10.2%), Wisconsin (28/303, 9.24%), Massachusetts 
(27/303, 8.91%), Florida (24/303, 7.92%), Texas (13/303, 4.29%), 
Georgia (12/303, 3.96%), North Carolina (9/303, 2.97%), Ohio (9/303, 
2.97%), and Kentucky (5/303, 1.65%). Geographically, 134 (44.2%) 
samples were collected in the Northeast, 111 (36.6%) in the Midwest, 
and 58 (19.1%) in the South, as defined by U.S. Department of 
Agriculture Agricultural Research Service (USDA ARS) regions. Most 
samples were collected in winter (184/303, 60.7%), followed by spring 
(65/303, 21.5%), and fall (54/303, 17.8%).

16S amplicon read characteristics, including statistical information 
such as average reads per sample and number of singletons, are 
presented in Supplementary Table S2 (Supplementary material).

3.2. Listeria-targeted microbiome

3.2.1. Alpha diversity by individual DC
A comparison of alpha diversity indices per sample grouped by 

corresponding DC are presented in Figure 2. There was a significant 
difference in median diversity measures between individual DCs 
across all alpha diversity indices (observed: p = 6.62 × 10−5, Shannon: 
p = 3.44 × 10−6, and Chao1: p = 6.75 × 10−5). Dunn’s post hoc analysis 

TABLE 1 Number of samples and percentage by general location 
collected (n = 303) per general and primary locations.

General 
location

Primary locationa Total

Barrier Cleaning Floor Wall

50F room 6 (11.5) 11 (21.2) 35 (67.3) - 52

Banana 

rooms
1 (14.3) - 6 (85.7) - 7

Cleaning 

area
- 16 (76.2) 5 (23.8) - 21

Cold storage 13 (13.4)b 26 (26.8) 58 (59.8) - 97

Equipment 

storage
- 5 (83.3) 1 (16.7) - 6

Merge - - 8 (100) - 8

Receiving 8 (18.6) 10 (23.3) 24 (55.8) 1 (2.3) 43

Shipping 2 (14.3) 5 (35.7) 5 (35.7) 2 (14.3) 14

Receiving/

shipping
8 (14.5) 11 (20) 33 (60) 3 (5.5) 55

Total 38 84 175 6 303

aDashes indicate no samples were collected at that location.
bOne sample taken in cold storage on a barrier was not included in the overall microbiome 
workflow after taxonomic filtering.
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across all alpha diversity indices indicated significant differences 
(p ≤ α/2) in median values between DCs G and L, G and M, and G and 
Q. Significant differences in median Shannon index values were also 
observed between G and D, H and M, N and G, R and G, and O and 
M. DC M had the greatest median Chao1 index (3,242) suggesting a 
richer microbial community compared to that in the other DCs. DC 
G had the lowest median Chao1 index (593). Some variation across 
alpha diversity measures may be  due to the number of samples 
collected within each DC. The average number of samples collected 
per DC was approximately 17, with DCs D and R containing the 
fewest and greatest number of samples at 5 and 34, respectively.

3.2.2. Alpha diversity by United States 
geographical location

All three alpha diversity indices also indicated a significant 
difference in median diversity measure between samples grouped by 
U.S. geographic region (observed: p = 5.33 × 10−6, Shannon: 
p = 4.97 × 10−9, and Chao1: p = 5.57 × 10−6; Figure 3). Dunn’s post hoc 
comparison indicated significant differences between Shannon’s 
diversity indices between all geographic region pairs (South and 
Midwest, South and Northeast, and Northeast and Midwest). 
However, significant differences were only seen in observed and 
Chao1 diversity indices between South and Midwest and South and 
Northeast. The Midwest region had the greatest median Chao1index 
(2,445), followed by the Northeast (2,106), and South (1,510). 
Generally, median diversity measures decrease from Midwest to 
Northeast to South across all indices. It is not evident why this trend 
appears across regions. While there was a significant difference 

observed across median diversity measures, the distribution of 
samples across each region is similar (especially within the Shannon 
index). Sample size may also contribute to differences among alpha 
diversity indices across region, as only 58 samples were collected in 
the South, followed by 111 in the Midwest, and 134 in the Northeast.

3.2.3. Alpha diversity by dryness
Figure 4 provides a comparison of alpha diversity indices per 

sample grouped by sample site dryness (wet or dry). Wilcoxon rank 
sum tests with continuity correction across all three indices indicated 
a significant difference between median alpha diversity measures 
between dry and wet sample sites (observed: p = 0.0015, Shannon: 
p = 0.00036, Chao1: p = 0.0014). Generally, samples collected on wet 
surfaces had a lower median diversity measure (across all three 
indices) compared to samples collected on dry surfaces. It is 
unexpected that samples collected on dry surfaces would have a 
greater diversity of ASVs, indicating a greater diversity of 
microorganisms, as a dry surface would not be favorable for microbial 
residence. An exception would be  if wet surfaces contained 
antimicrobial agents, such as sanitizers, or other compounds that 
could lead to DNA degradation, that could lead to fewer ASVs.

3.2.4. Alpha diversity by Listeria presence
A Wilcoxon rank sum test with continuity correction indicated a 

significant difference in median diversity values between samples 
grouped by positive or negative Listeria microbiological samples 
across all alpha diversity indices (observed: p = 0.0011, Shannon: 
p = 0.0018, and Chao1: p = 0.0011; Figure  5). Samples with 

FIGURE 2

Side-by-side boxplots of observed, Shannon, and Chao1 alpha diversity indices across individual DCs. Boxplots provide median, first and third quartiles, 
and max and minimum (whiskers) of alpha diversity measures. Each point represents a single sample’s corresponding alpha diversity measure.
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corresponding microbiological samples negative for Listeria presence 
had a greater median Chao1 value (2,097) compared to those positive 
for Listeria presence (1,207). Across all indices, samples positive for 
Listeria have a lower median measure compared to those negative for 
Listeria. It is suspected that small sample size might contribute to a 
lower median measure in 16S amplicon samples with corresponding 
microbiological samples positive for Listeria. Furthermore, box plots 
(Figure  5) corresponding to Listeria positive samples completely 
overlap with those for Listeria negative samples, so it is not 
unreasonable to assume an increase in sample size might change the 
distribution of alpha diversity measures.

3.2.5. Listeria abundance
Listeria-identified ASVs were only present in the phyloseq object 

when the prevalence threshold was equal to approximately 4%; 
therefore, a second workflow was used to maintain Listeria-identified 
ASVs without compromising on analysis of the overall microbiome. 
Across 16S amplicon samples, a greater log transformed Listeria 
relative abundance was observed in corresponding microbiological 
samples negative for Listeria (Figure 6). The range of log transformed 
relative abundance across samples was 0–14.54. Thirty-nine samples 
contained log transformed relative abundance values greater than 
zero; four of these samples had corresponding Listeria positive 
microbiological samples, while the remaining 35 corresponded to 
Listeria negative microbiological samples. Across those samples, the 

average log transformed relative abundance was 6.42. The sample with 
the greatest log transformed relative abundance (14.54) was from DC 
P and corresponded with a Listeria positive microbiological sample. 
This sample was taken on a wet floor within a cleaning area. The other 
three samples with Listeria positive microbiological samples and log 
transformed relative abundance greater than zero were collected on 
cleaning equipment within a cleaning area (DC P), on the floor in cold 
storage (DC P), and on the floor in a “10°C” (50°F) room (DC I). 
Fourteen 16S amplicon samples with log transformed Listeria relative 
abundance of zero had corresponding Listeria positive microbiological 
samples. Additionally, the majority of 16S amplicon samples with log 
transformed relative abundance values greater than zero had 
corresponding microbiological samples negative for Listeria. 
Therefore, microbiome samples taken adjacently to Listeria positive 
microbiological samples are not necessarily indicative of Listeria 
presence within a given sampling site. This have been a limitation of 
this study, as single sponges were not analyzed for both isolatable 
Listeria and the overall microbiome. While microbiome approaches 
can be used as a tool to understand microbial communities within 
environments, they cannot replace culture-based methods as 
indicators of live bacteria presence.

Five Listeria-identified ASVs were present in sample reads. Based 
on NCBI BLAST queries of ASV sequences, three ASVs were 
putatively classified within Listeria sensu stricto group, one was 
putatively within the Listeria sensu lato group, and the last was 

FIGURE 3

Side-by-side boxplots of observed, Shannon, and Chao1 alpha diversity indices across United States geographic regions.

https://doi.org/10.3389/fmicb.2023.1041936
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Townsend et al. 10.3389/fmicb.2023.1041936

Frontiers in Microbiology 07 frontiersin.org

undetermined (Supplementary Table S3 in Supplementary material). 
Across samples that contained isolatable Listeria, their corresponding 
microbiome samples contained two common Listeria-identified ASVs 
(one putative sensu stricto and one putative senso lato). However, for 
those samples that were negative for isolatable Listeria, their 
corresponding microbiome sample contained five common Listeria-
identified ASVs. Therefore, there were more Listeria-identified ASVs 
in microbiome samples that did not have corresponding Listeria 
positive microbiological samples. It is possible that this may explain 
the greater overall Listeria read abundance seen in Listeria negative 
samples (Figure  6). However, there was also a greater number of 
samples with corresponding microbiological samples negative for 
Listeria (n = 285) compared to that of positive samples (n = 18), which 
may also influence the total number and consequent abundance of 
Listeria reads.

3.2.6. Differential abundance analysis
DESeq2 and ANCOM-BC were used to determine if there were 

any significantly different relative abundances of taxa among 
corresponding microbiological samples that were negative (reference) 
or positive (contrast) for Listeria (Supplementary Table S4 in 
Supplementary material). The results of the DESeq2 analysis showed 
only two genera, Psychrobacter and Pseudomonas_E, were present at a 
significantly greater abundance in microbiological samples positive 
for Listeria compared to those negative for Listeria. Log2 fold change 
values for Psychrobacter and Pseudomonas_E were 4.16 and 2.84, 
respectively. The remaining taxa had negative log2 fold change values, 

indicating they had a significantly lower abundance in microbiological 
samples positive for Listeria compared to those that were negative. The 
top three genera with a significantly lower abundance in 
microbiological samples positive for Listeria were Pseudomonas_E, 
Lacibacter, and Bradyrhizobium with log2 fold change values of 
−26.46, −26.05, and −25.71, respectively. The results of the 
ANCOM-BC analysis showed a large number of ASVs (23,056) 
having significantly higher or lower abundance in Listeria positive 
samples. Log2 fold change values higher than 1 or lower than −1 were 
only found for 179 ASVs. Only two ASVs mapping to Carnobacterium 
and Psychrobacter, had positive Log2 fold change values of 2.00 and 
1.87, respectively. Of the 177 ASVs with a log2 fold change of −1 or 
lower, there were five ASVs with a log2 fold change lower than −2, 
matching partial 16S sequences of Microbacterium, Elkelangia, 
Jeotgalibaca, Polaromonas, and an ASV with a high BLAST similarity 
(100% identity, E-value 0.0) to Cryobacterium species (i.e., C. soli, 
C. zongtaii, and C. arcticum).

The ANCOM-BC approach is a relatively new statistical approach to 
inferring differential abundances in microbiome datasets and aims to 
correct for bias introduced by differences in the sampling fractions across 
samples (Lin and Peddada, 2020), which the DeSeq2 approach does not 
account for. The difference in the results between the two approaches is 
most notable for some ASVs that had a highly negative log2 fold change 
in the DeSeq2 analysis, but did not fall below −1 in the ANCOM-BC such 
as Lacibacter and Bradyrhizobium. Interestingly, in both analyses 
Pseudomonas_E was represented by ASVs showing both significantly 
greater and significantly lower relative abundances for corresponding 

FIGURE 4

Side-by-side boxplots of observed, Shannon, and Chao1 alpha diversity indices across sample site dryness.
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microbiological samples positive for Listeria. Therefore, it is possible that 
certain strains of Pseudomonas_E are putatively positively or negatively 
associated with Listeria positive samples.

3.3. Overall microbiome

3.3.1. Abundant taxa
Abundant taxa were determined after taxonomic filtering (e.g., 

read removal via prevalence threshold and agglomeration). The top 
five phyla provided from relative abundance calculations via phyloseq 
were Proteobacteria, Firmicutes, Actinobacteriota, Bacteroidota, and 
Fimicutes_A. A plot of the top 10 phyla per distribution center by 
relative abundance is given in Figure 7.

Twelve ASVs were present in all samples. These ASVs correspond to 
genera Carnobacterium_A, Pseudomonas_E, Glutamicibacter, 
Acinetobacter, Methylobacterium, Staphylococcus, Aerococcus, 
Sphingomonas, Psychrobacter, Kocuria, Citricoccus, and Massilia. The top 
five genera across all reads were Carnobacterium_A (29.5% relative 
abundance), Psychrobacter (28.6%), Pseudomonas_E (14.3%), Leaf454 
(14.2%), and Staphylococcus (10.6%). Several species of Carnobacterium 
have been frequently isolated from food environments and foods (Leisner 
et al., 2007). This genus is psychrotolerant and is capable of spoiling 
refrigerated foods (Leisner et al., 2007; Afzal et al., 2010). As several 
species within this genus are tolerant to cold temperatures, it is not 
surprising to find this genus in microbiome data from refrigerated areas 
of DCs. Psychrobacter spp. were originally isolated from poultry (Juni and 

Heym, 1986) but have also been isolated from marine and Antarctic 
environments (Romanenko et al., 2002; Shivaji et al., 2005), and fish 
(Gonzalez et al., 2000). As evident by their name, Psychrobacter species 
are psychrophilic or cold-adapted and can grow at-18 to 37°C with 
optimum growth at 20–30°C (Yang, 2014). Pseudomonas is a bacteria of 
concern in the food industry as it can cause spoilage of fruits, vegetables, 
and pasteurized dairy and meat products (Gram et al., 2002; Rajmohan 
et al., 2002; Kumar et al., 2019) and is also cold tolerant (Meyer et al., 2004; 
Zhang et  al., 2019). Within the GTDB, Leaf454 corresponds to an 
unclassified Aureimonas bacteria; however, this sample is also 
contaminated with plant plastid DNA. Therefore, the fourth most 
abundant genus also represents plant DNA, which is unsurprising to find 
in DCs handling fresh produce. Staphylococcus is ubiquitous in nature and 
animals (Trülzsch et al., 2007). More notably, S. aureus is a foodborne 
bacteria and is typically linked to foods such as meats, puddings, 
sandwiches, and dairy products (Hennekinne et al., 2012).

3.3.2. Beta diversity
Beta diversity was assessed using unweighted UniFrac distances 

produced from a randomly rooted maximum likelihood phylogenetic 
tree. Principle coordinate analysis (PCoA) plots were generated from 
UniFrac distances and displayed two clusters (Figure 8); however, no 
variables or groupings explored in this study correlated with clustering 
observed in the PCoA plots. Sequencing batch effects and Qubit DNA 
concentration ranges pre-and post-PCR were also compared and none 
correlated with the clustering pattern (Supplementary Figure S1 in 
Supplementary material).

FIGURE 5

Side-by-side boxplots of observed, Shannon, and Chao1 alpha diversity indices across Listeria positive and negative microbiological samples.
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FIGURE 6

Log transformed Listeria relative abundance (left y-axis) grouped by corresponding distribution center (top x-axis) and Listeria microbiological sample 
(right y-axis). There were 285 Listeria negative microbiological samples, 18 Listeria positive samples; however, only 39 total samples contained log 
transformed relative abundance values greater than 0–4 of these samples were Listeria positive and 35 were Listeria negative.

FIGURE 7

Relative abundance of the top 10 phyla per distribution center. “Others” contains the remaining identified phyla.

https://doi.org/10.3389/fmicb.2023.1041936
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Townsend et al. 10.3389/fmicb.2023.1041936

Frontiers in Microbiology 10 frontiersin.org

In betadisper and PERMANOVA analyses (Table 2), most groups/
variables (e.g., Listeria, season, dryness) demonstrated homologous 
dispersions or variances, but did not indicate homologous 
compositions. This may be further supported by the low number of 
common ASVs shared across DC or other variable groupings 
(discussed previously), which may indicate variability in microbiome 
composition. The only notable variable with a relatively high level of 
dispersion was general location (p = 0.002 and F = 4.1), indicating that 
variance between general sampling locations (e.g., cold storage, 
receiving, and cleaning areas) is significantly different. While many 
variables also had statistically significant p values from PERMANOVA 
analyses, they did not have large R2 statistics to indicate large variation 
in distances within the grouping. Grouping by season provided the 
largest R2 statistic (p = 0.001, R2 = 0.069), meaning 6.9% of the variation 
in distances could be explained by season. However, the number of 
samples taken across seasons was not equal and seasonality may also 
be impacted by each DC’s geographical location.

4. Conclusion

There was not a substantial relationship between Listeria 
abundance in 16S amplicon reads and Listeria presence in the 
microbiological samples tested. This finding suggests that 16S 
amplicon read-based assumptions of microbial presence within 

environments should be  interpreted conservatively, as bacterial 
viability is critical for determining food safety risks. Differential 
abundance analysis found two taxa (Psychrobacter and 

TABLE 2 Statistical tests with corresponding p value and F or R2 values 
from comparisons between unweighted UniFrac distances by group/
variable (alpha level of 0.05).

Group/
variable

Statistical test

Betadisper PERMANOVA*

p value F p value R2

Listeria 0.894 0.023 0.002 0.015

DC 0.049 1.6 N/A

General location 0.002 4.1 N/A

Primary location 0.102 2.1 0.203 0.012

Zone 0.816 0.048 0.054 0.0062

Season 0.261 1.3 0.001 0.069

Precipitation 0.062 2.0 0.001 0.021

Geography 0.069 2.5 0.001 0.056

Dryness 0.102 2.8 0.001 0.035

Cleaning type 0.548 0.73 0.001 0.022

*Not applicable (N/A) given for PERMANOVA when assumptions are not met based on results 
from betadisper (rejection of null hypothesis meaning group dispersions are not homologous).

FIGURE 8

PCoA plot without groupings to illustrate clustering of ordinated UniFrac distances. Each point represents a single sample’s UniFrac distance.
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Pseudomonas_E) associated with Listeria-positive samples. 
Microbiomes across individual DCs as well as within other variables 
(e.g., general location, geography), appeared to vary in composition, 
rather than dispersion, as demonstrated by betadisper and 
PERMANOVA analyses. The most common genera found across 
microbiomes were cold-tolerant species, which were unsurprising 
since DCs contain refrigerated areas and 71.6% (217/303) of samples 
were collected from these areas (e.g., cold storage, shipping/receiving 
docks). Additional studies are needed to examine the microbiome 
within food-related built environments, especially for identifying 
relationships between taxa and facility variables, and/or tracking 
communities through these environments, or the larger supply chain.
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