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On a global scale, marine transitional waters have been severely impacted by
anthropogenic activities. Historically, developing human civilizations have often settled
in coastal areas with about 2/3 of the human population inhabiting areas within 20-km
range from coastal areas. Environmental management worldwide strives for sustainable
development while minimizing impacts to ecosystem integrity and has resulted in several
framework directives, management programs, and legislation compelling governments
to monitor their coastal systems and improve environmental quality. Among the
most significant anthropogenic impacts to these ecosystems are land reclamation,
dredging, pollution (sediment discharges, hazardous substances, litter, oil spills, and
eutrophication), unsustainable exploitation of marine resources (sand extraction, oil and
gas exploitation, and fishing), unmanaged tourism activities, the introduction of non-
indigenous species, and climate change. The multitude of stressors is not independent,
and as such, the chemical status of marine systems has serious implications on its
ecological status and needs to be addressed efficiently. Public monitoring databases
provide a large amount of physico-chemical (nutrient, dissolved oxygen, and chlorophyll
a concentration) and contaminant (trace metals and polycyclic aromatic hydrocarbons)
data for all Portuguese transitional systems (estuaries and coastal lagoons). These
data are used to classify the chemical status (eutrophication and contamination
level) of these ecosystems considering pre-defined classification thresholds, which
facilitates communication to government authorities and management entities. Artificial
intelligence and machine learning techniques provide an automated and efficient
opportunity to improve simulation accuracy and further advance our understanding
of environmental problems in estuarine and coastal waters when dealing with large
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environmental datasets. In the present work, we applied machine learning models,
namely, linear discriminant analysis, classification tree, naive Bayesian, and support
vector machine, to nutrient, dissolved oxygen, chlorophyll a, trace metals, and polycyclic
aromatic hydrocarbon concentrations to produce a chemical status classification of
the Portuguese marine transition systems. This approach allowed us to efficiently
classify in an automated way the transitional water’s chemical status within the pre-
defined classification thresholds, producing numerical index values that can easily be
communicated to the general public and managers alike.

Keywords: computational intelligence, classification, estuarine systems, eutrophication, machine learning, water
contamination

INTRODUCTION

Coastal and transitional marine systems sustain some of
the most important ecosystems on the planet (estuaries and
coastal lagoons). These ecosystems are extremely rich in
biodiversity, providing habitat, shelter, feeding, and reproductive
grounds for several animals (fishes, birds, and invertebrates)
while also harboring a high floristic diversity in terms of
angiosperms (seagrasses and salt marshes). The latter provide
additional ecosystem services to these transitional systems,
such as shoreline protection against storm surge and erosion,
carbon sequestration due to its high primary productivity,
eutrophication reduction, and bioremediation of contaminants,
while also acting as key biological elements as important habitats
(Duarte et al., 2017). These characteristics (among others)
have historically attracted developing human civilizations to
coastal areas, in addition to facilitated access to water-promoted
trade, commerce, and disposal of wastes (Borja and Dauer,
2008). Thus, on a global scale, coastal and transitional waters
(TW) have been severely altered by anthropogenic activities.
Globally, environmental management strives for sustainable
development while minimizing impacts to ecosystem integrity
(Müller, 2005). Among the most significant anthropogenic
impacts to these ecosystems are land reclamation, dredging,
pollution (sediment discharges, hazardous substances, litter, oil
spills, and eutrophication), unsustainable exploitation of marine
resources (sand extraction, oil and gas exploitation, and fishing),
unmanaged tourism, the introduction of alien species, and
climate change (Borja et al., 2008). But, nowadays, international
laws have moved to prioritize the cooperative environmental
improvement, compelling stakeholders and ecologists to establish
a connection between the generated anthropogenic activities and
its consequent ecological impacts.

The Water Framework Directive (WFD; European
Commission EC, 2000) establishes a framework for the
protection of all waters (including inland surface waters, TW,
coastal waters, and groundwaters) and is aimed at achieving
a good-quality status in all European waters by 2015. The
concept of ecological status of the various waters is defined by
the WFD in terms of the quality of the biological community
present, as well as the quality of its hydromorphological
and physico-chemical characteristics. Its application requires
methods that can distinguish different levels of ecological

quality to classify surface waters. With the implementation of
the WFD, the European Union member states are compelled
to monitor the ecological quality of all their water bodies and
elaborate an efficient management plan to solve potential quality
problems of their TW. In order to implement a transnational
monitoring scheme, five biological quality elements (BQE) were
defined for the ecological quality assessments: phytoplankton,
macroalgae, marine angiosperms, benthic invertebrate fauna,
and fish fauna. The evaluation of these biological elements is
supported by the characterization of hydromorphological and
physico-chemical elements of water bodies. The abiotic elements
include general variables (such as dissolved oxygen and nutrients,
etc.) and priority substances (The European Parliament and
the Council of the European Union, 2008a,b), i.e., trace metals
and organic compounds. This defines specific environmental
quality standards (EQS) based on priority substances for the
dissolved water fraction of the systems. However, several works
point out that “the monitoring network shall be designed so as
to provide a coherent and comprehensive overview of ecological
and chemical status,” and thus, it is reasonable that at least
water and sediment should be simultaneously included in the
evaluation system for all coastal water bodies (Crane, 2003; Borja
et al., 2004). Two levels of evaluation of the chemical status are
currently used within the WFD: physico-chemical conditions
influencing the biological quality, which are mostly related
with eutrophic processes (nutrients, oxygen, and turbidity, etc.)
(Painting et al., 2007), and the classification of the chemical
status, based on the evaluation of the concentration of priority
substances only (Coquery et al., 2005). Within the WFD spirit,
these two approaches are strictly related as it has been described
in previous studies, thus supporting the need to address both
chemical traits concomitantly (Borja et al., 2004, 2008; Tueros
et al., 2008). Regarding the first and since marine coastal
eutrophication has become more frequent over recent years, the
need to classify these systems according to their nutrient burden
has arisen, alongside their phytoplankton concentration and
oxygen conditions and in sum the probability of the system to
enter a eutrophic condition (Vollenweider et al., 1998). Changes
in the trophic state of the systems toward an eutrophic condition
can be as harmful to the system biota as a contamination
event and thus need to be faced within mandatory monitoring
features (Vollenweider et al., 1998; Salas et al., 2008). As for
the second, chemical contamination from anthropogenic origin
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focusing on metal, polycyclic aromatic hydrocarbon (PAH),
and polychlorinated biphenyl (PCB) contamination does not
require any introduction, due to its renowned negative effects
in all biotic compartments, due to biochemical stress disorders,
cell oxidative stress, and inevitable impacts at the organism and
population level. Although for a trophic classification a set of
conditions need to be approached to trigger the transition to
an undesired trophic status, for contaminants, although they
often have similar origins and occur simultaneously with similar
patterns of distribution, the presence of any contaminant should
be faced individually and produces negative biology effects in
isolation as well as in mixture.

These chemical traits are composed of a vast array of
physico-chemical variables along with a wide list of priority
substances and concentrations in waters and sediments, making
the evaluation of this set of chemical traits complex. At this
level, as well as in several other areas related to management and
decision-making, machine learning (ML) approaches can be of
added value for interpreting and providing the necessary support
tools for an effective decision-making process (Tulabandhula and
Rudin, 2014). To overcome these difficulties, we propose the use
of supervised ML, where the predictive models are based on the
knowledge extracted from a training data set, which typically
consists of a set of features and associated labels (classification)
or continuous values (regression), aiming to fit the training
data to a function that can be used to predict a label or a
continuous value in a new input data (e.g., new samples) (Cordier
et al., 2017). If one could argue that chemical surveillance
and monitoring through water analysis is still needed, ML can
improve the automatic classification process and detect early
signs of water chemical quality degradation, if coupled for
example to automatic samplers and autonomous analyzers. Using
ML processes, this autonomously collected water quality data
by, e.g., deployed sensors, can be integrated and the chemical
water status predicted and classified, allowing decision makers
and stakeholders to act in conformity and prevent, e.g., higher
water quality degradation levels or take action against the causes
of this decrease in almost real time (Castrillo and García, 2020; Lu
and Ma, 2020). Moreover, classifications are water chemical status
based in several parameters and not a single one, and thus, a
ML-assisted decision process would improve the decision on the
correct classification extracted from a set of mandatory parameter
measurements that not always show concordance.

In this study, we investigated the possibility of using
supervised ML and tested different algorithms to build predictive
models for the inference of two chemical status classification
systems, based on trophic and contaminant characteristics
commonly used within the WFD for the quality status assessment
of transitional coastal systems, using publicly available data and
the Portuguese estuaries and coastal lagoons as a case study.

MATERIALS AND METHODS

Specific water chemical monitoring parameters were manually
selected and clustered based on their significance to trophic state
and contamination level. Marine system chemical parameters

were set as input to a manual pre-classifying stage of
trophic state and water contamination level hinged on OECD
standard (Figure 1). Feature selection and feature-based ML
modeling were processed separately for the two chemical
state classifications. The outputs of this study are classified
trophic state and water contamination levels based on water
limnological parameters.

Environmental Data
Physico-chemical (Table 1) and contaminant data (Table 2)
data (collections from March 2009 to April 2010) were
attained from the Portuguese National Water Institute (Instituto

FIGURE 1 | General architecture of feature-based machine learning model
development in classifying chemical state of marine transitional systems,
which are trophic state and contamination level.

TABLE 1 | Complete input features for trophic state classification, including value
range and units.

Trophic feature index Input feature Value range Unit

1 Chlorophyll a (0, 66.07) µg l−1

2 Secchi disk (0.10, 8.00) M

3 Salinity (0.05, 37.10) PSU

4 Temperature (7.30, 25.70) %

5 Dissolved oxygen (2.30, 396.88) mg l−1

6 SPM (0.40, 219.33) mg l−1

7 Nitrate (3.72, 6423.71) µg l−1

8 Nitrite (0.46, 770.58) µg l−1

9 Ammonia (1.44, 2932.78) µg l−1

10 DIN (6.44, 3568.63) µg l−1

11 Nitrate + nitrite (0.10, 103.70) µM

12 Phosphate (4.75, 5595.71) µg l−1

SPM, suspended particulate matter; DIN, dissolved inorganic nitrogen.
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TABLE 2 | Complete input features for water contamination level classification,
including value range and units.

Contamination
feature index

Input feature Value range Unit

1 Arsenic (0.39, 99.63) mg kg−1

2 Cadmium (0, 0.80) mg kg−1

3 Chromium (8.69, 154.38) mg kg−1

4 Copper (0.69, 102.96) mg kg−1

5 Lead (1.92, 92.76) mg kg−1

6 Mercury (0.01, 0.73) mg kg−1

7 Nickel (0.01, 76.93) mg kg−1

8 Zinc (1.92, 452.49) mg kg−1

9 Naphthalene (0.50, 126.28) µg kg−1

10 Acenaphthylene (0.17, 7.13) µg kg−1

11 Acenaphthene (0.21, 17.00) µg kg−1

12 Fluorene (0.40, 353.36) µg kg−1

13 Phenanthrene (0.99, 212.72) µg kg−1

14 Anthracene (0.27, 35.28) µg kg−1

15 Fluoranthene (0.49, 19.86) µg kg−1

16 Pyrene (0.59, 347.57) µg kg−1

17 Benz[a]anthracene (0.22, 112.04) µg kg−1

18 Chrysene (0.60, 66.07) µg kg−1

19 Benzo[a]pyrene (0.44, 173.25) µg kg−1

20 Dibenz[a,h]anthracene (0.43, 19.24) µg kg−1

21 Total PAH (0, 1403.25) µg kg−1

22 Total PCB (0, 7.66) µg kg−1

Total PAH, total polycyclic aromatic hydrocarbons; Total PCB, total
polychlorinated biphenyls.

Nacional da Água, INAG), specifically from the National
Information System on Hydric Resources (Sistema Nacional
de Informação de Recurso Hídricos, SNIRH1) database. There
were 145 combinations of data extracted and used as input
to the computational intelligence model. These data refer
to water and sediment sampling collections and analysis
within the WFD implementation program in Portugal in all
Portuguese transitional water systems (estuaries and coastal
lagoons) (Figure 2). Surface water samples (for trophic state
evaluation) were collected along with bottom sediments (for
contamination state assessment). All analytical procedures
were done according to the WFD-recommended procedures
according to the Environmental Quality Standards Directive
2008/105/EC (as amended by The European Parliament and
the Council of the European Union, 2013). Values below
the detection limit were substituted by the detection limit
value for statistical and ML processing purposes. Trophic state
threshold standards (Table 3) were defined according to Salas
et al. (2008) adapted by Primpas and Karydis (2011). Water
contamination level threshold standards (Table 4) were defined
according to Annicchiarico et al. (2011).

Manual classification of the samples was done based on
Tables 3, 4 thresholds using two approaches: averaging and
worst-case scenarios. Each variable was classified from 1 to 3
according to its value and the correspondent threshold range.

1https://snirh.apambiente.pt

FIGURE 2 | Coastal transitional systems considered in this study: (a) Minho
estuary; (b) Lima estuary; (c) Neiva estuary; (d) Cávado estuary; (e) Ave
estuary; (f) Leça estuary; (g) Douro estuary; (h) Esmoriz; (i) Aveiro coastal
lagoon; (j) Mondego estuary; (k) Liz estuary; (l) Óbidos coastal lagoon; (m)
Tagus estuary; (n) Albufeira coastal lagoon; (o) Sado estuary; (p) Santo André
coastal lagoon; (q) Mira estuary; (r) Alvor estuary; (s) Aráde estuary; (t) Ria
Formosa coastal lagoon, and (u) Guadiana estuary.

For the trophic classification state, only five of the 12 features
available have their threshold predefined according to Salas et al.
(2008). Nevertheless, the remaining values are typically measured
and framed within the same analysis, as the variables used for
trophic classification heavily depend on the remaining variables.
In short, these supplementary variables are not used in the
classification system, but they are key to understand the cause of
the observed changes. Variables were classified according to their
trophic classification with 1 (if the variable has values within the
oligotrophic ranges), 2 (if the variable has values within the
mesotrophic ranges), or 3 (if the variable has values within the
eutrophic ranges). For contamination classification, a similar
approach was taken, but integrating all the available independent
and measured features: variables were classified with 1 (if the
variable has values within the low potential for specific adverse
biological effects ranges), 2 (if the variable has values within the
middle potential for specific adverse biological effects ranges),
or 3 (if the variable has values within the upper potential for
specific adverse biological effects ranges). For overall sample
classification using the averaging approach, variable classification
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TABLE 3 | Trophic state threshold standard for phosphate, dissolved inorganic nitrogen (DIN), chlorophyll a (Chl a), dissolved oxygen (DO), and nitrate and nitrite
concentration, following Salas et al. (2008) and Primpas and Karydis (2011).

Trophic state Phosphate (µg l−1) DIN (µg l−1) Chl a (µg l−1) DO (%) Nitrate + nitrite (µM)

Oligotrophic <12.2 <74.2 <0.6 90–110 <6.5

Mesotrophic 12.2–39.2 74.2–141.0 0.6–1.3 82.2–90 or 110–117.8 6.5–16.0

Eutrophic >39.2 >141.0 >1.3 <82.2 or >117.8 >16.0

TABLE 4 | Sediment contamination level threshold standards for trace elements and organic contaminants, following Annicchiarico et al. (2011).

Chemical parameter Low potential for specific
adverse biological effects

Middle potential for specific
adverse biological effects

Upper potential for specific
adverse biological effects

As (mg kg−1) <8.2 8.2–70 >70

Cd (mg kg−1) <1.2 1.2–9.6 >9.6

Cr (mg kg−1) >81 81–370 >370

Cu (mg kg−1) <34 34–270 >270

Pb (mg kg−1) <46.7 46.7–218 >218

Hg (mg kg−1) <0.15 0.15–0.71 >0.71

Ni (mg kg−1) <20.9 20.9–51.6 >51.6

Zn (mg kg−1) <150 150–410 >410

Naphthalene (µg kg−1) <160 160–2100 >2,100

Acenaphthylene (µg kg−1) <44 44–640 >640

Acenaphthene (µg kg−1) <16 16–500 >500

Fluorene (µg kg−1) <19 19–540 >540

Phenanthrene (µg kg−1) <240 240–1,500 >1,500

Anthracene (µg kg−1) <85 85–1,100 >1,100

Fluoranthene (µg kg−1) <600 600–5,100 >5,100

Pyrene (µg kg−1) <665 665–2,600 >2,600

Benz[a]anthracene (µg kg−1) <261 261–1,600 >1,600

Chrysene (µg kg−1) <384 384–2,800 >2,800

Benzo[a]pyrene (µg kg−1) <430 430–1,600 >1,600

Dibenz[a,h]anthracene (µg kg−1) <63 63–260 >260

TPAHs (µg kg−1) <4,022 4,022–44,792 >4,479

TPCBs (µg kg−1) <23 23–180 >180

was averaged and rounded to the unit. For applying the worst-
case approach, samples were classified according to the variable
with worst classification, based on the “one out, all out” principle
of the WFD (European Commission EC, 2000).

Feature Selection
Feature selection is an essential stage in ML as it computationally
determines the relevance of an array of features by automatically
selecting a subset of features that can increase the accuracy of
the model to be constructed (Concepcion II et al., 2020). In
this study, hybrid neighborhood component analysis (NCA) and
minimum redundancy minimum relevance (MRMR) algorithm
were developed to reduce the original 12 features for trophic state
classification (Table 1) and 22 features for water contamination
level classification (Table 2) using MATLAB 2020a platform. This
multidimensional reduction technique is expected to make the
ML model to have reduced overfitting, faster training time, and
simple model input structure. NCA model was configured with
stochastic gradient descent (SGD) as solver, a minimum batch
size of 10, and a pass limit of 5. It was tuned using a subset size
of 100 and iterations of 20. MRMR used the “fscmrmr” function

in MATLAB that ranks the inputted features and ranks them
based on the generated mutually and maximally differentiated
variances. The resulting feature weights generated by hybrid
NCA–MRMR is averaged and ranked with the highest average
weight as the most important feature. The number of features
to be selected is based on the recommendation of principal
component analysis (PCA) that was configured using listwise
for missing value treatment and eigenvalue threshold of 1.0.
Factorability tests of Kaiser–Meyer–Olkin (KMO) measure of
sampling adequacy and Bartlett’s test of sphericity were also
considered in pulling the count of final features to be accepted
as input to the ML model. To discriminate the suitability of ML
models in this application, the impacts of complete and reduced
feature sets are separately inputted with stratified data sampling
of 56%–24%–20% (81–34–30 data) for training, validation, and
testing, respectively.

Development of Trophic State
Classification Model
Four feature-based ML models, namely, linear discriminant
analysis (LDA), decision tree for classification (CTree), naïve
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FIGURE 3 | Optimization of (A) linear discriminant analysis, (B) classification tree, (C) naïve Bayes, and (D) support vector machine models for trophic state
classification and optimization of (E) linear discriminant analysis, (F) classification tree, (G) naïve Bayes, and (H) support vector machine models for sediment
contamination level classification.
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FIGURE 4 | Feature weight spectrum generated by neighborhood component analysis and minimum redundancy maximum relevance algorithms for (A) trophic
state and (B) sediment contamination level classifications. Eigenvalue delineation diagram indicating the (C) trophic and (D) contamination feature indices in
determining the number of features to be selected.

Bayesian (NB), and support vector machine (SVM), were
configured and optimized in classifying trophic state based on
limnological stressors. LDA was optimized with delta of 39.725
and gamma of 0.85031 (Figure 3A). CTree was optimized with a
minimum leaf size of 1, a minimum parent size of 10, activated
leaf merging and pruning, and Gini’s diversity as split criterion
(Figure 3B). NB was optimized with normal distribution and
width of 4.7842 × 10−11 (Figure 3C). SVM was optimized using
“onevsall” coding, box constraint of 942.21, kernel scale of 106.7,
bias of -2.4124, and sequential minimal optimization as the solver
(Figure 3D). Trophic state features (Table 1) were inputted
to these models.

Development of Sediment Contamination
Level Classification Model
Four feature-based ML models, namely, LDA, CTree, NB,
and SVM, were configured and optimized in classifying water
contamination level based on limnological stressors (Table 2).
LDA was optimized with delta of 3.7953 × 10−6 and gamma of
0.92488 (Figure 3E). CTree was optimized with a minimum leaf
size of 1, a minimum parent size of 10, activated leaf merging
and pruning, and Gini’s diversity as split criterion (Figure 3F).

NB was optimized with kernel-based distribution and width of
2.3529 (Figure 3G). SVM was optimized using “onevsall” coding,
box constraint of 0.38012, kernel scale of 0.99577, bias of -8.8426,
and sequential minimal optimization as the solver (Figure 3H).
Trophic state features (Table 2) were inputted to these models.

Model Evaluation Metrics
The developed feature-based ML models for both chemical state
classifications were evaluated based on classification accuracy,
fall-out, precision, specificity, recall, F1-score, and inference
time. Accuracy defines the ratio of correct predictions and total
predictions done by the system. Fall-out is the false positive
rate, which defines the ratio of false positive classifications
and the actual negative. Precision defines the ratio of true
positive predictions and the true and false positive predictions.
Specificity defines the ratio of true negative prediction and the
combined true negative and false positive predictions. Recall
or sensitivity defines the ratio of true positive predictions and
the combined true positive and false negative predictions. F1-
score is a measure of model’s accuracy based on precision
and recall parameters. Inference time defines how long a
prediction is inferred by the developed ML model. These
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FIGURE 5 | Confusion matrices of (A) LDA, (B) CTree, (C) NB, and (D) support vector machine (SVM) model for trophic state classification using 12 features
(without feature selection, Table 1) and four features [NCA–MRMR selected dissolved oxygen, suspended particulate matter (SPM), nitrate, and dissolved inorganic
nitrogen (DIN)].

are standard determinants for assessing the reliability of the
developed ML models.

RESULTS AND DISCUSSION

Surface Water Trophic Characterization
and Sediment Contamination Profiles
Evaluating the chemical data from the water (Supplementary
Table 1) and sediment (Supplementary Tables 2, 3) samples
from all the coastal transitional systems surveyed, high variability
was observed. In terms of phosphate concentration in the water
column, the Alvor coastal lagoon was the systems with the highest
value, while the Lima estuary presented the lowest concentration
of this phosphorous form. Regarding dissolved inorganic
nitrogen (DIN) concentrations, these were found to be higher in

the water samples collected at the Leça estuary, while the lowest
values were found in the surface water samples from the Albufeira
coastal lagoon. The Guadiana estuary showed the highest water
Chl a concentration, in opposition to the Tagus estuary, where
the lowest value for this parameter was measured. For dissolved
oxygen, the maximum and minimum concentrations where both
detected in the Albufeira coastal lagoon.

In terms of bottom sediment trace element concentrations
(Supplementary Table 2), this was also variable according to
the element analyzed. Zinc was the most abundant element
detected, followed by Cr and Pb, with Hg and Cd the least
abundant. Arsenic highest concentrations were detected in the
Guadiana estuary, while the lower ones were observed in
the Lis estuary. Cd concentrations were highest in the Leça
estuary bottom sediments and lower in the sediment samples
collected in the Ria Formosa coastal lagoon. Sado estuary
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bottom sediments presented the highest Cr concentrations. In
opposition, the Guadiana estuary sediments showed the lowest
concentrations of this element. The Leça estuary presented
the highest concentrations of Cu and Pb, while the lower
concentrations of these elements were measured in the Ria
Formosa and Óbidos coastal lagoons, respectively. Mercury
concentrations were highest in the Aveiro coastal lagoon, while
in several transitional systems, this element was not detected.
Regarding Ni, this was found to be more abundant in the
Sado estuary sediments, while the Santo André coastal lagoon
showed the lowest concentrations. Finally, Zn had its maximum
concentrations in the samples collected at the Leça estuary,
being the lowest concentrations observed in the Óbidos coastal
lagoon sediments.

Regarding sediment organic contamination (Supplementary
Table 3), the Albufeira coastal lagoon bottom sediments
proved to have the highest concentrations of anthracene,
benz[α]anthracene, chrysene, and benzo[α]pyrene, while the
highest concentrations of acenaphthene and fluoranthene were
present in the sediments sampled at the Douro estuary. Fluorene,
phenanthrene, and pyrene concentrations were found to be
maximum in the Esmoriz transitional system. The Guadiana
estuary sediments showed the highest and lowest concentrations
of acenaphthylene. On the other hand, naphthalene and
dibenz[α,h]anthracene showed their maximum sediment
concentration values at the Leça estuary. Overall, the Albufeira
coastal lagoon showed the highest concentrations of total PAHs,
while the highest concentrations of PCBs were observed in the
sediment samples collected at the Mira estuary.

NCA–MRMR-Selected Trophic State and
Water Chemical Predictors
For the feature selection intended for trophic state classification,
NCA ranked dissolved oxygen, nitrate, and phosphate as the
most impactful features (Figure 4A). On the other hand,
MRMR resolved on using Secchi disk, suspended particulate
matter (SPM), and chlorophyll a (Figure 4A). The generated
feature weight spectrum resembles erratic prediction of weights,
thus combining it mathematically reduced the issue on
rankings. Hence, the PCA-generated eigenvalue delineation
graph considered only four tropic feature indices with an
eigenvalue at least 1 (Figure 4C). The factorability test of KMO
measure of sampling adequacy resulted in 0.531382, indicating
that variance in classification is caused by certain underlying
factors, and factor analysis is recommended. The Bartlett’s test
of sphericity agrees with the recommended of KMO with chi-
square of 18559.3. Thus, NCA–MRMR selected dissolved oxygen,
SPM, nitrate, and DIN (four-feature array) as the most relevant
features in classifying trophic state. These four extracted features
account for 68.6853% of the variability of the original data (12-
feature array).

In the case of the feature selection for water contamination
level classification, NCA ranked arsenic and chromium as the
most impactful features, and MRMR weighted best arsenic,
fluorene, and cadmium (Figure 4B). The generated feature
weight spectrum has a profound inclination to arsenic and TA
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FIGURE 6 | (A) Hybrid NCA–MRMR–CTree network with dissolved oxygen (x1) and SPM (x2) ruling out the trophic state. (B) Trophic state classification in terms of
dissolved oxygen and DIN concentrations. (C) Hybrid NCA–MRMR–CTree network with arsenic (Var1) ruling out the water contamination level. (D) Water
contamination level classification in terms of cadmium and arsenic concentrations.

mercury, but not all selections provided by NCA and MRMR
agree with each other; thus, combining it rationally resolved
the issue on feature rankings. The PCA-generated eigenvalue
delineation graph considered four features to be extracted from
hybrid NCA–MRMR (Figure 4D). The factorability test of KMO
measure of sampling adequacy resulting in 0.794467 concurs
with Bartlett’s test of sphericity with chi-square of 5534.09
that there are underlying factors that significantly affect the
shared variance of the total system. Thus, NCA–MRMR selected
arsenic, cadmium, chromium, and mercury (four-feature array)
as the most relevant features in classifying water contamination
level. These four extracted features account for 77.4473% of the
variability of the original data (22-feature array).

Feature-Based Machine Learning
Trophic State Classification
After several explorations and convergences of the optimized
feature-based ML models (Figure 3), the optimal accuracy and
sensitivity in classifying trophic state-based limnological

parameters was achieved. In the following discussions,
classification models are subscripted with the number of
features to differentiate the context of employed number
of limnological features as predictors using the same set of
ML models. LDA12 and SVM4 have classified eutrophic data
condition with 35.714% accuracy while SVM12 has classified
it 64.286% correctly. LDA4 missed all eutrophic classifications
(Figure 5A). CTree12 and CTree4 have classified all eutrophic
data perfectly (Figure 5B). In mesotrophic classification, LDA4
exhibited the best performance of 100% classification followed
by CTree4 with 96.552% accuracy. NB4 misclassified 18.966%
of mesotrophic as eutrophic and 5.172% of mesotrophic as
oligotrophic (Figure 5C). In oligotrophic classification, LDA4
incorrectly predicted all samples while CTree12, CTree4, NB12,
NB4, and SVM12 have classified it flawlessly. It was observed
that the mesotrophic condition is the easiest to classify with
a cumulative average accuracy of all optimized models equal
to 92.026% followed by oligotrophic with 81.25%. Eutrophic
state is the hardest to classify with an overall average accuracy
of 64.286%. Overall, CTree4 bested out other ML models in
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classifying trophic state with an accuracy of 99.61% in the
training and validation stages and 99.43% in the testing stage
(Table 5). CTree12 has fall-out rate of 50.834% better than
CTree4, but the latter has 100% recall rate and 22.9884%
inference time than the prior one. This makes the developed
NCA–MRMR–CTree model very suitable for fast prediction
having low computational cost in the system.

The NCA–MRMR–CTree architecture simplified the complex
classifiers down to dissolved oxygen and SPM concentration
only as its core baseline in the decision. If SPM is below
12.8211 mg l−1, it automatically classifies the marine system as
oligotrophic (Figure 6A). Going further down the architecture,
mesotrophic state is classified when SPM concentration is below
43.6868 mg l−1 or if dissolved oxygen is below 90 mg l−1 or
if dissolved oxygen is greater than or equal to 100 mg l−1 and
SPM is above or equal to 163.826 mg l−1 (Figure 5A). An NCA–
MRMR–CTree trophic state classification is shown in Figure 6B
using dissolved oxygen and DIN concentrations (another most
significant limnological feature). CTree model structured out the
differences of each trophic state, but most of the data samples
are congested on the intersecting points of dissolved oxygen
of 100 mg l−1 and DIN of 750 mg l−1. This means that
variability caused by SPM has a higher impact when compared
to DIN concentration to cause delineation among trophic states.
Nonetheless, the developed NCA–MRMR–CTree is an effective
and sensitive model to classify trophic state by just using minimal
limnological parameters as its input predictors. Economic, power,
and processing time factors will be gained.

Feature-Based Machine Learning Water
Contamination Level Classification
Optimization of feature-based ML models for water
contamination level classification was achieved by undergoing
several epochs in the training, validation, and testing stages
(Figure 3). In classifying low potential for specific adverse
biological effects from sampled limnological data arrays
(Table 6), LDA22, LDA4, CTree22, CTree4, and SVM4 models
exhibited 100% accuracy and sensitivity. NB22 model performed
the worst classification with 30% error (Figure 7). In classifying
middle potential for specific adverse biological effects, CTree22,
CTree4, NB22, NB4, and SVM4 have 100% correct predictions,
while LDA22 performed the worst with 11.765% incorrect
expectations (Figure 7). In classifying high potential for specific
adverse biological effects, all models have 100% misclassification
except CTree22 and CTree4 (Figure 7). It was observed that
among the contamination levels, low potential is the easiest to
be classified with an average cumulative accuracy of 94.38%
and followed by middle potential with 92.65%. The hardest
to be classified is the upper potential with 25% accuracy
only. Moreover, by using the hybrid NCA–MRMR-selected
four-feature array dataset, the low and middle potentials
were correctly classified with accuracies of 97.5 and 94.118%,
respectively. By using the original 22-feature array dataset
(Table 6), the low and middle potentials were correctly classified
with accuracies of 91.25 and 91.177%, respectively, which
is comparably lower than the prior one. It justifies that the TA
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FIGURE 7 | Confusion matrices of (A) LDA, (B) CTree, (C) NB, and (D) SVM model for water chemical level classification using 22 features (without feature selection,
Table 2) and four features (NCA–MRMR selected arsenic, cadmium, chromium, and mercury).
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employed feature selection is highly significant and contributed
to increasing the sensitivity of the system. Overall, CTree4 bested
out other ML models in classifying water contamination level
with an accuracy of 100% in the training stage, 60.02% in the
validation stage, and 100% in the testing stage (Table 6). CTree22
has internal overfitting that resulted in perfect classification all
through the stages. Hence, CTree4 has comparably 61.091%
faster inference time than CTree22. This makes the developed
NCA–MRMR–CTree model very suitable for fast prediction of
water contamination level having limited limnological predictor
data and low computational cost in the system.

The NCA–MRMR–CTree architecture simplified the complex
classifiers down to arsenic concentration only as its core
baseline in the decision. If arsenic is below 7.17679 mg kg−1,
it automatically classifies the marine system as low potential
(Figure 6C). Going further down the architecture, middle
potential state is classified when arsenic concentration is above
or equal 7.17679 mg kg−1 but below 59.5211 mg kg−1

(Figure 6C). Upper potential marine system is classified when
arsenic concentration is above 59.5211 mg kg−1. An NCA–
MRMR–CTree water contamination level classification is shown
in Figure 7B using arsenic and cadmium concentrations (another
most significant limnological feature). CTree model structured
out the differences of each water contamination level, and it
clearly separates the three states though there are only few data
samples that are closely linked to low and middle potentials in
the intersection of arsenic (5–9 mg kg−1) and cadmium (0.01–
0.11 mg kg−1). This proves the essentiality of chromium and
mercury will suffice the absolute classification in this system.
Thus, the developed NCA–MRMR–CTree is an effective and
sensitive model to classify water contamination level as it
significantly reduced the number of predictors to be used and the
inference time to be rendered.

Feature-Based Manual Versus Machine
Learning Water Chemical Status
Classification
Manual classification of the water samples’ chemical status,
in terms of trophic and contamination level, was produced
using both abovementioned approaches. Using the worst-case
classification, 98% of the analyzed samples fall within the
eutrophic classification, based on simultaneously high values of
DO and chlorophyll a and low values of DIN. This might be
due to the fact that several datapoints extracted from the public
database present low salinities concomitant with sampling during
low tide and thus with higher riverine influence (Supplementary
Table 1). Nevertheless, and comparing the manual classification
with that obtained from the NCA–MRMR–CTree, it is possible
to observe that the model has high efficiency in automatic
classification of the water body chemical status (Figure 8).
Regarding the trophic status of the water bodies, the NCA–
MRMR–CTree model presented a 76 and 98% classification
efficiency when compared to the ones provided by both averaging
and worst-case scenario manual approaches, respectively. Using
the same comparison for the contamination data, the best
fit model presented a 26–90% classification efficiency when

FIGURE 8 | Water body chemical status obtained from the automatic
classification and by both manual classification approaches in 50 randomly
selected samples.

compared to the averaging and worst-case scenario manual
approaches, respectively. This indicates that ML models can
reproduce similar classifications to manual procedures, based
on the same assumptions and leveraging on available public
data. These facts reinforced the applicability of these ML models
for chemical status water classification with a high degree of
accuracy and efficiency.

After several explorations in using feature-based ML in
assessing water body chemical status, this study successfully
developed a hybrid NCA–MRMR–CTree that can classify trophic
state and water contamination level with an accuracy of 99.43
and 100%, respectively. There are previously published studies
(Table 7) employing various ML models such as artificial neural
network (ANN), hybrid classification tree and ANN, ANN
and random forest (RF), particle swarm optimization (PSO),
adaptive neuro-fuzzy inference system (ANFIS), hybrid radial
basis function neural network (RBF-NN), and hybrid wavelet
analysis and ANFIS. The trend of ML application in the field
of marine transitional systems seems to integrate two or more
models. In the study of Concepcion II et al. (2020), CTree was
used to multidimensionally reduce the wide array of limnological
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TABLE 7 | Comparison of classification accuracy of the developed feature-based machine learning models.

References Water body system Classification problem Machine learning model Classification accuracy (%)

Chou et al. (2018) Water reservoir Trophic state ANN 86.50

Concepcion II et al. (2020) Freshwater pond Trophic state Hybrid CTRee–ANN 88.80

Watanabe et al. (2020) Inland water system Trophic state ANN and RF 80.00

Chen et al. (2015) River system Water contamination level PSO 81.50

Chen and Liu (2015) Water reservoir Water contamination level ANFIS 86.00

Najah et al. (2012) Stream Water contamination level Hybrid RBF–NN 96.00

Najah et al. (2010) River system Water contamination level Hybrid wavelet–ANFIS 99.90

This study Marine transitional system Trophic state Hybrid NCA–MRMR–CTree 99.43

This study Marine transitional system Water contamination level Hybrid NCA–MRMR–CTree 100

features to lower the inference time, and ANN was configured
for the actual inferencing. However, in the present study, the
cascaded NCA–MRMR model was constructed to reduce the
number of predictors and CTree is for the classification. Hence,
the use of the ML models can be reconfigurable and be employed
for the said purposes. This low accuracy using the PSO is due to
its convergence directivity that loses global optimum as a solution
to the problem (Chen et al., 2015). Overall, the developed NCA–
MRMR–CTree in this study bested out other mentioned models
for both trophic state and water contamination level models. By
employing ML to automate the classification of transitional water
trophic state and chemical contamination level, the efficiency
was improved especially since the developed model has feature
selection that reduced the number of sensors to be used as
inputs for the inference and still yielding accuracy approaching
100%. The developed seamless NCA–MRMR–CTree model can
be deployed in a real-time manner in coastal areas by embedding
it on a microcomputer such as a Raspberry Pi module that is
connected to the Internet for virtual monitoring. Corresponding
sensors must be connected to the Raspberry Pi model to acquire
the environmental data and wirelessly transmit it to a server
that is private to the organization. Likewise, by using the NCA–
MRMR–CTree model, it requires only four water parameters as
input to deduce the correct classification instead of manually
basing on 22 features. This may provide a faster assessment of
water quality at a lower cost. In that way, intelligent and efficient
assessment of the real-time condition of marine transitional
systems can be inherited. Because the system is deployed on
the actual site, the need to extract water samples and bringing
them to a laboratory is not necessary. The actual classification
and inference are automatically done by the system on time
and online. This is essential especially when the environment
is drastically changing. However, this model is limited by the
data used to train, validate, and test it. In training computational
intelligence models, the combination of parameters greatly affects
its inference characteristic. The larger the training dataset, the
more universal model can be developed. To further improve
this model and generalize for other countries, it would be better
to retrain this model using other datasets. But, the developed
NCA–MRMR–CTree model is very applicable to coastal systems
that closely resemble the environment of Portugal. It can
complement the regular field works of scientist and government
agencies for monitoring the changes in water quality. Overall,

the monitoring efforts of marine transitional systems can be
sustainably improved through ML.

CONCLUSION

Coastal transitional system chemical status is of utmost
importance for the implementation and evaluation of the
system ecological status, being this dependent on the trophic
and contamination level of the system. These trophic and
contamination traits rely on several physico-chemical variables
that need to be addressed as a whole and that are neither
always affected simultaneously nor show concordancy. At this
level, automatic decision-support systems, fed by automatic
samplers and analyzers, can be of great value for extracting an
appropriate chemical status classification of the system. Applying
ML techniques, namely, neighborhood correlation analysis-based
classification tree algorithms running on an optimized mode,
resulted in an efficient classification of the transitional systems
with 100% accuracy. The results here presented point out
that the models here developed can be of added value for
the implementation of environmental directives, providing an
efficient method for real-time chemical status classification of
the evaluated transitional systems, supporting stakeholders and
policy-makers on the ecological status evaluation of the European
water bodies, provided substantiated classification information,
early warning alerts, and allowing decision-makers to take action
at early stages of water chemical status degradation.
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