
Challenges and Benefits of
Approaches Used to Integrate
Regional Monitoring Programs
T. J. Arciszewski1*, D. R. Roberts1, K. R. Munkittrick2 and G. J. Scrimgeour3

1Resource Stewardship Division, Alberta Environment and Parks, Calgary, AB, Canada, 2Department of Biological Sciences,
University of Calgary, Calgary, AB, Canada, 3Office of the Chief Scientist, Alberta Environment and Parks, Edmonton, AB, Canada

Although challenging to develop and operate, some degree of integrated monitoring is
often necessary, especially at regional scales, to address the complex questions of
environmental management and regulation. The concept of integration is well-
understood, but its practice across programs and studies can be diverse suggesting a
broader examination of the existing general approaches is needed. From the literature, we
suggest integration of monitoring can occur across three study components:
interpretation, analysis, and design. Design can be further subdivided into partial and
full integration. Respectively combining information, data, and designs, we further define
these types of integration and describe their general benefits and challenges, such as
strength of inference. We further use the Oil Sands Monitoring program in northern Alberta
as an example to clarify the practices common among integrated monitoring programs.
The goal of the discussion paper is to familiarize readers with the diverse practices of
integrated monitoring to further clarify the various configurations used to achieve the wider
goals of a program.
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INTRODUCTION

Human activities influence the environment in many ways and monitoring over time is
intended to provide timely, clear, systematic information on their status (Yoccoz et al., 2001).
While needed to inform the larger strategic goals of reducing, eliminating, or controlling the
impacts of those activities, multiple approaches are available for measuring environmental
attributes and assessing status. However, monitoring may not always be straightforward and
may not always provide widely-accepted and certain evidence showing the presence of impacts
(leading to effective interventions), or their absence (and reassurance of safety; Munkittrick
et al., 2019). For example, monitoring programs must often translate high-level management
questions, such as “Are there effects?” into focused and testable scientific hypotheses which
may not wholly reflect the original objectives. Monitoring must also contend with other
challenges. Risk tolerances among stakeholders may vary and “safe”, or acceptable conditions
may not be objectively characterized. There can also be unknown long-term consequences of
low levels of environmental change (Soulé, 1985; Biber, 2011; Addison et al., 2016; Suter,
2016), obscure or unknown exposure of organisms (Tetreault et al., 2020), and various
interactions of both anthropogenic and natural environmental stressors (Gieswein et al.,
2017; Arciszewski et al., 2018).
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The well-known challenges of monitoring have motivated the
further development of approaches and tools (e.g., Lindenmayer
and Likens, 2010). One common solution to improve the utility of
information provided by a monitoring program is expanding its
spatial, temporal, and technical scope (Dowdeswell et al., 2010;
Gosselin et al., 2010; Lott and Jones, 2010; AEMP, 2011).
However, as these scopes increase, new challenges can emerge.
While it may be desirable, monitoring at regional scales (such as
those larger than 103 km2) can extend across different biomes
(Hunsaker et al., 1990) and can incorporate the influence of
multiple human activities and multiple stakeholders with diverse
values. Regional monitoring initiatives may also cover areas
comprised of multiple political jurisdictions with different
environmental regional planning objectives and legal
requirements, such as monitoring programs examining status
and trends, environmental effects monitoring, compliance
monitoring, cumulative effects assessment, pre-development
baseline studies, and research programs.

Further solutions are often suggested and implemented to
overcome the challenges of monitoring programs with wide
temporal, spatial, and technical scopes. Most notable among
them are the repeated calls for integration (e.g., Dowdeswell
et al., 2010; Liu et al., 2012; Hopke et al., 2016). Integration of
programs is seen as a solution to enhance efficiency and efficacy
of programs (Lindenmayer and Likens 2010; Liu et al., 2012;
Norton et al., 2014; Cooke and Hilton 2015; Arciszewski et al.,
2017b), to provide increased sensitivity to surprises (Munn,
1988), and to foster scientific contributions to environmental
management (Thackeray and Hampton, 2020).

While integration is popular and can be beneficial, it is often a
strategic and conceptual objective (e.g., Bagstad et al., 2013; Dubé
et al., 2013; Noble 2015; Arciszewski et al., 2017b; Cronmiller and
Noble, 2018b) may refer to diverse practices. Integration can refer
to multiple, but related actions including the combination of
approaches (Burton et al., 2002a; Ankley et al., 2010), of several
related measurements within a given study (Löfgren et al., 2011;
Scrimgeour et al., 2013; Vethaak et al., 2017), or of measuring and
modeling (Haeberli et al., 2007). Integration can also refer to the
combination of information and data from a variety of spatial and
temporal scales using techniques such asWeight-of-Evidence and
development of causal criteria (Lowell et al., 2000; Cash et al.,
2003). Finally, integration may also refer to the combination of
multiple studies, including multiple field studies, or laboratory
and field studies (Wolska et al., 2007; Barra et al., 2020), parallel
and mutually supporting monitoring and research (Wrona and
Cash 1996; Bunn et al., 2010), or monitoring based on tiers and
triggers (Arciszewski and Munkittrick, 2015; Somers et al., 2018).

While all examples above satisfy the conceptual demands of
integration, the diversity of its practices may not be recognized
when initial recommendations for a program's direction and
objectives are made. This can be especially problematic if the
conceptual and initial vision for an integrated program is also not
explicitly and practically defined. In this discussion paper, our
specific goal is to propose a framework to organize the types of
integrated monitoring programs and describe the practical
methods currently used to combine information, data, and
designs. We also discuss their benefits and the potential

challenges with each approach and frame these practices using
the Oil Sands Monitoring (OSM) program; a multi-year, multi-
indicator, multi-theme, multi-million dollar program in northern
Alberta. Finally, we conclude with a general discussion of how to
overcome the challenges of different forms of integration and
how they can occur simultaneously within a large regional
monitoring program. Our general goal with this discussion is
to clarify the various practices of integration and provide a
common language for use among participants of large regional
monitoring programs.

OIL SANDS MONITORING

The Oil Sands Region (OSR) of northeastern Alberta covers a
surface area of 142,200 km2 containing three deposits of bitumen,
together comprising the third largest known reserve of
hydrocarbons in the world (Figure 1). Where the bitumen is
within ∼75 m of the surface, it is extracted through conventional
truck and shovel mining. Where the reserves are deeper, in situ
methods, often using steam-assisted gravity drainage (SAGD),
liquefy the bitumen in the reservoir and transport it to the surface.
The extraction of bitumen occurs throughout the region. Within
the 4,800 km2 minable region north of Fort McMurray, roughly
1,264 km2 is disturbed (ABMI, 2018). As of 2018, ∼22,252 km2 of
the total OSR is physically disturbed (ABMI, 2018), but this is
most intense within the Athabasca Oil Sands (sub) region. While
physically located in northern Alberta, gases and particles emitted
to the atmosphere can be deposited in downwind areas outside
the OSR, including northern Saskatchewan (Makar et al., 2018).
The activity is also the subject of intense local, national, and global
environmental concern and scrutiny (e.g., Miall, 2013).

Regional monitoring initiatives have been common in
northern Alberta. Historically, there were many monitoring
programs examining potential changes in the ambient
environment surrounding oil sands development, including
regional cooperative programs, industry-driven programs,
industry-funded programs, provincial and federal monitoring
programs, and joint government initiatives (Figure 2).
However, in 2009 and 2010 independent research showing the
accumulation of contaminants of concern in snow near mines
was published (Kelly et al., 2009; Kelly et al., 2010). This work
highlighted gaps in monitoring and initiated reviews of the
existing regional programs (e.g., Dowdeswell et al., 2010;
AEMP, 2011). The reviews of monitoring consistently
identified the need to achieve a more fully integrated
monitoring system in the OSR (e.g., Gosselin et al., 2010; Lott
and Jones, 2010). For example, the lack of data compatibility,
including lack of consistency in chemical measurements and
biological indicators, truncated sampling schedules,
incompatible analytical methods, and fragmented data sets
have affected the attempts at integrated interpretation and
analyses conducted prior to 2012 (Gosselin et al., 2010).

In 2012 the existing programs were replaced by the Joint Oil
Sands Monitoring Program (JOSM). JOSM was intended to be an
integrated program (Environment Canada, 2011a) and was
implemented in phases for each target medium (water, air,
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terrestrial). First the surface water program was released (Baird
et al., 2011) followed later by separate program designs for
terrestrial biodiversity (Environment Canada, 2011b), air
(Environment Canada, 2011c), and an expanded geographical
area (Wrona et al., 2011). In 2016, JOSM was rebranded as the
OSM program (Dubé et al., 2018) after changes to
administratively streamline and simultaneously broaden the
governance of the program (Figure 3). OSM is currently
administered and operated jointly by the Governments of
Alberta and Canada and funded through a $50 M per year
industry levy. The total funding allocated for the OSM/JOSM
program is now approaching $500 M CAD.

The technical scope of OSM is broad. It examines multiple
indicators across multiple media, including air, water, land,
wetlands, and groundwater (Environment Canada, 2011a;
Figure 1). OSM also partitions programs into “focused studies”
and “core monitoring”. Focused studies are diverse and include
many different types of activities, including research and methods

development. Core monitoring programs include long-term routine
programs such as water quality (Swanson, 2019a; Swanson, 2019b).
A current emphasis of OSM is also expanding the role of
community-based monitoring (e.g., Brunet et al., 2020) and
inclusion of Indigenous Knowledge and Wisdom throughout the
program, including establishing Indigenous representation within
the program governance (Dubé et al., 2018).

Another objective of reconfiguring the regional monitoring in
the OSR was increasing the quality of the work through external
peer-review. While many papers have been published by
researchers funded by this program (e.g., Summers et al., 2016;
Makar et al., 2018; Landis et al., 2019), additional work also
occurs in the region outside of the OSM funding envelope,
including industry-funded research, compliance monitoring,
provincial monitoring, and independent research (e.g., Shotyk
et al., 2017; Redman et al., 2018; Fennell and Arciszewski, 2019).
Since 2012 these research efforts have collectively produced
hundreds of research papers.

FIGURE 1 | Locations of monitoring areas and activities done under OSM in the OSR of north eastern Alberta; (A): Key maps showing location in North America;
(B): Map of the surface minable area (white polygon with dashed outline; (C): Map of the Athabasca OS Region (D): Map of the Peace OS Region; (E): Map of the Cold
Lake OS Region; Environmental monitoring sites are shown as colored points (green � land; blue � water; red � air; orange � groundwater; purple � wetlands), with
shapes representing different monitoring partner organizations.
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FIGURE 2 | Status of historical and current monitoring or data collection entities operating in the Oil Sands region; AOSERP � Alberta Oil Sands Environmental
Research Program; NRBS �Northern River Basins Study; NREI �Northern Rivers Ecosystem Initiative; RAMP � Regional Aquatics Monitoring Program;WBEA �Wood
Buffalo Environmental Association; TEEM � Terrestrial Environmental Effects Monitoring; ABMI � Alberta Biodiversity Monitoring Institute; CEMA � Cumulative Effects
Management Association; AENV � Alberta Environment; OSLI � Oil Sands Leadership Initiative; EMCLA � Ecological Monitoring Committee for the Lower
Athabasca; PAZA � Peace Airshed Zone Association; LICA � Lakeland Industry and Community Association; SEWG � Sustainable Ecosystems Working Group;
TEK � Traditional Ecological Knowledge; GWWG � Groundwater working group; SWWG � Surfacewater working group; RWG � Regional Working Group.

FIGURE 3 | Current administrative structure of the Oil Sands Monitoring program including central (red) administrative and governance committees (Indigenous
Community Based Monitoring Advisory Committee; Oversight Committee; Science and Indigenous Knowledge Integration Committee), peripheral Technical Advisory
Committees (in blue; e.g., Groundwater), and delivery partners (green) identified from the most recent publicly available workplans available (2017–2018) from http://
environmentalmonitoring.alberta.ca/activities/oil-sands-monitoring-projects/20172018-projects/; not shown are additional linkages with Environment and Climate
Change Canada, Alberta Environment and Parks, or industry organizations; PRAMP � Peace River Area Monitoring Program; See Figure 2 for additional acronym
definitions.
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Despite the initial aspiration for OSM to be a fully integrated
program, much of the research remains isolated in individual
research papers. A recent review of the regional ambient
monitoring in the OSR concluded that more effort is needed
to achieve the original objective of an integrated program (Hopke
et al., 2016). While the initial efforts of integration were
undermined by challenges with the timing of initial sampling
and program roll-out, inertia from legacy monitoring programs,
and the absence of a clear and coordinated strategic plan, we also
suggest those early and continuing efforts are affected by the
potentially unrecognized diversity of practices used to satisfy the
delivery of an integrated program.

MODELS OF INTEGRATION

Within any monitoring application, integration refers to the
straightforward act of combination. While the specifics,
preferences, and traditions of integration may differ by
discipline (e.g., Linkov et al., 2009), we suggest four
hierarchical and general models are typically used to
integrate monitoring programs: integrated interpretation,
integrated analysis, and partially and fully integrated
designs (Table 1). Based on this framework, monitoring

studies can be differentiated by the timing (when in a study
cycle) and approach (what: data, conclusions, or designs) to
integrate. The approaches to integration can also be
differentiated by their attributes, including flexibility,
strength of inference, sensitivity to errors, and
administrative burden (Table 2).

A Posteriori Integration
Integration of monitoring can occur in multiple ways, but when
the combination comprises existing data, conclusions or
information, this is considered here as a posteriori integration.
A posteriori integration can, however, be further subdivided into
integrated interpretation and integrated analysis.

Integrated Interpretation
Of the four general types of integration, the most common,
recognizable, and straightforward is the contextualization of
conclusions or information when reporting the results of a
study. Here we call this form Integrated Interpretation.
Integrated interpretation involves the combination of
information simultaneously considering conclusions from
several independent, but related studies, each potentially
addressing a specific hypothesis or set of questions. Typically,
integrated interpretation occurs as the discussion of results in

TABLE 1 | Summary of when types of integration typically occur, how they are undertaken, their benefits, disadvantages, and potential outcomes.

Timing of
integration

Type of
integration

Study
component
combined

Formal and
informal designations

and mechanisms

Benefits Disadvantages Outcome

a priori

Design

Full Design,
methods,
sampling
locations

Integrated design Strongest inference;
resource prioritization

Complex planning required Actionable results;
inform management
decisions; testable
hypotheses

Partial Integrated data collection Efficiencies of efforts Necessarily short-term Input into fully
integrated design;
testable hypotheses

a posteriori Analysis Data, results Quantitative, or semi-
quantitative techniques
(scoring, ranking, and
weighting), standardized
effect sizes, meta-analyses

Ability to draw inferences at
multiple spatio-temporal
scales, generate new
hypotheses

Sacrifice the greater
statistical power of aligning
sampling dates and
methodologies

Testable hypotheses;
input into integrated
design

Interpretation Conclusions,
hypotheses

Qualitative and semi-
quantitative weight of
evidence, synthesis reports,
summary reports

Simple, common, easy; little
to no oversight necessary;
independent to semi-
independent sources of
information

Scope of questions limited;
adopts previous limitations
and assumptions of data
and information

Testable hypotheses;
input into integrated
designs

TABLE 2 | Attributes to consider in the integration of monitoring “early” (e.g., during design, a priori) or “later” (e.g., during interpretation, retrospectively, a posteriori) phases
of the program and typical qualities (e.g., high, low) of applying integration during those study phases.

General attribute a priori a posteriori

Strength of inference High Low
Sensitivity to errors (e.g., poor site and indicator selection, etc.) High Low
Flexibility Low High
Administrative burden High Low
Common understanding of questions necessary? Yes No
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scientific publications. Methods, such as Weight-of-Evidence
have also been developed and use quantitative, qualitative, or
semi-quantitative techniques including scoring, ranking, and
weighting to combine information (Burton et al., 2002b;
Chapman et al., 2002). Broad approaches such as synthesis
reports or general review papers (e.g., Mupepele et al., 2015)
are common examples.

The benefits of integrated interpretation include quickly
summarizing information and that a priori planning and
administrative oversight are not necessary. Consequently,
integrated interpretation can be done retrospectively with ease
and the approach is flexible. The more closely the information
aligns in space, time, or methodological approach, the stronger
the combined interpretation, but even loosely associated
information can be combined to generate novel and testable
hypotheses.

Integrated interpretation is common within the OSM,
reflected in hundreds of published research papers, each
including, at minimum, the contextualization of results with
previous findings (e.g., Landis et al., 2019) and synthesis of
results (Davidson et al., 2020). OSM researchers have also
published some review papers (e.g., Harner et al., 2018).

Integrated Analysis
Integration also commonly occurs during analysis. In integrated
analysis, data from disparate projects may also be combined to
address new questions or hypotheses, or to decrease uncertainty
around an established question or set of questions to generate
novel results. Meta-analyses are a potent example of this type of
integration (Lipsey and Wilson, 2001).

Benefits of integrated analysis include more accurate
information or results (Bustamante et al., 2016) and the ability
to draw inferences at multiple spatiotemporal scales (Bricker and
Ruggiero, 1998; Haeberli et al., 2007). Combining data, rather
than conclusions often allows evaluation of hypotheses that the
original studies were not designed to directly test. Integrated
analysis can be done retrospectively with ease if information is
available, accessible, and relevant to the study questions of the
investigator. Publicly available data can facilitate integrated
analyses. Similar to integrated interpretation, integrated
analysis does not necessarily require a priori administrative
oversight, systematic planning, or coordinated collection of
data. Integrated interpretations are also nested within
integrated analyses. The relative simplicity of integrated
analysis and its associated adaptability contributes to its
popularity.

Within OSM, integrated analyses are facilitated both by direct
researcher collaboration, but also by providing data on a publicly-
accessible databases. Integrated analyses in OSM have included
combining individual studies undertaken in overlapping periods
to enhance interpretation (e.g., Fisher and Burton 2018; Eccles
et al., 2019; Kilgour et al., 2019). Integrated analyses have also
been conducted using closely related data collected by few
researchers examining similar questions (Wasiuta et al., 2019)
and may include digested data summarized for study areas in a
weight-of-evidence approach (Culp et al., 2018; Culp et al., 2020),
or the combination of several raw datasets for a originally

collected for different purposes, such as discharge and water
quality (Arciszewski et al., 2018), discharge, air temperature, and
health of fishes (Kilgour et al., 2019; Arciszewski and McMaster,
2021), and land use and water quality (Schwalb et al., 2015;
Alexander and Chambers, 2016). Studies have also conducted
formal geospatial analyses and modeling (Eccles et al., 2019) and
compared novel measurement techniques with conventional
emissions reporting (Li et al., 2017). Evaluations of the
environmental effects of oil sands operations have benefited
from some efforts to complete integrated regional analyses and
interpretations (Alexander and Chambers, 2016; Culp et al.,
2020). These analyses improved understanding of
environmental stressors from oil sands operations, such as
deposition models (Kirk et al., 2014; Wasiuta et al., 2019). The
use of data products, such as standardized effect sizes, meta-
analyses comparing strength of results and other methodological
parameters (Lipsey and Wilson, 2001) has not yet been fully
explored within OSM.

Challenges and Limitations of a Posteriori Integration
While common and straightforward, there can be significant
challenges with a posteriori integration. More specifically, the
challenges include the misalignment of data sets and limitations
in the information and data available. Within OSM, there have
been challenges with timely and synchronous availability of
related data sets, resulting in significant delays in releasing
results and undertaking integrated analyses by third parties. A
posteriori types of integration prohibit logistical and economical
efficiencies associated with integrated designs and sacrifice the
greater statistical power of aligning sampling dates and
methodologies. These deficiencies are not limited to OSM, and
previous studies have noted limitations of data availability (Parr
et al., 2002; Nilssen et al., 2015), inaccessibility (Liu et al., 2012;
Cronmiller and Noble, 2018a), fragmentation (Liu et al., 2012),
and incompatibility (Janousek et al., 2019). Incompatability can
occur for many reasons, including differences in data types,
resolution, or scales (Paul et al., 2000; Teatini et al., 2005; Liu
et al., 2012; Bustamante et al., 2016; Cronmiller and Noble,
2018b). Limitations of data quality and accuracy (Teatini
et al., 2005; Liu et al., 2012), or lack of familiarity with
datasets among third-party users can also affect interoperability.

Challenges with a posteriori interpretation and analyses from
the OSR highlight vulnerabilities of using data and information
from multiple sources. In the OSR, studies have included, either
directly or indirectly, inaccurate details of industrial sites, such as
the placement of emission sources like upgrading complexes and
the location of facilities and their operational status in the analysis
and interpretation (Kurek et al., 2013; Kirk et al., 2014; Alexander
and Chambers, 2016; Liggio et al., 2016; Summers et al., 2016;
Mundy et al., 2019; Tetreault et al., 2020). Unfamiliarity with
other features beyond industrial sources in the study area, such as
potentially confounding influences of outboard motors on the
accumulation of polyaromatic compounds in the sediments of
remote lakes with a fly-in fishing lodge (e.g., Kurek et al., 2013)
has also occurred. While the consequences of drawing
conclusions based on incorrect information may be innocuous,
it can inflate the Type I and Type II error rates and over- or
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under-report effect sizes which affect priorities in follow-up
research.

Addressing the challenges of existing datasets and information
requires effort. Resolving interoperability issues may require
collapse, reformatting, stretching, compression, interpolation,
extrapolation, or other transformation or summarization to
reconcile datasets (Posthuma et al., 2016). Indices are popular
choices across multiple fields for combining and decomposing
data (Tarassenko et al., 2006), but are also an imperfect solution
(Green and Chapman, 2011). These approaches to integration
may also lead to decision fatigue when combining data, especially
where assessment criteria are not available (Vethaak et al., 2017)
and complex analyses and unique workflows emerge (Botvinik-
Nezer et al., 2020). Some questions, such as change relative to an
unknown baseline cannot be addressed with integrated
interpretation and analysis. While interpretation and analysis
are common and straightforward approaches, these tools may
also be cumbersome when addressing interdisciplinary questions,
such as cumulative effects.

While not unique, programs relying on a posteriori integration
can be more susceptible to scope creep than a priori approaches.
While expansion is not necessarily disadvantageous, there can be
temptation to continually add measurements or pursue potentially
unnecessary precision (Lindenmayer and Likens, 2010) which may
strain or otherwise re-prioritize funding. Subdivision, branching,
and extension of study designs can create challenges for
consistency of datasets and for the eventual use of the data in
decision-making (Sarkar et al., 2020). Intentional management of
routine and novel studies are required in monitoring (Wintle et al.,
2010) even in cases where the intent is to transition the program
from a posteriori to a priori integration.

Although it may be tempting to derive strong inferences and
conclusions from integrated interpretation or integrated analysis,
the information generated in a retrospective and integrated
analysis adopts the limitations and assumptions embedded in
the original papers or datasets (Liu et al., 2012; Arciszewski and
McMaster 2021). The results of a posteriori integration are
necessarily limited to hypothesis generation (Lindenmayer and
Likens 2010; Arciszewski et al., 2017a; Arciszewski et al., 2017b)
since there may be challenges with multi-causality of issues (Liu
et al., 2012) and over-simplification of complex (multi-covariate)
analyses (Nilssen et al., 2015). Consequently, retrospective
analyses are associated with weak inferences (Yoccoz et al.,
2001; Mupepele et al., 2015).

A Priori Integration
While complete overlap is not required for a functional program,
some a priori co-ordination of data collection, potentially
involving multiple sub-projects, each with different
investigators with differing expertize is commonly desired. The
occurrence of some coordination and planning across groups,
questions, approaches, or tools is considered here as a priori
integration. A priori integration includes either the complete or
partial design of a program prior to the collection of any data (e.g.,
Petitjean et al., 2020). Additionally, fully integrated studies may
be part of a partially integrated program.

Partially Integrated Design (Integrated Data Collection)
A partially integrated design examines some fraction of the
complete set of questions, indicators, or environments a
program is designed to address. Partially integrated designs are
common in the scientific literature and include programs such as
the collection of data from biological indicators along with
information for some environmental contaminants (Cruz-
Martinez et al., 2015).

Partially integrated designs have several advantages over a
posteriori integration. Partially integrated designs can provide
stronger inferences than a posteriori approaches and can also be
done opportunistically; in practice some measurements can be
added in an integrated design until field crews vacate a study area.
Integrated collection can enhance the suitability of data for
broader and more complex applications and analyses, such as
the combination of reach-scale data in streams to watershed-level
questions (Wrona et al., 2000). Integrated data collection can also
improve the ability to validate or compare multiple overlapping
datasets (Teatini et al., 2005; Vethaak et al., 2017) through the a
priori adoption of data quality objectives. Similarly, integrated
collection may reduce overall costs and avoid unnecessary
duplication of effort (Nilssen et al., 2015).

Integrated collection of data can facilitate integrated analysis
and interpretation. For example, use of remote cameras and
automated recording units are not species-specific and data
are subject to the detection parameters of the devices (Zwart
et al., 2014). Additionally, while an investigator may be interested
in one particular species, they may collect data on many more
(e.g., Zwart et al., 2014). Researchers are, however, not required to
include these additional data in their analyses, but may often
choose to do so. Another benefit of collecting secondary data is in
adaptive monitoring constructs (Arciszewski et al., 2017b);
partially integrated design ensures that some relevant data
may be available to more deeply probe any emerging patterns
or hypotheses (Arciszewski et al., 2017a).

Maturation of the OSM program has been accompanied
with the desire for, and in some cases delivery of, a transition of
integration through interpretation and analysis toward data
collection. While not available in the public domain yet, the
Terrestrial Biological Monitoring program within OSM has
begun this process with the Before-After-Dose-Response
(BADR) design. These efforts were supported by
establishing technical advisory committees whose mandate
includes standardizing data collection methodologies at the
regional scale. These committees augmented early
commitments for integrated monitoring of related studies in
the initial design of the program (e.g., Environment Canada
2011a). Committees also supported efforts to optimize
sampling designs for water quality (Cooke et al., 2018) and
air monitoring (Soares et al., 2018; Wentworth and Zhang
2018). Among OSM studies, integrated data collection is
relatively common in the aquatic theme (e.g., Culp et al.,
2020). Measuring multiple indicators is also common in
terrestrial programs (Mahon et al., 2019).

In contrast to within-themes, few examples of partially
integrated designs are available which cross themes in OSM,
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but forest health is a prime example (e.g., Davidson et al., 2020).
Expanding this approach to other studies within OSM has long
been a goal (Dowdeswell et al., 2010). Importantly, however, the
Forest Health example predates JOSM and is managed by a single
administrative entity. Linkages of the forest health program to
other study areas of OSM may be present, but these require
deliberate and dedicated effort.

Fully Integrated Design
In contrast to a partially integrated design, a fully integrated
design is considered the complete overlap of all study parts to
address a single scientific objective (e.g., Cash et al., 2003). It
accomplishes this not only by coordinating experimental designs
and/or analytical units (as occurs in integrated collection), but
also by asking more complex questions spanning multiple
disciplines (Parr et al., 2002; Wolska et al., 2007; Vethaak
et al., 2017) to enhance the understanding of causality
(Chapman et al., 2010; Liu et al., 2012; Sterling et al., 2014;
Cronmiller and Noble 2018b). Integrated designs underlie
effective monitoring of entire systems (e.g., Wolska et al.,
2007; Liu et al., 2012; Vethaak et al., 2017) and promote more
efficient use of funds and can enhance credibility (Cronmiller and
Noble, 2018a; Cronmiller and Noble, 2018b). Consequently,
integrated designs can provide data for high-impact work.

There are some examples of integrated designs for
individual studies in OSM, including the benthic macro-
invertebrate program (Culp et al., 2020) and the Enhanced
Monitoring Program designed to inform mine water return
(Hicks and Scrimgeour, 2019). Studies within theme areas may
also include measurements linking themes, but are currently
rare. One example is the Representative Sub-basins Study
(REPS) used to conduct necessary focused integrated
monitoring, process studies, and modeling to assess and
predict casual linkages of oil sands operations to observed
effects (e.g., Cardoso et al., 2020). Studies within the same
environmental medium tend to be internally consistent and
more amenable to a priori integration.

While there are examples of isolated integrated designs in
OSM, the program has taken many steps, with varying level of
success, to work toward a fully integrated monitoring design.
Efforts to develop a fully integrated design consist of four main
actions: 1) identification of a framework for integration and
efforts to impress the importance of it to program participants
2) enabling program participants to achieve integration through
program design, 3) publicly accessible databases, and 4) public
reporting to increase transparency and accountability (e.g.,
annual public reporting of the program and annual work
plans, public data access). An important step was recognizing
the importance of both western science and local and Indigenous
knowledge, and that braiding of the two information systems will
be foundational to achieving an integrated design.

Program participants were supported to achieve the overall
integrated design by: 1) establishing technical advisory
committees whose mandate included project integration within
and among media 2) posting annual work plans on open internet
portals, 3) producing synthesis reports within media (e.g., Culp
et al., 2020), 4) releasing technical reports describing efforts to

optimize the spatial and temporal design of water quality (Cooke
et al., 2018) and air sampling (e.g., Soares et al., 2018; Wentworth
and Zhang 2018), and 5) hosting technical workshops (Swanson,
2019a; Swanson, 2019b). While these efforts have been beneficial
for program design and the understanding of ambient impacts,
they require unexpectedly large initial and on-going time
investments by scientists and managers, further underscoring
the potentially high (and often front-loaded) investments of
resources to reap the benefits of integrated design as a
program matures.

Challenges and Limitations of a Priori
Integration
While collection of multiple datasets at sites of interest using fully
or partially integrated design facilitates integrated analysis and
interpretation, there are also associated challenges, limitations,
and considerations. Within each OSM theme, such as water and
land, each study tends to address closely related questions with
strong historical linkages to techniques dominant in the study of
these media. For instance, ecotoxicological studies tend to
dominate the water theme and landscape and wildlife ecology
tend to dominate terrestrial studies. While some studies which do
not follow this tendency have been published (e.g., Mundy et al.,
2019), typically the practices used within a theme area can limit
opportunities for integeration. A unifying approach within a
theme may increase the likelihood of a broader integrated
design, but approaches across specific media or indicators may
be subject to potentially conflicting experimental designs and
scales of analysis associated with the traditions of various
disciplines requiring deliberate effort to reconcile.

Within a theme, there can still be challenges to overcome to
develop an integrated design. For example, within OSM chemical
measurements, such as water (Wasiuta et al., 2019) or air quality
(Makar et al., 2018) may be instantaneous, near-continuous, or
continuous, whereas physical measurements, such as flowmay be
summarized daily (Arciszewski et al., 2018), andmeasurements of
biota may reflect annual, seasonal, weekly, or daily conditions
(McMaster et al., 2018). Some relevant information, such as
precipitation may also be interpolated (Alexander et al., 2020).
Further, measurements of water quality may be done at more
locations than where biological monitoring occurs (Glozier et al.,
2018; McMaster et al., 2018) and may be automated and
transmitted remotely (Fang et al., 2014). In these scenarios,
data collection might also include the use of instruments at
remote locations where deployment and retrieval are
comparatively less expensive and time-consuming than more
frequent visits (Zwart et al., 2014).

While simultaneously establishing multiple monitoring
projects at the same locations may economize logistical effort
and cost, resulting issues of sampling design, particularly with
respect to spatial scales, may negate these efficiencies. Integrating
these datasets post hoc may be onerous and burdensome (Burton
et al., 2015). For example, collecting and analyzing all data
available made available through remote cameras or
automated recording units also increases the risks of the
Sharpshooter Fallacy (Arciszewski et al., 2017b). There may
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also be temptation to collect data which could or might be useful
and strain funding envelopes. Furthermore, not all measurements
are possible with field probes, such as total alkalinity of a water
sample.

While there has been more recent effort expended by the
governing committees within OSM to integrate the programs,
historically the individual project leads were responsible for
integrating their work. A key emerging challenge to
developing an integrated program in the OSR is
communication across the organizational structure. OSM
functions under a semi-distributed model with geographically
dispersed groups of individuals from the Provincial and Federal
governments, local community members and representatives,
private contractors, and non-governmental organizations.
Difficulty of communicating a clear direction on what
constitutes integrated monitoring and how it can be achieved,
unclear roles and responsibilities, or a lack familiarity among
participants on how to effectively operate within an integrated
program, a lack of investment, travel restrictions, or all of the
above can influence the development of an integrated program.
The semi-distributed model across multiple monitoring partners
or subcontractors may also not automatically or effectively
address any potential competing financial self-interests for the
limited funding pool. More deliberate effort may be required by
all participants to facilitate the development of an integrated
design.

Administratively, all types of integrated monitoring are best
served by a strategic planning framework (Liu et al., 2012).
While an integrated design requires deep foresight (Culp et al.,
2000), it can also be onerous and difficult to initially plan,
especially in a multi-stakeholder environment (Munkittrick
et al., 2019). Failing to plan properly prior to the initiation of
monitoring may lead to increased management and
operational costs and loss of institutional or sectoral
support (Reynolds et al., 2011). The administrative
challenges are also compounded at large spatial scales (Culp
et al., 2000) and iterative planning cycles are likely necessary to
eventually build toward a rigorous integrated design.

Monitoring programs, irrespective of their approach for
integration, are sensitive to changes in political whim and
shifting economic priorities (Cronmiller and Noble 2018b).
There may also be differences among participants regarding
the goals, operation, tools, and approaches of the monitoring
(Parr et al., 2002; Liu et al., 2012; Nilssen et al., 2015; Cronmiller
and Noble 2018b). Highly focused a priori designs examining
esoteric measurements may be more sensitive to these changing
priorities than generic a priori programs or a posteriori programs.
Highly focused programs can also create inertia. Through inertia
associated with previous monitoring efforts in a region there may
also be attempts to salvage existing designs and a reluctance to
adopt alternative approaches (Arciszewski et al., 2017b; Jones
et al., 2017). Consequently, where a priori designs are narrowly
defined to determine the extent of change in a single indicator,
they are at greater risk to these forces compared to programs
based on integrated interpretation and analyses.

Flexibility of studies may also be reduced when integration
occurs during design, but strength of inference is reinforced and

expanded for known questions (Table 2). The capacity to
successfully address large questions requiring integrated data
may lead to compromises and difficulty addressing more
nuanced questions with a single design (Lindenmayer and
Likens, 2010). This is especially salient in programs like OSM
where researchers and scientists conduct massive annual
sampling campaigns (Figure 1). A likely outcome of a broad
design is the loss of specificity, but a gain in generality (e.g.,
Hughes et al., 1990). Technical challenges of integration are also
compounded when studies examine many indicators in a large
area; the number of potential linkages among studies grows
multiplicitively (Figure 4). Adequately addressing the
exponential linkages within a single integrated design can be
daunting when the means do not match the ends.

Other challenges could affect a priori integration. Although
designed perfectly, an integrated study may also not be executed
to the same degree due to logistical or weather-related issues,
equipment loss, failure, or vandalism, and other reasons
(including regional health orders) leading to unintended gaps
in data and ultimately incorporating some of the challenges of
integrated analyses. Additionally, if integration is improperly
applied during program or study design, results can hinder or
constrain future scientific treatment of the program objectives.
For example, prematurely integrating studies in early stages may
unnecessarily compromise optimal sampling locations or
conditions for a particular parameter by accommodating
collection of accessory samples (Parr et al., 2002) or a study
design optimized for one parameter may be applied to another
(Emmerton et al., 2018). This may lead to over-powering analyses
of some parameters while under-powering others (Arciszewski
et al., 2018), or limit potential future analyses of the data and
utility of conclusions (Ferretti and Chiarucci, 2003).

FIGURE 4 | The number of potential links between individual studies as
the number of studies increases within an integrated program. Potential study
links are calculated as Ns * (Ns - 1)/2 where Ns is the number of studies; If a
program consists of 10 component studies, there are theoretically 45
possible linkages between the studies, each of which needs to be considered.
If there are 15 studies, the number of potential linkages increases to 105.
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While planning is necessary, over-planning is also possible.
Imposing a rigid (integrated) design, which is simple to
administer, risks entrenchment (Arciszewski et al., 2017b) and
alienation and disengagement of potential participants
(Lindenmayer and Likens, 2010). There may also be a desire
by some participants to integrate all existing long-term datasets,
sites, and projects (Parr et al., 2002) which may or may not serve
the goals of the program.

BENEFITS OF NOT INTEGRATING

In addition to the difficulties associated with integrated
monitoring, which may discourage researchers from
participating in such programs, there are also conceptual and
operational advantages of isolating some or many studies. Where
the criteria to clearly indicate degradation or meaningful changes
are absent, interpreting the results from monitoring systems and
making regulatory decisions can be challenging (Munkittrick
et al., 2019). Having separate data collections and/or analyses
examining similar program components or questions can be
beneficial for making stronger inference via multiple lines of
independent evidence. Independent and overlapping study
components can reveal consistent information if the system is
sufficiently understood, and this “monitoring of the monitoring”
can be a wise addition to any program (Chapman et al., 2002;
Arciszewski et al., 2017b). Such approaches can reveal weak
understanding, and while uncommon early in the design
stages of regional monitoring programs, can foster long-term
credibility. However, this approach also suggests all monitoring
may be immature and impossible to perfectly design to anticipate
all possible data needs in the future. However, some tools and
approaches are better suited for future needs than others
(Lindenmayer et al., 2015).

OVERCOMING CHALLENGES TO ACHIEVE
INTEGRATED ENVIRONMENTAL
MONITORING
Regional monitoring programs conducted across large spatial
scales, with multiple participants, would likely benefit from
integration. Developing and operating an integrated
monitoring program requires careful consideration of several
general aspects, including the need for clear objectives, a
strategic plan, and commitment to follow the intended
(strategic) course (e.g., Dowdeswell et al., 2010). These general
guidelines, however, will also be accompanied by tactical,
technical, social, and administrative aspects specific to the
scientists, stakeholders, and governors of the particular
program in question requiring resolution to develop a suitable
program.

The first aspects requiring resolution is when and what to
integrate. Integration of a design early in monitoring is best used
where clear technical questions, a common understanding of
objectives (Fancy et al., 2008), and rigorous statistical design
(Ferretti and Chiarucci, 2003) are defined. If these attributes are

unknown, uncertain, questionable, or tenuous, a fully integrated
design, though promoted by program managers, may not be
possible or desirable and may be counter-productive (Vos et al.,
2000).What type of integration to use also requires consideration.
The various trade-offs involved in integrating monitoring
(Table 2) affect the desired or most appropriate type of
integration.

While when and what to integrate may influence the
monitoring and management decisions, integration may also
adapt to the evolving needs of the program or its technical
sophistication. The type of integration desired or used within
a given monitoring program may be affected by the desires of
individual stakeholders and communities, changes in governance,
or institutional inertia. Creating a hierarchy of monitoring and
management decisions (Arciszewski et al., 2017b; Munkittrick
and Arciszewski 2017) can be incorporated into an adaptive
framework (Somers et al., 2018) to provide the needed
flexibility, while retaining consistency and integration in key
components and sites. Tiering of a program also provides
rationale for some necessary changes in monitoring activities.

Updating the approaches to integration may naturally follow
from a posteriori to a priori approaches as a program matures. As
integration potentially moves from a posteriori forms to a priori,
the needs will change and costs for administration, coordination,
and data warehousing will typically increase. The focus of the
questions (and the ability to adopt interdisciplinary questions)
will also likely increase as can efficiency and ease of operation for
individual participants and the program as a whole reflecting the
natural progression towards routinized monitoring. While
routinization of data collection and measurement techniques
can be massively beneficial, its major disadvantage is that a
highly focused and fully integrated design can also become
entrenched, inflexible, and eventually irrelevant (Arciszewski
et al., 2017b). As we have discussed already, there are
strategies to mitigate these potential problems.

While an initial integrated design may emerge, forced periodic
updates and additional measurements or approaches that can be
integrated later in the study process, such as interpretation
(Lindenmayer and Likens, 2010). Regular updates over a fixed
period, such as five years may be a reasonable balance between a
program which changes every year and a permanently static
program (Cooke et al., 2018). The duration of the fixed update
period may also be initially short when information is sparse and
uncertain, but may alter as knowledge deepens and experience
matures into wisdom. However, other administrative constraints,
such as finding and hiring suitable candidates may also inform
the appropriate planning cycle. Accounting for periodic updates
in the planning and design of a program suggests that an optimal
design may initially be based on integrated collection, which is
also partially-integrated design. Similar to mathematical
modeling (Timoshevskii et al., 2003), an algorithm to select
optimal complexity of the monitoring program may be useful.
Developing a model to determine the optimal complexity of an
integrated monitoring program may be beneficial, as has been
demonstrated in other aspects of monitoring (e.g., Wintle et al.,
2010), but also requires its own effort and will likely be
challenging in its own right.
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Other factors will also affect the optimal integration for a given
program, including the complexity, specificity, and number of the
monitoring questions. Complex and specific questions may
require complex and specific designs, but they may not
necessarily be used to constrain the remainder of the program.
Keeping some questions and studies separate from the larger
design may improve the overall quality of the program, including
OSM’s practice of dividing core and focused studies. In addition,
limiting integration to a manageable unit, such as “surface water”
is likely advantageous, but partitioning collections further into
watersheds, sub-watersheds, or another meaningful spatial unit
may also be necessary (Vos et al., 2000; Vaughan et al., 2009).
These mixed designs may be a powerful compromise between the
technical and administrative demands. For example, some degree
of integrated interpretation may always be involved in study
systems where a single governing body does not control all
monitoring and research activities and as knowledge of a
particular topic becomes more nuanced and the questions
become more focused (i.e., Kelly et al., 2009; Zhang et al.,
2016; Chibwe et al., 2019; Ahad et al., 2021).

Many potential solutions are related to organization and
administration. The administration of the program defines
how decisions are made, the deliverables and reporting
schedules, how (and to whom) funding is allocated, and how
and if changes can bemade. The challenges of administration can,
however sometimes match or exceed the technical challenges of
monitoring. OSM underwent four major governance changes in
its first eight years and has become an administratively integrated
program, but retains some pre-existing initiatives and relies on
both Governments, external independent contractors,
Universities, and communities to deliver monitoring results

(Figure 3). There are also requirements for the results to
appear in the peer-reviewed literature. Given the distribution
of partners among organization of the need to publish in the peer-
reviewed literature, much of the results reported remain isolated
to a given theme or to a single indicator suite, such as water
chemistry (Figure 5). Recognizing and understanding the
practical challenges limiting the integration of a program
when it is a stated goal is the key to successfully enhancing
the performance of the monitoring program to detect relevant
change and provide robust answers to decision-makers. These
attributes include the desired strength of inference, the sensitivity
of the program to errors, the flexibility to adapt, an acceptable
administrative burden, and how clearly understood the questions
must be (Table 2).

Planning is necessary to develop an optimal monitoring
program (Reynolds et al., 2011). Planning for integration can
be facilitated by conceptual effect models (Bunn et al., 2010) to
focus attention. Conceptual models appear in many guises,
including in Environmental Impact Assessments describing
the expected interactions between human industrial
developments and natural environments to guide decisions.
While describing linkages between chemical, physical, and
biological processes and components (Born and Sonzogni,
1995), conceptual models of environmental effects are
analogous to systems-based monitoring (Fancy et al., 2008).
Conceptual stressor-pathway-effect models, while likely
incomplete (Munkittrick et al., 2000), are also useful tools for
organizing monitoring, studies within monitoring programs,
and the linkages between them (Bunn et al., 2010). Conceptual
models are broadly applicable as tools of integration (e.g., Liu
et al., 2012), which have been recommended by OSM (Swanson,

FIGURE 5 | Linkages between studies appearing in the peer-reviewed literature from 2009–2020; blue circles indicate a study reporting the results of a given oval;
arrows from blue dots showing linkages, either explicit or implicit, within a study to another relevant result; shows few linkages of water programs to other theme areas
within the OSM program; List of source papers included as Supplemental Information.
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2019a; Swanson, 2019b) and have been used to explore the
environmental issues affecting the oil sands region in Alberta,
Canada, including seepage from tailings ponds (Fennell and
Arciszewski, 2019). Conceptual models can also form the basis
of empirical models. Planning of integrated monitoring may
also require detailed design documents, but can also include
later “plans to plan”when regional programs are in their infancy
and after pilot programs are complete (Environment Canada,
2011a). While they may be useful, CMs can also be unwieldy
(Suter, 2016).

Among the many solutions to improve organization and
administration, better communication and collaboration
among various participants is likely a disproportionately
beneficial addition (Gibbons et al., 2008). Soft-skills, such as
mutual understanding, open communication, incentives, power
sharing, and mutual trust as important factors in the
collaboration of policy-makers and researchers (Briggs, 2006).
Other researchers also suggest fostering relationships, active and
regular communications, contact mapping, secondments and
joint appointments, and annual science-policy conferences will
improve programs involving researchers and policy-makers (e.g.,
Gibbons et al., 2008) and researcher-to-researcher interactions
(Cooke and Hilton, 2015). There, however, also needs to be
recognition that monitoring decisions, like many others, are
often based on incomplete information and the discretion of
multiple participants including the stakeholders and the principal
investigators. Hindsight will invariably reveal incorrect decisions,
but these should be viewed as unavoidable and opportunities to
improve the future monitoring, not as abject failures
(Lindenmayer et al., 2015).

CONCLUSION

Integration is a natural feature of scientific practice and is very
well understood conceptually when applied as interpretation
within a single publication. However, as the spatial, temporal,
and technical scope and demands of a monitoring program
increases, so do the challenges of integration. In this paper, we
explored the concept and practice of integration for
environmental monitoring programs to facilitate
understanding, including the benefits, limitations, challenges,
and potential solutions.

The optimal form of integration depends on the goals of the
program and its desired attributes, including the desired strength
of inference. A fully integrated design may, or may not be
desirable in many situations, but is the ideal choice when
monitoring questions are clearly understood and technical
approaches are widely accepted. In these cases, measurements
of the environment will, by default, become part of a larger
analytical framework and design providing strong inferences and
answers to management questions.

Inconsistency in approaches and deliberate integration of
multiple regional studies can be both beneficial in some
respects, and harmful or limiting in others. Consequently, the
choice of the optimal form of integration for a given program also
depends on other factors. While the simplest to design and
operate, integrated interpretation may not adequately address
the questions a monitoring program is charged with answering.
Where questions and approaches are not widely understood,
practices of scientific disciplines are not aligned, or another
source of uncertainty affects the monitoring, a partially
integrated design may be most desirable and optimally
complex to address questions. Given the discussion above,
there is likely no single ideal way to integrate and decisions on
how and when to do so must be considered carefully and with
explicit purpose. The degree of integration may also change over
time and designs need to anticipate and accommodate changing
priorities, understanding, tools, and approaches. In summary,
greater recognition of the diversity of practices and approaches
possible to fulfill the general demands for an “integrated
monitoring program” will benefit all involved.
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