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Abstract

Batch bioprocesses are difficult to model due to strong
nonlinearities, dynamic behaviour, lack of complete un-
derstanding and unpredictable disturbances. A cell pro-
duces more cells, chemical products and heat from chem-
ical substrates. Typical growth characteristics include
several phases whose appearances and lengths depend
on the type of organisms and the environmental condi-
tions. Large differences exist between different fermen-
tation runs. The simulator developed for fed-batch fer-
mentation processes consists of three interacting dynamic
models, each with three phase specific versions. The mod-
els predict dissolved oxygen concentration, oxygen trans-
fer rate and concentration of carbon dioxide in the exhaust
gas through the whole process, by using only the control
variables as inputs. A decision system based on fuzzy
logic to provide smooth gradual changes between phases.
The detection of the changes between process phases is
improved by using the intelligent trend analysis. The dy-
namic simulator is suitable for an online forecasting tool
in connection with the real process. The operation is based
on the ideas of model predictive control (MPC): the pre-
vious online measurements on a chosen horizon are used
for constructing a starting point and the simulator predicts
the operation on a chosen prediction horizon by using the
planned control actions. The simulation is started on fairly
long time intervals.

Keywords: intelligent systems, dynamic simulation, fed-
batch fermentation, temporal analysis, prediction

1 Introduction

Batch bioprocesses are difficult to model due to strong
nonlinearity, dynamic behaviour, lack of complete under-
standing and unpredictable disturbances from their exter-
nal environment (Gregersen and Jorgensen, 1999). As ev-
ery cell in nature has a finite lifetime (Figure 1), a con-
tinuous growth of the organisms is needed to maintain
the species. The generation time depends on both nutri-
tional and genetic factors. To be able to live, reproduce
and make products, a cell must obtain nutrients from its
surroundings. The first phase at the beginning of the fer-
mentation is called the lag phase. The second phase is
the exponential growth phase. The last phase is called
the steady state phase. The secondary metabolic products,
such as enzymes, are produced mainly during the steady
state phase.
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Figure 1. Growth phases in a batch bioprocess (Blanch and
Clark, 1997).

In the lag phase, the growth is almost constant caused
by many reasons. Since the cells are placed in fresh
medium, they might have to adapt to it or adjust the
medium before they can begin to use it for growth. An-
other reason might be that the inoculum is composed
partly of dead or inactive cells (Enfors and Héaggstrom,
2000). If a medium consists of several carbon sources,
several lag phases might appear. This phenomenon is
called diauxic growth. Microorganisms usually use just
one substrate at a time and a new lag phase really results
when the cells adapt to use the new substrate. (Blanch and
Clark, 1997)

The declining of the growth rate begins when a sub-
strate begins to limit. The growth rate slows down until it
reaches zero and the stationary phase begins. In the sta-
tionary phase, the number of the cells remains practically
constant, but the phase is important because many prod-
ucts are only produced during it. The last phase is called
the death phase. During the death phase, the cells begin
to lyse and the growth rate decreases. (Blanch and Clark,
1997)

In batch reactors, all components, except gaseous sub-
strates such as oxygen, pH-controlling substances and an-
tifoaming agents, are placed in the reactor at the beginning
of the fermentation. There is no input nor output flows
during the process. In fed-batch processes, nothing is re-
moved from the reactor during the process but one sub-
strate component is added in order to control the reaction
rate by its concentration. The process is started as a batch
process, and the substrate feed is started when the initial
glucose is consumed. The fermentation continues at a cer-
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tain growth rate until some practical limitation inhibits the
cell growth (Enfors and Haggstrom, 2000).

The data sets obtained from the process are in prac-
tice distinct sets obtained through different process perfor-
mances because usually one or more substantial physical
parameters, such as dissolved oxygen (DO), temperature
or pH are maintained on distinct level (Georgieva et al.,
2001). The optimal values of parameters might not be
the same for the growth phase and metabolite production
phase in secondary metabolite production (Yegneswaran
et al.,, 1991). Large differences exist between different
fermentation runs because of the variations in the feeding
strategy, the metabolic states of the cells and the amount
of oxygen available. Even if the process conditions were
kept the same in each fermentation, the micro-organisms
would behave differently every time. Detection of fluctu-
ations in operating conditions is essential for making cor-
rect actions in time.

The concentration of carbon dioxide (CO,) in the ex-
haust gas is an important variable in a fermentation pro-
cess since the production of CO; is correlated to the
amount of consumed sugar (Martinez et al., 1999). The
variations in the agitation speed can cause changes in the
oxygen transfer rate (OT R) and an increase in it can cause
an increase in production and yield (Elibol and Ozer,
2000). The DO tension is an important variable in sec-
ondary metabolite production and remarkable impacts on
production yields can be achieved by affecting this param-
eter by changes in aeration, agitation system and stirrer
speed (Pfefferle et al., 2000). The volumetric mass trans-
fer coefficient, kya, is also an important process variable
because it can be used to find the relationship between the
OTR and enzyme production (Elibol and Ozer, 2000) and
it can be used in the control of the DO tension (Simon and
Karim, 2001).

The oxygen requirements of the bacteria differ at dif-
ferent fermentation stages (Yao et al., 2001). By choosing
a proper DO tension a product formation can be achieved
without wasting the energy source. As the changes are
slow, an early forecasting of the process operation is
needed. A smoothly operated process is likely to be more
productive than one that is subjected to significant distur-
bances. The aeration supplies oxygen to the process and,
at the same time, removes carbon dioxide from microbial
cells suspended in the culture broth. The rate of aeration
often controls the rates of cell growth and product forma-
tion. (Yoshida, 1982)

In fed-batch fermentation, the dynamic simulator has
been used online for predicting the process operation in
a time window (Saarela et al., 2003a; Juuso, 2005). The
results of these tests are used in this research.

This paper analyzes the dynamic simulation model de-
veloped for the prediction of the operation in a fed-batch
fermentation process. The detection of the phases focuses
on the temporal analysis with intelligent trend analysis.
The parameters of the prediction models are not changed.
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2 Bioprocess modelling

A fuzzy predictor presented in (Whitnell et al., 1993)
combines three kinds of information: quantitative pro-
cess inputs, linguistic information and heuristic knowl-
edge from an expert in a beer making process. Takagi-
Sugeno type fuzzy model was used in (Georgieva et al.,
2001) on the modelling of a batch biotechnical process,
which is strongly influenced by DO concentration as a ma-
nipulated input variable. Also black-box and hybrid mod-
els have been experimented in the modelling of batch beer
production. The research concluded that the extrapolation
capability of the model was improved by including me-
chanical knowledge in the hybrid model. The knowledge
based models are useful when only insufficient data from
the process can be obtained and they should be thought
only as an extension of the ways in which process data
can be represented. (Liibbert and Simutis, 1994) Biopro-
cess parameters have been estimated with neural network
models (Simon and Karim, 2001; Thibault et al., 1990;
Warne et al., 2004).

Model uncertainties need to be captured for the bio-
process optimization (Liu and Gunawan, 2017). Nonlin-
ear model predictive control (NMPC) and observation of
non-measurable states based on an unscented Kalman fil-
ter (UKF) were used in (Dewasme et al., 2015).

Temporal reasoning is a very valuable tool for diagnos-
ing and controlling slow processes. Manual process su-
pervision relies heavily on visual monitoring of charac-
teristic shapes of changes in process variables, especially
their trends. The fundamental elements are modelled geo-
metrically as triangles to describe local temporal patterns.
The elements are defined by the signs of the first and sec-
ond derivative, respectively (Cheung and Stephanopoulos,
1990).

Linguistic equations introduced in (Juuso and Leiviska,
1992) have been used in various applications (Juuso, 1999,
2004). Data-driven steady state modelling has been used
in the development of linguistic equation (LE) model to
represent interactions between measurements:

mo A () + By
XOmf:fom <_ZJ—1,,]7£out ]fj (xj>+ ) "

Aiout

where the functions f; and f;,, are scaling functions of
input variables x; and output x,,, respectively. These
monotonously increasing, nonlinear functions are gener-
ated with generalised norms and moments (Juuso and
Lahdelma, 2010). The monotonous increase is ensured
with constraint handling. Dynamic structures extend the
models to dynamic simulation.

Intelligent trend indices can be calculated from scaled
measurements. Triangular episodes are classified with the
trend index IjT (k) and the derivative of it, AIjT (k) (Figure
2. Severity of the situations is evaluated by a deviation
index which takes into account the scaled values of the
measurements (Juuso, 2011).
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Figure 2. Triangular episodic representations defined by the in-
dex IJ-T (k) and the derivative AIJT (k) (Juuso, 2011).

Linguistic equation method, linear neural network,
feedforward neural networks and Takagi-Sugeno fuzzy
models created by subtractive clustering appeared to be
the best in comparison presented in (Saarela et al., 2003b).
The correlations and the relative errors of these models
were within acceptable limits and the fuzziness of the
models was small. The model surfaces of the models cre-
ated by these four methods were almost a plane.

3 Development of dynamic models

The dynamic models were based on the process data ob-
tained from an industrial fed-batch fermenter. The models
were tested using a number of different testing data, which
were not included in the training data set. When necessary,
the noise in the data was filtered by taking moving aver-
ages of the measured values. The variables for each model
were chosen mainly based on correlation analysis. Vari-
ables that could be used for control were preferred when
choosing the input variables of the model. These variables
include the mixing rate, aeration, the substrate feed rate
etc.

The models have a NARX (Nonlinear AutoRegressive
with eXogenous input) structure. A multimodel approach
was applied as different growth phases need different
models (Figure 3(a)). As the prediction of the future val-
ues required three interacting models (Figure 3(b)): each
produces the prediction of a different variable, the over-
all system consists of nine models. Various modelling
methodologies have been compared. The compact imple-
mentation of the LE models made such a complex struc-
ture possible to use. Smooth transitions between the phase
models are based on fuzzy decision system (Figure 3(a)).

The controllable variables were preferred as inputs and
these include mixing, aeration, feed rate, pressure, temper-
ature and cooling power. The variables used in the models
include the concentration of carbon dioxide in the exhaust
gas, mixing power, feed rate, oxygen transfer rate, dis-
solved oxygen concentration, volumetric oxygen transfer
coefficient, position of the pressure valve and VVM (vol-
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Figure 3. The overall structure of the model (Saarela et al.,
2003a).

umes of air per volume of liquid per minute). The choice
of the variables was quite similar to the normal choice in
the literature.

Three modelling techniques with several variants were
compared including the methods of linguistic equations,
neural networks and fuzzy modelling. The steady state
modelling of the fermentation variables was not difficult
for these intelligent modelling methods: LE models, linear
neural network, feedforward neural networks and Takagi-
Sugeno fuzzy models created by subtractive clustering ap-
peared to be the best (Saarela et al., 2003b). However, dy-
namic simulation turned out to be too demanding for most
of these methodologies.

The overall dynamic model shown in Figure 4 contains
an additional model for calculating the volumetric mass
transfer coefficient, k;a.

In the LE models, the definitions of the scaling func-
tions and coefficients A;; from (1) are transferred into the
dynamic model. The new prediction is calculated using
previous values of the predicted value and the previous
values of control variables. Different growth phases can
be distinguished from the fermentation process and dur-
ing these phases different variables affect the output vari-
ables. Because of this, three submodels for each predicted
variable were created corresponding to each phase in the
fermentation process (Figure 3(a)).

The overall model consists of three models and a de-
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Figure 4. The overall simulation model (Saarela et al., 2003a).

cision system (Figure 3(a). The same structure is used
for all the predicted variables. Inputs of the models in- _ °©
clude measurements from the process, such as mixing
power, aeration rate, pressure, and substance concentra-

tions. The inputs to the models of oxygen transfer rate
prediction and dissolved oxygen concentration prediction ftime.simin. 5 > M_—»
include also predicted values from other models (Figure e
3(b)) Controller

Altogether, the overall model contains nine different
submodels: three for each predicted variable. The three
submodels (lag phase, exponential phase, and steady state)
shown in Figure 3(a) form subsystems of the predic-
tion models. The same fuzzy decision system weights
the outputs of each of these submodels. In dissolved
oxygen model, the coefficients of linguistic equation are
{0.2,-0.5,0.1,0.1,—0.8}.

New predictions are obtained by integrating the cal-
culated changes to the previous value with an ordinary
differential equation solver based on an explicit Runge-
Kutta (4,5) formula, the Dormand-Prince pair, with vari-
able step.

The fuzzy decision system chooses the right submodel
phase of the process by using the measurements of time,
oxygen transfer rate and substrate feed rate. The inference
system presented in Figure 5(a) has membership functions
for three inputs and one output and a set of eight fuzzy
rules for deduction. The system gives a weighting factor (b) The weights from the decision system.
from O to 1 for each submodel according to which level
its results are used. The system was constructed using the Figure 5. The decision system for selecting the active phase: x-
Matlab Fuzzy Logic Toolbox. At the beginning of the fer- axi§ represents time and the y-axis weighting factors [0 1], input
mentation for example, the first submodel, the lag phase, variables are time, OT R and the glucose feed rate (Saarela et al.,

Clock

MATLAB
@
Out1

is given a weight of one, and the other two submodels have 2003a).
the weight of zero. This means that only the output of the
DOI: 10.3384/ecp20170132 Proceedings of SIMS 2019 135
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first submodel is used in calculating the prediction. The
transition from one phase to another happens smoothly,
thus during the transition phase two outputs of the sub-
models can be used simultaneously (Figure 5(b)).

In the dynamic models, each submodel has been devel-
oped separately on the basis of selected training data. The
combined model (Figure 4) has been tested with data col-
lected from various fermentation runs. In the simulation
tests, the input values were taken from the previously col-
lected data. During the online tests, the prediction system
collects the data from the automation system and starts
the simulation on chosen time intervals. The prediction
results were written back to the data collection system.

4 Results and discussion

The models were tested with a set of test data. The fitness
of a model can be estimated by examining the correlation,
R, relative error, fuzziness and the model surfaces. The
FuzzEqu program also draws the results of the predictions
in the same chart with the test data where they can be com-
pared visually. The fuzziness of the equations should be
close to zero. It shows how well the equation represents
the data (Juuso, 1999).

4.1 Steady-state simulation

First, steady-state models for all three variables were made
by the linguistic equations approach. Correlations of the
dissolved oxygen models for different testing data were
between [0.88-0.98] and the relative errors between [0.03-
0.18]. For models of oxygen transfer rate the correlations
were between [0.72-0.99] and the relative errors between
[0.02-0.33]. Similar results were obtained with all the
static models used in the simulation model. The first part
of the process was the most difficult to model, largely due
to differences between fermentations. However, at the be-
ginning of the process the concentration of the dissolved
oxygen is usually quite high and its predicted value is not
so critical.

An example of data-driven modelling results for the
prediction of the dissolved oxygen is presented in Figure
6. The new measure, fuzziness, is used for detecting areas
where the models should be considerably different. Fuzzi-
ness can also be considered as an additional unknown vari-
able. In this case, the fuzziness is very low.

4.2 Dynamic simulation

Dynamic modelling and simulation was performed in
Matlab Simulink. Figure 5(b) presents the weights of the
submodels obtained from the fuzzy decision system. The
change from one phase to another is quite fast. The esti-
mation of the dissolved oxygen concentration is presented
in Figure 7(a). In this model, the estimations of the oxy-
gen transfer rate and the concentration of carbon dioxide
are used as inputs. The estimation of the oxygen trans-
fer rate can be seen in the Figure 7(b). The estimate for
the carbon dioxide concentration is used as an input of the

DOI: 10.3384/ecp20170132

Proceedings of SIMS 2019

T T T T
3 ! b : : ; ] ' [— LE medel
! : ! 3 : ! 1 Tearidi

DO midde (tH)

= | 1 1 | | 1 | 1 5

Figure 6. Results from the testing of steady-state fermentation
models. Time from 0 to 100 is shown on the x-axis and the
values of dissolved oxygen concentration, error and fuzziness
on the y-axis (Saarela et al., 2003a).

model. The correlations and relative errors of these re-
sults are shown in the figures. With the exception of a few
fermentations that largely differed from the others, the re-
sults were similar for other test data. The estimation was
easier for the oxygen transfer rate and the carbon dioxide
concentration than for dissolved oxygen concentration.

A multimodel approach was applied as different growth
phases need different models. As the prediction of the fu-
ture values required three interacting models, which each
produces the prediction for a different variable, the overall
system consists of nine models. The compact implementa-
tion of the LE models made such a complex structure pos-
sible to use. Smooth transitions between the phase models
are based on fuzzy logic.

The important factors in the success of the modelling
were the choice of the input variables, the choice of the
model type and structure, and the choice of training data.
The training data should be sufficiently large so that it can
represent different fermentations. The results of the mod-
elling can improve with the number of data runs employed
for training (de Azevedo et al., 1997). Large differences
exist between different fermentation runs because of the
variations in the feeding strategy, the metabolic state of
the cells and the amount of oxygen available. Even if the
process conditions were the kept same in each fermenta-
tion, the micro-organisms would behave differently every
time.

The choice of the input variables was difficult. Differ-
ent variables affect the output variables in the different
phases of the process. All the influence of the variables
could not be examined because the data was obtained from
an industrial fermenter and a part of the variables were
controlled to remain constant. The data based modelling
methods require changes in the data to be able to model it.

The dynamic simulator operates accurately throughout
the fermentation even for more than 40 hours as a real
simulation, i.e. the simulator uses in each time step only
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the previous simulated value and the values of the vari-
ables which control the process, according to the dynamic
model. Differences between the calculated and measured
are reasonable and provide a good basis for detecting fluc-
tuations in operating conditions.

(a) Prediction of dissolved oxygen (DO) concentration: time is on the
x-axis and the dissolved oxygen concentrations on the y-axis.

(b) Prediction of oxygen transfer rate (OTR): time is on the x-axis
and the oxygen transfer rates on the y-axis.

(c) Prediction of carbon dioxide (CO;): time is on the x-axis and the
oxygen transfer rates on the y-axis.

Figure 7. Simulation results of a fermentation run (Saarela et al.,
2003a).

The simulator is aimed primarily on the detection of
changes and fluctuations for the process control. In the
estimation, the starting time of the growth phase was pre-
defined. However, the test results reveal a diauxic growth:
the first growth starts earlier as can be seen in all predic-
tions which is seen in decreasing DO (Figure 7(a) and in-
creasing OTR and CO; (Figures 7(b) and 7(c)). Updating
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the parameter of the scaling functions with newer method-
ologies (Juuso and Lahdelma, 2010) would be beneficial.

The drop of DO during the first phase introduces a new
lag phase of the second growth phase, which starts later,
proceeds slower than the first growth phase and finally
slows down gradually to the stationary phase. Two mod-
els with different parameter tuning are are required for the
growth phase. The stationary phase has two stages: the
first part fairly constant OTR but then the death phase is
partly activated. Aeration stabilizes the OTR on a new
constant level. The estimation errors seen in Figure 7 are
at least partly caused by the errors in the fuzzy decision
system. Clearly time, OTR and the glucose feed rate are
not sufficient for defining the start of the growth phase and
the diauxic growth needs to be taken into account.

4.3 Detection of operating conditions

The simulator can be used as an online forecasting tool in
connection with the real process. The simulator is started
on chosen time intervals: the previous online measure-
ments on a chosen horizon are used for constructing a
starting point and the simulator predicts the operation on
a chosen prediction horizon by using the planned control
actions. In the online tests, the prediction horizon has
been one hour and the time interval between predictions
six minutes. The model predictive control can be consid-
ered as a new option since the simulator is very compact.
Actually, generating a good starting point for simulation
calculations was more demanding than the prediction part.
This operates well in the stationary phase. The simulator
is started on chosen time intervals and it operates accu-
rately throughout the fermentation even for more than 40
hours (Juuso, 2005).

The intelligent trend analysis improves the detection
of phase changes (Figure 1) by using triangular episodes
shown in Figure 2: the start of the growth phase is seen as
a concave upward monotonic increase (Episode D) which
continues as a linear increase (Episode E). The slowdown
is detected as Episode A. The activation of the dead phase
is seen with Episodes B, F and C. The analysis, which
proceeds with time, is adapted by short and long time win-
dows to the speed of the process. Differencies of the fer-
mentation runs are essential in the analysis.

5 Conclusions

The simulator can be used as an online forecasting tool in
connection with the real process in the stationary phase.
The operation is based on the ideas of model predictive
control (MPC). In this case, the simulation is started on
fairly long time intervals. The previous online measure-
ments on a chosen horizon are used for constructing a
starting point and the simulator predicts the operation on
a chosen prediction horizon by using the planned control
actions. Intelligent trend analysis provides efficient tools
for the early detection of the changes in operation phases
and situations. The solution adapts to differences in fer-
mentation runs.

Vasterds, Sweden, 13-16 August, 2019

137



SIMS 60

References

H. W. Blanch and D. S. Clark. Biochemical Engineering. CRC
Press, 1997. 702 pp.

J. T.-Y. Cheung and G. Stephanopoulos. Representation of pro-
cess trends - part I. A formal representation framework. Com-
puters & Chemical Engineering, 14(4/5):495-510, 1990.

S. Feyo de Azevedo, P. Dahm, and R. R. Oliveira. Hybrid mod-
elling of biochemical processes: A comparison with the con-
ventional approach. Computers and Chemical Engineering,
21(Suppl.):S751-756, 1997.

L. Dewasme, S. Fernandes, Z. Amribt, L.O. Santos, Ph.
Bogaerts, and A. Vande Wouwer. State estimation
and predictive control of fed-batch cultures of hybridoma
cells.  Journal of Process Control, 30:50 — 57, 2015.
doi:10.1016/j.jprocont.2014.12.006.

M. Elibol and D. Ozer. Influence of oxygen transfer on lipase
production by rhizopus arrhizus. Process Biochemistry, 36:
325-329, 2000.

S.-O. Enfors and L. Haggstrom. Bioprocess Technology Fun-
damentals and Applications. Royal Institute of Technology,
Stockholm, 2000. 356 pp.

0. Georgieva, M. Wagenknecht, and R. Hampel. Takagi-sugeno
fuzzy model development of batch biotechnological process.
International Journal of Approximate Reasoning, 26:233—
250, 2001.

L. Gregersen and S. B. Jorgensen. Supervision of fed-batch fer-
mentation. Chemical Engineering Journal, 75:69-76, 1999.

E. Juuso and S. Lahdelma. Intelligent scaling of features in
fault diagnosis. In 7th International Conference on Condi-
tion Monitoring and Machinery Failure Prevention Technolo-
gies, CM 2010 - MFPT 2010, 22-24 June 2010, Stratford-
upon-Avon, UK, volume 2, pages 1358-1372, 2010. URL
WWW . SCOPUS . COM.

E. K. Juuso. Fuzzy control in process industry: The linguistic
equation approach. In H. B. Verbruggen, H.-J. Zimmermann,
and R. Babuska, editors, Fuzzy Algorithms for Control, In-
ternational Series in Intelligent Technologies, volume 14 of
International Series in Intelligent Technologies, pages 243—
300. Kluwer, Boston, 1999. doi:10.1007/978-94-011-4405-
6_10.

E. K. Juuso. Integration of intelligent systems in de-
velopment of smart adaptive systems. International
Journal of Approximate Reasoning, 35(3):307-337, 2004.
doi:10.1016/].ijar.2003.08.008.

E. K. Juuso. Dynamic simulation of a fed-batch enzyme fer-
mentation process. In Proceedings of SIMS 2005, 46th Con-
ference on Simulation and Modeling, October 13-14, 2005,
Trondheim, Norway, pages 117-124. Tapir Academic Press,
Trondheim, 2005. ISBN 82-519-2093-0.

E. K. Juuso. Intelligent trend indices in detecting changes of op-
erating conditions. In 2011 UKSim 13th International Con-
ference on Modelling and Simulation, pages 162-167. IEEE
Computer Society, 2011. doi:10.1109/UKSIM.2011.39.

DOI: 10.3384/ecp20170132

Proceedings of SIMS 2019

E. K. Juuso and K. Leiviskd. Adaptive expert systems for met-
allurgical processes. In S.-L. Jimséi-Jounela and A. J. Niemi,
editors, Expert Systems in Mineral and Metal Processing,
IFAC Workshop, Espoo, Finland, August 26-28, 1991, IFAC
Workshop Series, 1992, Number 2, pages 119-124, Oxford,
UK, 1992. Pergamon.

Y. Liu and R. Gunawan. Bioprocess optimization under uncer-
tainty using ensemble modeling. Journal of Biotechnology,
244:34 — 44, 2017. doi:10.1016/j.jbiotec.2017.01.013.

A. Liibbert and R. Simutis. Using measurement data in biopro-
cess modelling and control. Trends in Biotechnology, 12(8):
304 — 311, 1994. doi:10.1016/0167-7799(94)90047-7.

G. Martinez, A. Lépez, A. Esnoz, P. Virseda, and J. Ibarrola. A
new fuzzy control system for white wine fermentation. Food
Control, 10:175-180, 1999.

C. Pfefferle, U. Theobald, H. Giirtler, and H.-P. Fiedler. Im-
proved secondary metabolite production in the genus strep-
tosporangium by optimisation of the fermentation condition.
Journal of Biotechnology, 80:135-142, 2000.

U. Saarela, K. Leiviskd, and E. Juuso. Modelling of a fed-batch
fermentation process. Report A 21, June 2003. Control Engi-
neering Laboratory, University of Oulu, Oulu, 2003a.

U. Saarela, K. Leiviskd, E. Juuso, and A. Kosola. Modelling of
a fed-batch enzyme fermentation process. In IFAC Interna-
tional Conference on Intelligent Control Systems and Signal
Processing. Faro, Portugal, April 8-11, 2003. IFAC, 2003b.

L. Simon and M. Nazmul Karim. Identification and control of
dissolved oxygen in hybridoma cell culture in a shear sen-
sitive environment. Biotechnology Progress, 17:634-642,
2001.

J. Thibault, V. V. Breusegem, and A. Cheruy. On-line prediction
of fermentation variables using neural networks. Biotechnol-
ogy and Bioengineering, 36(12):1041-1048, 1990.

K. Warne, G. Prasad, S. Rezvani, and L. Maguire. Statistical and
computational intelligence techniques for inferential model
development: a comparative evaluation and a novel proposi-
tion for fusion. Engineering Applications of Artificial Intelli-
gence, 17:871-930, 2004.

G. P. Whitnell, V.J. Davidson, R. B. Brown, and G. L. Hayward.
Fuzzy predictor for fermentation time in a commercial brew-
ery. Computers Chemical Engineering, 17(10):1025-1029,
1993.

H. M. Yao, Y. C. Tian, M. O. Tadé, and H. M. Ang. Variations
and modelling of oxygen demand in amino acid production.
Chemical Engineering and Processing, 40:401-409, 2001.

P. K. Yegneswaran, M. R. Gray, and B. G. Thompson. Effect
of dissolved oxygen control on growth and antibiotic produc-
tion in streptomyces clavuligerus fermentation. Biotechnol-
ogy Progress, 10:246-250, 1991.

F. Yoshida. Chapter 1 - aeration and mixing in fermenta-
tion. volume 5 of Annual Reports on Fermentation Pro-
cesses, pages 1 — 34. Elsevier, 1982. doi:10.1016/B978-0-
12-040305-9.50005-4.

138

Vasterds, Sweden, 13-16 August, 2019


http://dx.doi.org/10.1016/j.jprocont.2014.12.006
www.scopus.com
http://dx.doi.org/10.1007/978-94-011-4405-6_10
http://dx.doi.org/10.1007/978-94-011-4405-6_10
http://dx.doi.org/10.1016/j.ijar.2003.08.008
http://dx.doi.org/10.1109/UKSIM.2011.39
http://dx.doi.org/10.1016/j.jbiotec.2017.01.013
http://dx.doi.org/10.1016/0167-7799(94)90047-7
http://dx.doi.org/10.1016/B978-0-12-040305-9.50005-4
http://dx.doi.org/10.1016/B978-0-12-040305-9.50005-4

	Introduction
	Data Driven Modeling Principles
	Data and Input-output Mapping
	Case study: B-spline regressors
	Regularization
	Validation and generalization
	Nonlinear mappings
	Time series modeling

	Artificial Neural Networks
	Neural Networks
	Feed forward Neural Network
	Measures of model fit
	Training of the Neural Network
	FNN in Julia Flux

	Case: first order system with input
	Model
	Experiments
	FNN based surrogate models
	Hybrid model

	Discussion and Conclusions
	Introduction
	Current MPC solutions 
	Model Summary
	Concession Requirements
	Reference Tracking MPC Operation under Uncertainty

	Stochastic analysis of a deterministic MPC
	Simulation principle
	Simulation results

	Stochastic MPC
	Stochastic MPC approach
	Simulation results

	Deterministic vs. Stochastic MPC
	Conclusions
	Introduction
	Background
	Previous Work
	Overview of Paper

	Structural analysis
	Graph theory
	Structural controllability
	Structural observability
	Relative degree of system

	Julia implementation
	Graphical structure of system
	Structural observability and controllability
	Relative degree of system

	Results
	Simple waterway model
	Detailed waterway model
	Simple waterway model with generator

	Discussion and Conclusions
	Introduction
	Previous work and motivation
	Problem description
	Limitations

	Background
	Active distribution system
	X/R - Ratio in the distribution network

	Method
	Solar data
	The difference between Ustationary and Umax

	Results
	The test area at SÃ¸ndre SandÃ¸y
	Explanation NETBAS simulation tables
	Study of 3 kW solar panels at the objects
	Scenario I
	Scenario II
	Scenario III


	Discussion
	Conclusion
	Further work
	Introductions
	Background
	Previous work
	Overview of paper

	Theoretical basis
	Profile likelihood
	Parameter estimation uncertainty

	Experimental setup
	Experimental building
	Model
	Calibration data

	Results and discussion
	Profile likelihood
	Profile likelihood in 2D
	Reduced order model for Case S1
	Parameter inter-dependence
	PL analysis of model without Rg

	Conclusion
	Introduction
	Background
	Previous work
	Outline of paper

	Experimental Rig
	System Description
	Experimental Data

	Model Description
	Model overview
	Mixed tank model
	Stratified tank model
	Distributed parameter model
	Semi-discretized model

	Model parameters
	Operating conditions
	Basic simulation of stratified tank model

	Model fitting
	Sensor signals and experimental data
	Measure of model fit
	Model fitting results

	Discussion and Conclusions
	Monitoring of Erosion in a Pneumatic Conveying System by  Non-intrusive Acoustic Sensors – A Feasibility Study
	1 Introduction
	2 Materials and Methods
	2.1 Pneumatic conveying test rig
	2.2 Active acoustic monitoring method
	2.3 Test procedure
	2.4 Data analysis
	2.4.1 Latent variable matrix decomposition
	2.4.2 Partial Least Squares Regression (PLS-R)
	2.4.3 Cross-validation


	3 Results
	4 Conclusions
	Introduction
	Model
	Simplified model
	PDE model
	A brief discussion on equation of state
	Fluid structure interactions (FSI)
	Gridding
	Boundary conditions

	Initial conditions

	Comparison with field data
	Field data comparison, no fluid structure interactions
	Field data comparison, fluid structure interactions

	Conclusions
	Acknowledgements
	Model selection for waste conversion efficiency and energy demands in a pilot for large-scale larvae treatment
	1 Introduction
	2 Material and methods
	2.1 Description of the larvae production facility in Eskilstuna
	2.1.1 Treatment set-up
	2.1.2 Materials
	2.1.3 Temperature and moisture sampling

	2.2 Modelling
	2.3 Assumptions

	3 Results and discussion
	3.1 Treatment process
	3.2 Modelling
	3.2.1 Larvae growth and material reduction
	3.2.2 Evaporation of water to dry the waste


	4 Conclusions
	Introduction
	Bioprocess modelling
	Development of dynamic models
	Results and discussion
	Steady-state simulation
	Dynamic simulation
	Detection of operating conditions

	Conclusions
	Chemical equilibrium model to investigate scaling in moving bed biofilm reactors (MBBR)
	1 Introduction
	2 Materials and methods
	2.1 Sampling and wet chemical analysis
	2.2 Element analysis by Microwave plasma atomic emission spectroscopy
	2.2.1 Liquid sample preparation for element analysis
	2.2.2 Quantification of biomass on carriers
	2.2.3 Solid sample preparation for element analysis

	2.3 Model inputs
	2.4 Crystal observation in solid samples

	3 Results and Discussion
	4 Conclusions
	Introduction
	Background
	Organization of paper

	Mathematical model
	Overview of experimental data

	State Estimation
	Results and Discussion
	Conclusions and future work
	Introduction
	Generator capability curve
	Model development
	Rated turbine power limit
	Rated stator current limit
	Rated field current limit
	Practical Stability limit
	Visualization tool

	Case study
	Description of a test system
	Simulation results

	Temperature visualization
	Conclusion and further work
	Data for Test System 

