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Abstract
Monitoring epicyclic gearboxes in vital power transition
situations is still a challenge. In this paper, we discuss
these challenges with long time vibration measurements
through two industrial examples. The first are the two
gearboxes in the front axle of a load haul dumper (LHD)
from Pyhäsalmi mine and the second a two stage gearbox
from Kelukoski water power station (WPS). The LHD was
monitored almost continuously for nearly two years until
its breakdown. The data from WPS was intermittent from
a five month period. We discuss how to find stable con-
ditions for comparable measurements in these cases. For
this we utilise a tacho signal from the cardan axle of the
LHD and power measurements from the WPS. It is found
that in both cases second derivatives of acceleration sig-
nals, called snap, respond more quickly to changes in vi-
bration severity. In the LHD case we get clear trends for
increasing norms of snap signals. The trends are extracted
with nonparametric regression. The shorter measurement
period of the WPS makes it impossible to say if its changes
are only seasonal. Spectral analysis shows increase in high
frequency vibration with time in both cases but provides
almost no help for detailed diagnostics.
Keywords: epicyclic gearbox, spectral analysis, higher
derivatives, MIT-indices, nonparametric regression

1 Introduction
Typical methods for vibration severity calculations are
for example root mean square (rms) values of displace-
ment, velocity or acceleration signals. These may re-
veal some faults in rotating machines, such as imbalance,
but gear and rolling bearing faults often cause high fre-
quency vibration which is more evident in higher deriva-
tives of acceleration. The compact and complex structure
of epicyclic gearboxes are no exception. We will present
methods to extract vibration severity time histories from
epicyclic gearboxes and discuss the difficulties that are en-
countered.

Signal processing methods are presented in Section 2.
These are the Discrete Fourier Transform (DFT) and its
inverse (IDFT) for spectral analysis, calculation of deriva-
tives using these transforms, lp-norms and MIT -indices
for vibration severity calculations and Nadaraya-Watson
nonparametric regression for estimation of MIT -trends

and other relationships of two variables.
Vibration measurements from the LHD and WPS are

described in Section 3 and we will also solve the total
revolution times of the gearboxes with the help of some
basic number theory. Calculations from vibration mea-
surements are presented in Sections 4 and 5 respectively.
Finally the obtained results are discussed in Section 6.

The method for obtaining vibration severity time histo-
ries presented in this study is as follows:

1. Find stable and comparable operating conditions of
the machine or normalise these conditions computa-
tionally.

2. Find which values of norms and derivatives have
changed the most during the measurement period and
use these for MIT -indices.

3. Use Nadaraya-Watson regression to fill in the gaps
in measurements. It also extracts the trends more
clearly, since there typically still is some variance
left in the calculations. Here the scaling parameter
is chosen visually.

2 Signal processing
2.1 DFT and derivatives
The vibration measurements are stored as sampled se-
quences x = (x0, . . . ,xN−1) of length T = ∆t ·N, where
∆t is the sampling interval. The spectrum of this sampled
signal is calculated with the Discrete Fourier transform
(DFT)

F{x}k = Xk =
1
N

N−1

∑
n=0

xne−i2πkn/N . (1)

Its inverse transform (IDFT) is

F−1{X}n = xn =
N−1

∑
k=0

Xkei2πkn/N . (2)

Here we have equated the inverse as xn, because it returns
the original signal at the sample points (Briggs and Hen-
son, 1995). The DFT and IDFT pair can be used for dif-
ferentiation and integration of signals. An algorithm for
this consists of calculating the DFT coefficients Xk and
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then forming a new sequence G = (G0, . . . ,GN−1), with
G0 = 0 and

Gk =

(
2πki

T

)z

Xk, 0 < k < N/2

GN+k =

(
2πki

T

)z

XN+k, −N/2 < k < 0

GN/2 =

(
πN
T

)z

cos
(

z
π

2

)
XN/2 (if N is even),

(3)

where z is the order of derivative (or integral when nega-
tive). Finally we get the vector x(z) with the IDFT

x(z)n = F−1{G}n. (4)

The only problematic part in deriving this algorithm is the
term GN/2 for even N, which the author has presented in
(Nissilä et al, 2014). The algorithm also works with any
complex z, in which case we use the principal values of( 2πki

T

)z
and

(
πN
T

)z. It then calculates an approximation of
the Fourier or Weyl fractional derivatives and integrals.
This operation is also sometimes called differintegration.

The DFT assumes the sequence periodic and thus it is
practical to window the signal by multiplying it with a
suitable window function to attenuate any discontinuities
at the end points of the sequence. We use the window
function which was introduced in (Lahdelma and Kotila,
2005)

w(t) =


0, if t ≤ 0
1
A
∫ t

0 e
(

y(y−T/ε)
)−1

dy, if 0 < t < T/ε

1, if T/ε ≤ t ≤ T/2
w(T − t), if t > T/2.

(5)

Here A =
∫ T/ε

0 e
(

y(y−T/ε)
)−1

dy and ε is the portion of T
for ascent and descent. Window function w is infinitely
differentiable and, therefore, it preserves the continuity
properties of the original signal. We use the trapezoidal
rule to approximate the integrals in the definition of w.

2.2 lp-norms and MIT-indices

The generalised lp-norm or Hölder mean of vector x(z) is

∥∥∥x(z)
∥∥∥

p, 1
N

=

(
1
N

N−1

∑
n=0

∣∣∣x(z)n

∣∣∣p)1/p

, (6)

for p ≥ 1. This is the traditional lp-norm with equal
weights 1/N. The generalisation to cases −∞ ≤ p ≤ ∞

is done in (Bullen, 2003) with the limiting values

∥∥∥x(z)
∥∥∥

p, 1
N

=



(
∑

N−1
n=0

1
N

∣∣∣x(z)n

∣∣∣p)1/p
if p ∈ R\{0}(

∏
N−1
n=0

∣∣∣x(z)n

∣∣∣)1/N
if p = 0

maxn=0,...,N−1

∣∣∣x(z)n

∣∣∣ if p = ∞

minn=0,...,N−1

∣∣∣x(z)n

∣∣∣ if p =−∞.

(7)

The Hölder mean includes many traditional features, such
as minimum value p = −∞, harmonic mean p = −1, ge-
ometric mean p = 0, arithmetic mean p = 1, root mean
square (rms) p = 2 and maximum value p = ∞.

The dimensionless MIT -index for vibration severity
evaluation was first presented in (Lahdelma, 1992) and it
utilised the rms values of integer order derivatives and in-
tegrals. It has been generalised to real order differintegrals
(Lahdelma and Juuso, 2011) as

τ MIT p1,p2,...,pM
α1,α2,...,αM =

1
M

M

∑
m=1

bαm

∥∥∥x(αm)
∥∥∥

pm,
1
N∥∥∥x(αm)

ref

∥∥∥
pm,

1
N

, (8)

where αm, pm ∈ R, ∑
M
m=1 bαm = 1, τ is the length of the

signal and xref is a reference signal from the machine in
good condition or low stress. Typically MIT increases
together with decreasing machine condition. The MIT -
index can also compare stress levels of different operating
conditions.

2.3 Nadaraya-Watson nonparametric regres-
sion

Nonparametric regression of two variables using a ker-
nel function was proposed in 1964 independently by
Nadaraya and Watson (Nadaraya, 1964; Watson, 1964).
Suppose that we have measured values xxx at the points ttt.
Then the estimated value x at t is

x(t) =
∑

N−1
n=0 Kh(t− tn)xn

∑
N−1
n=0 Kh(t− tn)

, (9)

where Kh is some non-negative and even kernel function
for which

∫
∞

−∞
K(t)dt = 1 and h is a scaling parameter so

that the scaled kernel is

Kh(t) =
1
h

K
( t

h

)
. (10)

Smaller h gives an estimate which follows individual mea-
surements more closely whereas bigger h gives a smoother
and more slowly changing function. The kernel in all the
regression calculations in this study is a Gaussian (normal
distribution)

K(t) =
1√
2π

e−
t2
2 . (11)

3 Measurements and gearbox proper-
ties

3.1 Load haul dumper front axle
The measurement setup consisted of four SKF CMPT
2310 accelerometers which were mounted externally onto
the LHD’s front axle housing and a tachometer on the
drive shaft. Accelerometers were located near the plan-
etary gearboxes on either side of the axle and were po-
sitioned horizontally and vertically. Measurements were
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recorded with a National Instruments CompactRIO 9024
data logger into a solid-state drive (SSD) as binary files
of one minute length. Sampling frequency is 12800 Hz,
and a built-in antialising filter guarantees that there are
no aliases at frequencies that are less than 0.45 ·12800 Hz
= 5760 Hz. More information on the measurements can
be found from (Laukka et al, 2016).

The measurement points are called right vertical (RV),
left vertical (LV), right horizontal (RH) and left horizontal
(LH). During the first month of the measurements, the ac-
celerometer cables of LV and LH broke down and were re-
placed. Two SSDs also broke down almost simultaneously
after six months of service, which stopped the whole mea-
surement for a month and a half. A third accelerometer
at RH broke down during this stoppage and was replaced.
Finally six months before the end of measurements, the
accelerometer at RH was broken and after that also the ac-
celerometer at RV. There was only one spare accelerom-
eter left which was installed to LV and the accelerometer
at RH was moved to RV (since at this point it was clear
that the vertical measurements were more sensitive to the
deteriorating condition of the axle.)

At the beginning, measurements were always recorded
when the LHD was operating. After the stoppage caused
by the broken SSDs the program was modified to record
only two hours of data after the LHD starts up.

The cardan axle transfers the power first to a differen-
tial in the front axle which has a driving pinion with 9
teeth and a crown wheel with 46 teeth (spiral bewel gears).
Based only on some pictures, the actual differential oper-
ation is carried out with straight bevel gears that probably
have 20 teeth. These do not affect the output ratio if the
LHD is not turning. Shafts in the front axle then rotate the
sun gears in the epicyclic gearboxes on either side. The
epicyclic gearboxes consist of a stationary ring gear (104
teeth), three planetary gears (39 teeth) and a sun gear (19
teeth). These are simple spur gears. Unfortunately, we
have not yet received enough detailed information about
the bearings in the system other than that they are of ta-
pered roller type. The planet carrier provides the output to
the front wheel. This is an example of an epicyclic gear-
box in the planetary configuration and driven in reduction
mode. Assuming then that the rotational frequency of the
drive shaft is νdriveDIF = 13.5 Hz, we get the differential
gear mesh frequency

νmeshDIF = 9 ·νdriveDIF = 121,5 Hz.

If the LHD is not turning, the differential provides the
same rotational frequencies to both sides of the axle and
the frequencies of the epicyclic gears are (Vicuña, 2010;
Immonen et al, 2012) (negative sign means opposite di-
rection)

νsunLHD =
9
46

νdriveDIF ≈ 2,64 Hz,

νcarrierLHD =
19

19+104
νsunLHD =

19
123

νsunLHD

≈ 0.408 Hz,

νplanetsLHD =−104−39
39

νcarrierLHD =−5
3

νcarrierLHD

=− 95
369

νsunLHD ≈−0.680 Hz,

and the planetary gear mesh frequency

νmeshLHD = 104 ·νcarrierLHD ≈ 42.43 Hz.

Gear tooth numbers are typically relative primes, i.e. their
greatest common divisor is 1. This means that it takes
a long time for a gearbox to mesh through all of its tooth
pairs. To calculate this time for a full revolution of meshes,
we seek whole number solutions for the number of revo-
lutions NsunLHD, NcarrierLHD and NplanetsLHD. This leads to
congruence equations

19 ·NsunLHD = 0 mod 123,

95 ·NsunLHD = 0 mod 369.

The solution method can be found in any basic number
theory book (Strayer, 1994), and they can also be solved
with symbolic mathematical software (such as Mathemat-
ica) and even solvers for web browsers exist. The solu-
tions of NsunLHD are 123m and 369m respectively for all
m ∈ Z. The smallest combined solution is the least com-
mon multiple of 123 and 369, which is lcm(123,369) =
369. Thus after 369 revolutions of the sun gear, every
tooth has returned to their original position and this takes
369 ·1/νsunLHD≈ 139.70 seconds. For most situations this
means far too long a signal to analyse (if we can even find
that long signals with relatively constant speed). So in
practise, we analyse signals whose lengths are at least the
revolution times of all the individual components.

3.2 Water power station gearboxes
The water power station at Kelukoski has a two stage
epicyclic gearbox. The first (slower) is called gearbox 1
and the second (faster) will be called gearbox 2. Both
were monitored with one WBS CM301 sensor (acceler-
ation data was recorded) with sampling frequency 5000
Hz. Every 15 minutes a signal of length 7 s was recorded
from both measurement points as WAV files. There were
four continuous periods of data collection.

Since the WPS is connected to the Finnish power grid,
its output frequency is kept at 12,5 Hz to a high preci-
sion (the frequency of the power grid is four times this,
i.e. 50 Hz) Thus we can calculate the characteristic fre-
quencies backwards starting from the output of the faster
gearbox. Gearbox 2 is in the star configuration, meaning
that it has a stationary planet carrier with six planet gears
(25 teeth). Output is provided via the sun gear (36 teeth),
νsunWPS2 = 12,5 Hz, and input from the gearbox 1 via the

EUROSIM 2016 & SIMS 2016

424DOI: 10.3384/ecp17142422       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



ring gear (86 teeth). The gear teeth are double helical and
the gearboxes have plain bearings. The formulas for the
frequencies of these components are particularly easy in
the star configuration (Vicuña, 2010)

νringWPS2 =−
36
86

νsunWPS2 ≈−5.23 Hz,

νplanetsWPS2 =
86
25

νringWPS2 =−18.00 Hz,

and the mesh frequency νmeshWPS2 = 36 · νsunWPS2 =
450.00 Hz. The full revolution time calculation leads to
congruence equations

86 ·NringWPS2 = 0 mod 36,

86 ·NringWPS2 = 0 mod 25,

whose solutions are 18m and 25m respectively for all
m ∈ Z. The smallest combined solution is lcm(18,25) =
450 and thus 450 revolutions of the ring gear takes 450 ·
1/νringWPS2 = 86.00 seconds.

Gearbox 1 is in planetary configuration, but in contrast
to the planetary gearboxes in the LHD, it is driven in the
other direction (to increase the rotational speed) and the
sun gear (31 teeth, output) has more teeth than the plane-
tary gears (25 teeth). The stationary ring gear has 81 teeth.
We have νsunWPS1 = νringWPS2 (this middle part of the two
gearboxes is a floating installation) and the other frequen-
cies are

νcarrierWPS1 =
31

31+81
νsunWPS1 =

31
112

νsunWPS1

≈−1.45 Hz,

νplanetsWPS1 =−
81−25

25
νcarrierWPS1

=−56
25

νcarrierWPS1 ≈ 3.24 Hz,

and finally the mesh frequency

νmeshWPS1 = 81∗ |νcarrierWPS1| ≈ 117.31 Hz.

Again, to calculate the time for a full revolution we get

112 ·NcarrierWPS1 = 0 mod 31,

56 ·NcarrierWPS1 = 0 mod 25,

whose solutions are 31m and 25m respectively for all m ∈
Z and lcm(31,25) = 775. This takes 775 ·1/νcarrierWPS1≈
535.11 seconds.

Before the previous breakdown of gearbox 1 several
years ago, it had a slightly different set of gears with 35
teeth in the sun gear, 27 in the planetary gears and 91 in
the ring gear. These give the same ratio for the output
of the gearbox, but the frequency of the planetary gears
was 3.45 Hz and most importantly the mesh frequency was

131.80 Hz. Unfortunately, these older tooth numbers were
still thought to be valid for quite some time after the break-
down probably due to some problems with communica-
tion. Obviously the lack of such mesh frequency and the
the appearance of the actual mesh frequency 117.31 Hz
in the spectra was a puzzle in the analysis of vibration
measurements from this gearbox. These erroneous calcu-
lations and hardly satisfying explanations of their results
ended up into some publications (Immonen et al, 2012;
Nikula et al, 2015). It seems that the new gearbox is an
improved design, since with these older gear tooth num-
bers we get full revolution of the gearbox in only 135 rev-
olutions of the carrier (which happens due to one of the
congruence equations having solutions which repeat very
often), which is just 93.21 seconds, considerable less than
the 535.11 s of the new gearbox.

4 Calculations from the LHD mea-
surements

For calculations signals were selected from the beginning
of most measurement days, when the rotational frequency
of the drive shaft was approximately 13.5 Hz. At first this
was done manually but after a while with the help of an al-
gorithm which searched for signals with constant enough
tacho pulse separations to indicate the desired speed. All
of these were still visually checked to select the signals
for calculations. Only signals from the beginning of the
workday or right after the LHD had been in its weekly
maintenance were selected, because then we knew that its
bucket was empty and thus the load on the axle was con-
sistent. One could also use the tachometer signal for order
tracking the signal, i.e. interpolating the signal to exact
revolutions of the cardan axle. This would probably re-
duce variance in the calculations and make spectral anal-
ysis more exact, but because the tacho pulse was recorded
badly at times, it would not have been simple to imple-
ment. From each signal a 4 s sample was multiplied with
the window function (5) using ε = 10 and this new sig-
nal was differintegrated with the algorithm (4). Band-pass
filtering was performed with an ideal filter at cut-off fre-
quencies 3 Hz and 5000 Hz. From each end of the signal
20% was rejected and the remaining 2.4 second signal (ap-
proximately the time it takes for the carrier to rotate once)
was used in the calculation of generalised lp-norms. All
the calculations were performed with Matlab.

Figure 1 shows the trend of values 2.4MMMIIITTT 2
4 from the

point RV and a fitted regression estimate with h = 20. In
(Nissilä et al, 2014) it was already demonstrated that the
relative increase of norms of snap signals were bigger than
norms of acceleration signals and that the order of norm
had very little effect. The fitted regression curve is al-
most an increasing function with smooth steps. This could
mean several different faults or faults which worsen with
time.
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Figure 1. Trend of 2.4MMMIIITTT 2
4 from the point RV in the frequency range 3 - 5000 Hz and regression estimate with h = 20

Figure 2. Trend of 2.4MMMIIITTT 2
4 from the point LV in the frequency range 3 - 5000 Hz and regression estimates with h = 20 (black) and

h = 2 (blue)

Figure 3. Waterfall plot of the spectra from the point RV in the frequency range 3 - 1000 Hz
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Figure 4. Waterfall plot of the spectra from the point LV in the frequency range 3 - 1000 Hz

Figure 5. Waterfall plot of the spectra from the point RV in the frequency range 3 - 6400 Hz

Figure 6. Waterfall plot of the spectra from the point LV in the frequency range 3 - 6400 Hz
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Figure 2 shows the trend of values 2.4MMMIIITTT 2
4 from the

point LV and fitted regression estimates with h = 20 and
h = 2. After 350 days the trend starts to decrease but then
makes a huge increase during the last gap in the measure-
ments (or just before it, since there is one measurement
before the gap for which 2.4MMMIIITTT 2

4 is almost 7). The trend
estimate with h = 2 is shown here because it manages to
estimate this last big change before the gap based on that
one measurement.

Fig. 3, 4, 5 and 6 show waterfall plots of the spec-
tra which were used in the calculation of the snap sig-
nals for the trends in the previous figures. In the fre-
quency range 3 - 1000 Hz hardly any changes occur dur-
ing the measurement period. This is interesting, since this
frequency range contains the mesh frequencies (42.4 Hz
and 121.5 Hz), their multiples and other gear related vibra-
tions. In the higher frequencies we see huge increase in vi-
bration amplitude around 2000 Hz and also a drift towards
higher frequencies. These spikes are probably structural
resonances and one can actually see with more in depth
analysis that they are mostly very high order multiples of
the cardan axle frequency 13.5 Hz. There is also increase
in the 6000 Hz region with time. At the very end of the
measurement period these high frequency resonances drop
to smaller frequencies at the point RV (Fig. 5).

Some information on the damage in the axle after its
breakdown was delivered to the university. It seems that
the planetary gears had only minor wear on their surfaces.
The ring gear of the differential had several pieces broken
off from its teeth (probably explains the increase in the
high multiples of the cardan frequency). There was also a
lot of wear around the shafts in the axle and at least one
cracked inner ring of a bearing.

5 Calculations from the WPS mea-
surements

An overview of these measurements is provided in Fig.
7 where we have calculated the rms values from all of the
vibration measurements together with the power data. It is
clear that the WPS is operated very differently at different
times. In the middle of summer the WPS is shut down
during nights. The power output and vibration power seem
to correlate so much that it is useful to investigate their
relation in more detail.

Fig. 8 shows that the relation between acceleration rms
and WPS power output is almost linear in gearbox 1. A
good regression fit is achieved with parameter h = 0.2.
Similar linear relationships between certain vibration fre-
quency components and WPS power output were found in
a previous study from the same WPS (Nikula et al, 2015).
There is a tiny flatter part around 5 MW. This flat part is
more defined in the similar visualisation from gearbox 2
in Fig. 9. It seems that the higher speed gearbox 2 (which
also has much bigger vibration values than gearbox 1)
also exhibits more nonlinearity in WPS power vs vibra-
tion power. These figures could be used to normalise vi-

bration measurements taken during different power levels
of WPS in its condition monitoring. One must be careful
with such methods though, since for example if the mea-
surements from low power situations are amplified, we
will also decrease the signal to noise ratio in those cases
when compared to those signals which are not amplified.
In what follows we will consider only measurements from
the power band 7.9 - 8.1 MW, since then we don’t need
such normalisation and the four continuous measurement
periods all contain measurements from this power band.

From each signal from the power band 7.9 - 8.1 MW we
took a 6.5536 second sample (to get 6.5536 s * 5000 Hz =
32768 samples, a power of two) and multiplied it with the
window function (5) using ε = 10 and this new signal was
differintegrated with the algorithm (4). High-pass filter-
ing was performed with an ideal filter at cut-off frequency
3 Hz. Because the sampling frequency was relatively low,
no low-pass filtering was done. From each end of the sig-
nal 20% was rejected and the remaining 3.9 second signal
was used in the calculation of generalised lp-norms.

Fig. 10 shows the trend of values 3.9MMMIIITTT 8
2 from gear-

box 1 and a fitted regression estimate with h = 20. We see
a 10 % increase in the last measurement period. Here and
in the following trends we have a used a higher order norm
just to show their effectiveness. In these calculations the
norms with p = 8 showed a slightly more clear increase
when compared to p = 2, but as we see in Fig. 11, the or-
der of derivative plays a bigger role since the increase of
3.9MMMIIITTT 8

4 is 20 % and there is no downturn in July as there
is in Fig. 10. The trend regression estimates with h = 20
and h = 10 only differ between the last two measurement
periods as the smaller h shows a more rapid increase.

Same trends are calculated from the measurements
from gearbox 2 and plotted in Fig. 12 and 13. Both show
a 15 % increase during the measurement period, but the
changes in the norm 3.9MMMIIITTT 8

2 are more irregular. This
is especially clear in the trend regression estimate with
h= 10 in Fig. 12. The bigger h ignores these local changes
and reveals the long term trend more clearly. Even so,
again the snap signals are more consistent as both trend
regression estimates in Fig. 13 reveal the increasing trend
better than the calculations from the acceleration signals.

Waterfall plot from gearbox 1 (Fig. 14) has increased
at the very end of the measurement period at 1350, 1800
and 2250 Hz, which are multiples of νmeshWPS2. They also
have sidebands 18 Hz apart, which is νplanetsWPS2. The
gearbox 1 mesh frequency 117.3 Hz is also visible and it
has sidebands 1.45 Hz apart (not visible in this zoom level
of the figure), which is νcarrierWPS1. These do not change
noticeably in the measurement period.

Waterfall plot from gearbox 2 (Fig. 15) shows hardly
any change at all with time. It is a mystery why the in-
crease at the frequencies 1800 and 2250 Hz are not visible
here.
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Figure 7. Overview of the measurements as rms of acceleration signals from both gearboxes and power output of WPS as functions
of time

Figure 8. Power vs rms of acceleration from gearbox 1 and regression estimate with h = 0.2, colors depict time of measurements

Figure 9. Power vs rms of acceleration from gearbox 2 and regression estimate with h = 0.2, colors depict time of measurements
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Figure 10. Trend of 3.9MMMIIITTT 8
2 from gearbox 1 in the frequency range 3 - 2500 Hz and regression estimate with h = 20

Figure 11. Trend of 3.9MMMIIITTT 8
4 from gearbox 1 in the frequency range 3 - 2500 Hz and regression estimates with h = 20 (black) and

h = 10 (blue)

Figure 12. Trend of 3.9MMMIIITTT 8
2 from gearbox 2 in the frequency range 3 - 2500 Hz and regression estimates with h = 20 (black) and

h = 10 (blue)
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Figure 13. Trend of 3.9MMMIIITTT 8
4 from gearbox 2 in the frequency range 3 - 2500 Hz and regression estimates with h = 20 (black) and

h = 10 (blue)

Figure 14. Waterfall plot of the spectra from gearbox 1 in the frequency range 3 - 2500 Hz

Figure 15. Waterfall plot of the spectra from gearbox 2 in the frequency range 3 - 2500 Hz
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6 Conclusion
The long measurement period and the final breakdown of
the front axle of the LHD makes it quite clear that vibra-
tion severity calculations could serve as indicator’s of its
condition. Snap signals are especially sensitive for dete-
riorating condition of the axle. Most of the critical faults
occurred in the differential gearbox, which might explain
why the spectral analysis only shows noticeable increase
in the multiples of the cardan frequency.

Unfortunately the data from the WPS was intermittent
and lasted only for one summer period, so we can not say
for certain how big are for example its typical seasonal
changes in vibration severity. An increasing trend was ob-
served from both gearboxes especially when MIT -indices
were calculated from snap signals. An increase in the mul-
tiples of the gearbox 2 mesh frequency was also observed,
but interestingly from the gearbox 1 vibration measure-
ments.
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