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Abstract
Maintenance in industry is currently moving from time

planned preventive methods to condition-based

operation for better process reliability and lowered

manufacturing costs. Machine vibrations include

information from operating state and machine health

and can be used in the computing of several different

features for condition monitoring and process control.

These describing values can be used for the estimation

of remaining useful life (RUL). Local computing

enables the use of advanced algorithms for dense

vibration data on-site, right next to the monitored

process so that the data can be turned into information

without the need for large data transfers and centralized

computing. Calculated features can be supported with

other sensory data, information through expert

knowledge, modelling, and data from similar systems in

other installations. Developments in wireless

technologies enable the use of small nodes in distributed

computing. This paper examines the use of locally

calculated generalized norms in combination with

supporting information from the global maintenance

database.

Keywords: intelligent indices, local calculation, edge 

computing, vibration measurements, generalized
norms, combined information

1 Introduction

It has been studied that a large part of the total operating

costs in all manufacturing and production plants can

consist of maintenance costs. Industry related

maintenance costs can vary from 15 percent in food

industries to 60 percent in heavy industries of the cost of

goods produced. (Mobley, 2002)

This paper introduces advantages of using combined

information from several similar targets in addition to

just monitor a single target separately. These systems or

machines can be located at the same site or at any other

location that fits into predetermined criteria. Systems

that can be classified to operate in comparable

environments make the base for the possible

measurement locations. After classification parameters

are met for the locations, the valid measurement points

can be formed only when the operating parameters for

the machinery in these systems match. After all the 

criteria for valid points are met, these values can be used 

to improve condition monitoring performance in 

individual locations. Measurements can be collected 

along with the meta-data determining measurement 

conditions and operating parameters and sent to a 

centralized condition monitoring database. This 

database provides supporting information to all relevant 

operators. Information from the database helps in the 

determining of the threshold level for the amount of 

stress one machine can withstand, locating different 

fault characteristics, and improving operating 

performance through best practices. The determining of 

the threshold level for machine stress resistance gives 

the life expectancy for the part and the variation of the 

measurement points shows the reliability of these 

results. Operating habits vary between different sites 

and even within the same site. This framework could 

include the effects of these different driving habits and 

reveal the best practices quickly.  

Vibration measurements are widely used in industrial 

applications to monitor condition and operating state of 

the machinery. Almost all machines vibrate and when 

the machine operation changes, the vibrations change as 

well. These changes can indicate shift in machine 

condition when linked to specific faults. Predicting 

developing faults leads to minimal down time and better 

overall control of process maintenance with scheduling 

and preventing of sudden break downs.(Rao, 1996) 

Local calculation enables the use of vast amount of 

data in condition monitoring and machine control. 

Advanced feature extraction can be done in small 

computers located next to the monitored machinery or 

in the sensor itself. Informative indices extracted from 

the dense accelerometer data should be used as any other 

measured data. The applications include long term 

condition monitoring and determining of remaining 

useful life that enables the prognostics aspect and real-

time operating state detection. These values can be used 

in control applications, stress monitoring or calculating 

of condition indices when the machine is operating in 

the predefined reference state.  

Centralized database in a server with versatile 

interface enables the use of this data in several different 

locations by varying users at the factory. This local 

database can be connected to a global framework 
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providing interoperability and integrability of services 

(Arrowhead). This work is done in Arrowhead project 

which develops widely interoperable and integrable 

service-based collaborative automation framework. Its 

vision is to enable collaborative automation by 

networked embedded devices and lead the way to 

further standardization work. In the following section, 

short style guidelines are given. 

2 Local Calculation 

Advances in technology have made the processing of 

large datasets with small distributed systems possible. 

Data acquisition (DAQ) system combined with the field 

programmable gate array (FPGA) can do the data 

processing while recording it (Shome et al., 2012; Zheng 

et al., 2014). FPGA core can be faster in certain 

calculations than comparable digital signal processors 

(DSPs) and personal computers (PCs) (Vite-Frias et al., 

2005). It can be useful e.g. in data pre-processing where 

it can filter the noise from the vibration signal in real-

time (Shome et al., 2012). Small programmable 

automation controllers (PACs) can be very useful at the 

algorithm development phase as they can record varying 

sensory data streams and run calculations for the data. 

Figure 1 presents the algorithm development for local 

calculation and generalized third party data usage. The 

PAC setup that we have used for vibration monitoring 

cases consists of National Instruments cRIO-9024 

controller with cRIO-9114 chassis which has Xilinx 

Virtex-5 reconfigurable FPGA core. Vibration sensors 

were connected to NI 9234 analog input module with 

built in anti-aliasing filter designed for the vibration 

measurements. Code for data acquisition was developed 

with Labview software. cRIO can act as a versatile 

platform for algorithm development for its modular 

construction and easy configuration. 

Determination of the machine state based on 

vibrations makes efficient maintenance planning 

possible through predictions of developing machinery 

condition. It can be also used for planning of machine 

use in order to prolong its operational time if there is e.g. 

planned maintenance break coming up. 

Vibration data can be used for the automatic 

maintenance operations. Nowadays, spare parts dealer 

gets alarm when certain threshold is exceeded and he 

can react immediately and start necessary preparations 

for sending replacement parts or planning of repair 

operation. Data send to third parties from the plantwide 

database should be carefully secured and only intended 

parties should have access to this information. Data 

should be carefully defined with relevant metadata 

especially for third party users since values without any 

connection become obsolete. Automation service 

providers have applications using this presented fast 

maintenance idea. ABB has a rapid response service 

(Rapid Response) that promise to provide instant repairs 

and needed spare parts in an agreed timeframe. They use 

data from clients machinery to monitor exceptional 

situations or failures and minimize the process down 

time. This idea can be further developed by the use of 

local processing for advanced monitoring methods. 

Wireless technologies enable interesting applications 

for these small devices capable in signal processing. 

These nodes are capable in data compression and 

transferring of large amounts of data wirelessly (Huang 

et al., 2015), data filtering (Ramachandran et al., 2014), 

and certain transformations (Merendino et al., 2011). 

Unfortunately nodes have restrictions in measurement 

accuracy and computing power due to limited battery 

power and the expectation for the low unit cost. Small 

sensor nodes can have simple algorithms implemented 

for filtering or pattern recognition but more complex 

algorithms would require more processing and thereby 

more battery power (Ramachandran et al., 2014). 

 

  

Figure 1. Algorithm development for local calculation and generalized use of extracted features. 

EUROSIM 2016 & SIMS 2016

1 123DOI: 10.3384/ecp171421122     Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



In both cases, data transfer of raw measurement data 

is usually unnecessary and would require high 

bandwidth. Additionally, in case of wireless sensors the 

use of energy due to unnecessary data transfer should be 

avoided (Lahdelma and Juuso, 2011a). Guo and Tse 

listed several references to available compression 

methods in (Guo and Tse, 2013) for applications where 

lots of vibration data needs to be transferred. Huang et 

al. presented a lossless compression scheme for the 

wireless sensor network and achieved the average 

compression ratio of 59.01% (Huang et al., 2015). 

3 Signal Processing 

Vibration signals can be used in measuring simple 

vibration severity defined by default as the maximum 

rms value of the vibration velocities. Peak and rms 

values are just two common features used in vibration 

analysis. Vibration signal provides large amount of 

information and different features indicate different 

processes in machine operation. Finding the right 

feature for the wanted event is a matter of referencing 

the calculated values to machine operation and finding 

the correlations between these values. Features can be 

combined to form combined indices which in some 

cases increase the sensitivity of event detection. 

Generalized norms can be calculated from the vibration 

data and used to form intelligent indices using nonlinear 

scaling. 

3.1 Generalized Norms 

Vibration data has large amount of information which 

needs efficient processing. Advanced feature extraction 

methods can describe large amount of measurement 

points with one informative value. Generalized norms 

are described as, 
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where, α ∈ ℜ is the order of derivation, 
𝑝 (1 ≤ 𝑝 < ∞) is the order of the generalized norm, 

𝑁 = 𝜏𝑁𝑠 where Ns is the sampling frequency τ is the 

sample time. Generalized norm is also known as Hölder 

mean or power mean and it has the same dimensions as 

the corresponding signal 𝑥(𝛼). Some special cases of the 

norm (1) are arithmetic mean (p = 1), rms (p = 2), and 

peak value (p = ∞). (Lahdelma and Juuso, 2008a) 

Norm calculation compresses five second vibration 

information of 128000 measurement values (25600 Hz 

sampling rate) into a single value. Calculation can select 

e.g. the biggest norm value out of five consecutive 

values using a sliding window.  

Fault detection of fast impact like events can be 

increased by using derivation of acceleration signal 

(Lahdelma and Juuso, 2011a). Fault detection has 

traditionally used displacement x(0), velocity x(1), and 

acceleration x(2) signals. Higher order derivatives x(3) 

and x(4) have been previously used in the cavitation 

detection of Kaplan water turbine (Lahdelma and Juuso, 

2008b). Higher order derivatives extend the range of 

event detection and by selecting correct signal and norm 

combination, these values can be used widely in 

different applications (Lahdelma and Juuso, 2011b). 

Analogue differentiators/integrators can aid in real time 

calculations (Juuso and Lahdelma, 2006; Lahdelma, 

1992, 1995). 

Noise from motors and several other mechanisms 

occurring simultaneously with the monitored property 

causes false state detection and errors in values. It is 

important to filter this noise generated by not desired 

mechanisms before values are calculated. Sensor 

placing is comparable to the importance of sampling 

method in manual sampling measurements. Selecting 

the right order of norms or combination of norms and 

using high-pass and low-pass filters can be sufficient in 

most cases. Using of displacement, velocity, or higher 

order derivatives according to character of the 

monitored process improves the feature extraction. 

Different norm values can also be combined to make 

some events more visible. 

3.2 Stress Indices 

Stress indices are formed from calculated norms by the 

means of nonlinear scaling. Norm values are scaled to 

the linguistic range of [-2, 2] for easy understanding. 

These scaled values are easy to comprehend and user 

without deeper understanding about certain 

measurement from the process can easily use this 

linguistic range which translates to {very low, low, 
normal, high, very high}. These scaled values can be 

used in decision making and control like any regular 

process measurements. (Juuso, 2004, 2011a)  

Stress indices can reveal sudden high stress areas in 

machine operation and guide the machine operator or 

change the customary habits of machine operating 

cycle. Indices can reveal the remaining useful life 

(RUL) of the monitored component by summing up 

indices from more severe vibrations that exceed certain 

threshold limit. RUL can be estimated when the stress 

resistance of certain studied part is known. This 

information can be achieved through monitoring of the 

part from installation to break down. Figure 2 presents 

the stress indices and their use in the describing of 

sudden and cumulative stress.  

Stress causes fatigue, which forms micro fractures. 

This micro fracturing can be seen as rise in the level of 

stress indices. Indices are scaled according to the current 

condition of monitored part and the scaling function 

needs to be updated after the fatigue have caused 

changes in condition as the old range is no longer valid. 
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Figure 2. Stress indices scaled to linguistic levels and used 
to form cumulative stress. 

 

New values can be included in calculations according to 

changed state and the order of the norms can be re-

evaluated if needed.(Juuso, 2011b) Cumulative stress is 

formed by adding the indices exceeding the threshold 

level of high stress. Linear increase in cumulative stress 

indicates that the stress cycles are relatively similar and 

there have not been any dramatic changes in condition. 

After the material has experienced enough high load 

cycles, the micro fractures formed by the stress change 

the vibration levels and this can be seen as increased 

slope in cumulative stress meaning that there are more 

indices exceeding the threshold level for the high stress. 

3.3 Measurement Index 

Norm values can be used also to track relative changes 

over time in comparable situations with dimensionless 

measurement index (MIT). (Lahdelma, 1992) This 

index has been used in rating of the machinery condition 

and it is defined as, 
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where norms ‖𝑥(𝛼𝑖)‖𝑝𝑖 are obtained from the signals  

𝑥(𝛼𝑖) = 1,...,𝑛. The divider represents the state where the 

machine is in normal operational state, 𝑏𝛼𝑖 is a weight 

factor for rating individual faults or events. The sum 

Σ𝑛𝑖=1𝑏𝛼𝑖=𝑛 can be combined with other quantities like 

temperature, pressure, or some statistical features of 

signals. 

Figure 3 presents the use of condition indices in 

condition monitoring of the load haul dumper front axle. 

The change in condition can be seen as a strong raise in 

index level after 250 days.      

4 Advanced Wear Monitoring 

Remaining useful life can be quite simple to predict if 

the quality of the monitored parts is similar and the 

stress constant. Known stress resistance level gives the 

target value for the probable failure limit and this can be 

used to predict the expected lifetime rather accurately 

even without monitoring. The more common case is that 

the stress levels vary and we need to monitor some 

Figure 3. MIT condition indices used in load haul dumper front axle monitoring. (Nissilä et al., 2014) 
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indicators that tell us about the changes in condition or 

upcoming failure. 

Vibration is a good indicator with rotating or cyclic 

machinery. The problem here is that the vibrations 

consist of information from several different 

mechanisms and we need to filter the data in order to 

find the valid information. Intelligent indices can isolate 

the wanted mechanisms of machine operation. These 

features can then be further used in combination with 

other indicators in order to strengthen the observations. 

Increased vibrations with particles in oil or increased 

temperature can indicate the upcoming failure and this 

idea can be used with information acquired from other 

identical setups that have been monitored with similar 

equipment.  

Fault development processes are typically very slow 

and require long condition monitoring periods. Stress 

and condition indices require all the information from 

the installation of new part until the break down occurs 

to gather the information about the threshold level the 

part can withstand. This sets high requirements for the 

monitoring equipment as the locations are not clean and 

the possibility for cable break or some other failure is 

high. Single fault gives the data from a single break 

down and if we want to increase the statistical reliability 

of the results we need several measurement points. 

Variation in the results of similar faults gives the 

probability of break down after certain amount of stress. 

Characteristics in machine operation and condition 

monitoring data leading to identified fault can be 

recorded. Recorded data is now found under this 

identified fault for building knowledge for the future 

condition monitoring at all connected sites. Shared 

condition and stress data makes the determining of RUL 

more reliable in comparison to monitoring one target 

alone. It gives various points where the fault has 

occurred and variation between these points can be used 

to define probability for the break down if the operation 

is continued at the same level of stress.  

Global condition monitoring database could include 

the condition information gained with varying 

algorithms. This requires the scaling of these values into 

the same universal range (like nonlinear scaling in the 

forming of stress indices). The database has to use a 

standardized way of describing data points. Universal 

descriptions ensure the robustness of the platform and 

verifies that we are dealing with the right dataset. The 

database can use a standardized metadata format for 

making the data exchange as robust as possible. The 

Open System Architecture for Condition Based 

Maintenance (OSA-CBM) standardized database of the 

Machine Information Management Open Systems 

Alliance (Mimosa) can work as a model for meta-data 

as it has standardized definitions which help to locate 

the wanted sensor from the specified machine in certain 

location (Sreenuch et al., 2013;MIMOSA). 

General problem in using shared databases between 

several operators is the integration to varying systems. 

Several different clients and languages normally need 

some proprietary middleware like an application server. 

Representational State Transfer (REST) uses HTTP 

methods to transmit data over a wide range of clients 

written in different languages without the middleware. 

RESTful API provide data in standardized form 

according to your data model in flexible way to several 

different applications. This ensures that all the different 

operators can use their systems to use the data and 

provide their own without unnecessary and time 

consuming changes.(Rodriguez, 2008) 

Local signal processing is a vital part in making 

condition monitoring data into usable form. The 

database cannot include all the vibration data from every 

monitored target since the amount of data would be 

overwhelming and the requirements for the data transfer 

would be too much. Instead it is reasonable to use 

feature extraction methods to describe the vibrations 

with more sparsely recorded values. Figure 2 describes 

the data reduction that can be achieved by using these 

feature extraction methods when single describing value 

is extracted from 5 seconds of raw rod mill vibration 

data. Raw data is useful to have from situations where 

machine is working outside of the determined operating 

state or from some other exceptional situations. This can 

be done by using triggering for data recording and only 

save the raw data from exceptional situations since the 

occasional larger data amounts are not difficult to store. 

 

               

Figure 2. Local calculation in condition monitoring. Data 

reduction percentages are taken from the calculations done 

for the acceleration sensor data from rod mill at the 

Outokumpu Chrome Oy, Kemi mine enrichment plant. 

Database information can be used for forming 

probabilities to back up the local measurements and 
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indices. They can additionally form different statistical 

indicators that can be scaled to similar range as the local 

indices. These additional indices could work like other 

local measurements from the same machine and give 

more information to decision making process and 

maintenance planning. The condition monitoring 

framework could also act as a gateway to share 

information about the machine operation and faults. 

This information sharing could aid the machine and part 

manufacturers. Manufacturers could shorten the 

response time to develop more suitable products for 

specific uses or environments. 

 

Figure 3. Data sharing with centralized database. Service 

provider can be e.g. some automation service provider. 

Orange shapes describe the characteristics of the data. 

This idea is not limited to one possible construction 

only. Figure 5 illustrates the possible framework. Data 

is defined by its meta-data and data can only be used by 

the users with privileges so that the data has the pack of 

users it concerns. Proper certification is needed for this. 

Maintenance plan of the operator defines its role in this 

framework. Operator can be both the data provider and 

the consumer in the case where the monitoring is done 

at the manufacturing site. Monitoring and analytics can 

be additionally done by a third party service provider 

which uses data to develop the operation and to organize 

maintenance actions. Third party service providers like 

automation companies have great capabilities to use this 

data efficiently in their services. The framework would 

provide important information for the asset lifecycle 

management and it can help in determining the effects 

of different factors to asset lifecycle. These effects 

would also give new ideas to part manufacturers and 

companies providing machinery. 

The Arrowhead framework developed in Arrowhead 

project can work as a base between different operators 

sharing their condition monitoring data. The Arrowhead 

framework is widely interoperable and integrable 

service-based collaborative automation framework. It 

visions to enable collaborative automation by 

networked embedded devices and lead the way for 

further standardization work. This would enable the 

service exchange between any actors in the global 

network. (Arrowhead) 

5 Conclusions 

Local computing is an effective tool for extracting 

information from machinery and parts that were earlier 

impossible due to computational requirements. 

Localized processing power is relatively cheap in 

comparison with the savings it can generate through 

lower down time and improvements in process control. 

It is inefficient to transfer all the measured raw data to 

be processed centrally and local computing transforms 

the data in universally useful and understandable 

numbers.  

The proposed framework takes this locally 

preprocessed information and makes it useful for several 

actors. Other operators would benefit from increased 

information from their processing equipment. 

Automation and analytics providers could use the 

information to create new services and add new value to 

their existing ones. Processing equipment 

manufacturers would also benefit from increased 

knowledge about how their products perform at 

different conditions. Open framework between these 

operators would enable sustainable development and 

versatile use of data in several different systems. This is 

a preliminary work and continuation work includes 

testing of this idea in practice as a pilot. It also requires 

further studying in order to find the practical and sound 

implementation methods. 
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