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Abstract

Advanced data analysis is needed in practical applications
in large scale complex systems. Variable specific data-
driven solutions provide consistent levels, which can be
used in compact model structures. In changing operat-
ing conditions, the recursive analysis extends the applica-
bility of these structures in building and tuning dynamic
and case-based models for complex systems since the
meanings change more frequently than the interactions.
The methodology provides information about uncertainty,
fluctuations and confidence in results. The scaling ap-
proach brings temporal analysis to all measurements and
features: trend indices are calculated by comparing the
averages in the long and short time windows, a weighted
sum of the trend index and its derivative detects the trend
episodes and severity of the trend is estimated by includ-
ing also the variable level in the sum. The trend episodes
and temporal adaptation of the scaling functions with time
are used in the early detection of changes in the operat-
ing conditions. The levels are understood as fuzzy labels
and the decision making is based on fuzzy calculus. The
solution is highly compact: all variables, features and in-
dices are transformed to the range [-2, 2] and represented
in natural language which is important in integrating data-
driven solutions with domain expertise.

Keywords: recursive data analysis, nonlinear scaling,
temporal analysis, fuzzy set systems, large scale systems

1 Introduction

The steady-state simulation models can be relatively de-
tailed nonlinear multiple input, multiple output (MIMO)
models ¥ = F(X), where the output vector y =
(¥1,Y2,---,yn) is calculated by a nonlinear function F
from the input vector X = (xy,x2,...,X,). More gener-
ally, the relationship could also be a table or a graph.
Fuzzy set systems, artificial neural networks and neuro-
fuzzy methods provide additional methodologies for the
function F(X).

Statistical modelling methodologies provide a wide va-
riety of models based on linear regression. In the response
surface methodology (RSM), the relationships are repre-
sented with multiple input, single output (MISO) models,
which contain linear, quadratic and interactive terms (Box
and Wilson, 1951). Application areas can be extended by
arbitrary nonlinear models, e.g. semi-physical models, de-
veloped by using appropriate calculated variables as in-
puts (Ljung, 1999).
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Principal component analysis (PCA) reduces the num-
ber of dimensions by using linear combinations of the
original variables (Jolliffe, 2002). Partial least squares
regression (PLS) uses potentially collinear variables (Ger-
lach et al., 1979). Nonparametric models for y; at each X
can be constructed from data as a weighted average of the
neighbouring values of y; (Wasserman, 2007)

Fuzzy set systems, which focus on the linguistic mean-
ings of the variables, suit very well to qualitative descrip-
tions of the process as they can be interpreted by using
natural language, heuristics and common sense knowl-
edge. Fuzzy logic emerged from approximate reason-
ing by maintaining clear connections with fuzzy rule-
based systems and expert systems (Dubois et al., 1999).
Fuzzy set theory first presented by Zadeh (Zadeh, 1965)
form a conceptual framework for linguistically repre-
sented knowledge.

The extension principle is the basic generalisation of
the arithmetic operations if the inductive mapping is a
monotonously increasing function of the input. The in-
terval arithmetic presented by Moore (Moore, 1966) is
used together with the extension principle for evaluating
fuzzy expressions (Buckley and Qu, 1990; Buckley and
Hayashi, 1999; Buckley and Feuring, 2000). The fuzzy
sets can be modified by intensifying or weakening modi-
fiers (De Cock and Kerre, 2004).

Type-2 fuzzy models take into account uncertainty about
the membership function (Mendel, 2007). Most systems
based on interval type-2 fuzzy sets are reduced to an
interval-valued type-1 fuzzy set. Fuzzy set systems can
also handle contradictory data (Krone and Kiendl, 1994;
Krone and Schwane, 1996). Takagi-Sugeno (TS) fuzzy
models (Takagi and Sugeno, 1985) combine fuzzy rules
and local lineal models.

Linguistic equation (LE) approach combines data-
driven methodologies with linguistic meanings. The LE
approach originates from fuzzy set systems (Juuso and
Leiviskd, 1992): rule sets are replaced with equations, and
meanings of the variables are handled with scaling func-
tions which have close connections to membership func-
tions (Juuso, 1999). The nonlinear scaling technique is
needed in constructing nonlinear models with linear equa-
tions (Juuso, 2004). Constraints handling (Juuso, 2009)
and data-based analysis (Juuso and Lahdelma, 2010), im-
prove possibilities to update the scaling functions recur-
sively (Juuso, 2011a; Juuso and Lahdelma, 2011).

Combined fuzzy systems can include fuzzy arithemet-
ics and inequalities (Juuso, 2014). Natural language in-
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terface is based on the scaling functions (Juuso, 2016).
Temporal reasoning is a very valuable tool to diagnose
and control slow processes: the LE based trend analysis
introduced in (Juuso, 2011b) transforms the fuzzy rule-
based solution (Cheung and Stephanopoulos, 1990) to an
equation-based solution.

Smart adaptive systems (SAS) are aimed for developing
successful applications in different fields. Three levels of
adaptation have been identified (Anguita, 2001):

1. adaptation to a changing environment;

2. adaptation to a similar setting without explicitly be-
ing ported to it;

3. adaptation to a new or unknown application.

In the first level, a short-term memory is needed for incre-
mental or on-line learning, a long-term memory for recog-
nising context drifting. Successful past solutions and the
idea of reasoning by analogy are used in the second level.
The most challenging requirement is to adapt to new ap-
plications. In real applications, the constraint of starting
from zero knowledge is modified to building new knowl-
edge or, at least, improving the existing one. Adaptive
fuzzy control proceeds through three stages: first scaling,
then the shape of membership functions and finally rule-
base. The LE approach has a similar preference sequence:
scaling, shape of scaling functions and interaction equa-
tions.

This paper discusses the recursive data analysis based
on the LE approach as a solution in the gradual refinement
of large scale complex systems.

2 Data analysis

The nonlinearities of the process are handled by the non-
linear scaling of the variables. The parameters of the scal-
ing functions are obtained by data analysis based on gen-
eralised norms and moments.

2.1 Nonlinear scaling

Scaling functions are monotonously increasing functions
x; = f(X;) where x; is the variable and X the correspond-
ing scaled variable. The function f() consist of two sec-
ond order polynomials, one for the negative values of X;
and one for the positive values, respectively. The corre-
sponding inverse functions x; = f -1 (X;) based on square
root functions are used for scaling to the range [-2, 2],
denoted linguistification. In LE models, the results are
scaled to the real values by using the function f().

The parameters of the functions are extracted from
measurements by using generalised norms and moments.
The support area is defined by the minimum and max-
imum values of the variable, i.e. the support area is
[min (x;),max (x;)] for each variable j, j =1,...,m. The
central tendency value, c;, divides the support area into
two parts, and the core area is defined by the central ten-
dency values of the lower and the upper part, (¢;); and
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(cp);j» correspondingly. This means that the core area of
the variable j defined by [(c;);, (c);] is within the support
area.

The generalised norm is defined by

1
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where the order of the moment p € R is non-zero, and N is
the number of data values obtained in each sample time 7.
The norm (1) calculated for variables x;, j=1,...,n, have
the same dimensions as the corresponding variables. The
norm \|TM§’ ||, can be used as a central tendency value if
all values x; > 0, i.e. ||TM5-’| |, € R. (Lahdelma and Juuso,
2011). The norm can be extended to variables including
negative values (Juuso, 2011a).

The orders, p, corresponding to the corner points are
chosen by using the generalised skewness,
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The standard deviation ¢ is the norm (1) with the order
p = 2. (Juuso and Lahdelma, 2010)

2.2 Interactions

The basic form of the linguistic equation (LE) model is a
static mapping in the same way as fuzzy set systems and
neural networks, and therefore dynamic models will in-
clude several inputs and outputs originating from a single
variable (Juuso, 2004). External dynamic models provide
the dynamic behaviour, and LE models are developed for
a defined sampling interval in the same way as in various
identification approaches discussed in (Ljung, 1999).

Adaptation of the nonlinear scaling is the key part in the
data-based LE modelling (Figure 1). All variables can be
analysed in parallel with the methodology described above
and assessed with domain expertise. Interactions are anal-
ysed with linear modelling methodologies from the scaled
data in the chosen time period. In large-scale systems, a
huge number of alternatives need to be compared, e.g. in a
paper machine application, 72 variables produced almost
15 million three to five variable combinations. Correla-
tions and causalities based on domain expertise are needed
to find feasible variable groups (Juuso and Ahola, 2008).

Dynamic LE models use the parametric model struc-
tures, ARX, ARMAX, NARX etc., but the nonlinear scal-
ing reduces the number of input and output signals needed
for the modelling of nonlinear systems. For the default
LE model, all the degrees of the polynomials become very
low:

Y($)+a1Y(t—1)=01U(t —ng) +e(r) 3)

for the scaled variables Y and U .

September 12th-16th, 2016, Oulu, Finland

1054



EUROSIM 2016 & SIMS 2016

Adaptation of scaling functions : :

- Generalised norms and moments i Domain expe?"ff.ﬁe

- Constraints

- Case specific

Data selection Nonlinear scaling

Data - Outliers - Feasible ranges - -
.. — - Membership definitions Variable grouping
- Suspicious - Membership functions - 3-5 variables
- Include/exclude
/ - Correlation
- Causality
Linguistic relations
/ - Selected and scaled data
Adaptation
- Manual ‘I/
E Selected variable groups
Neurall \ Linguistic equation alternatives |/
- Genetic : :
- Linear regression A 4
- Casespecific '~ Manuaily defined equations

\ Selected equations

»|  Finalvariable groups

Figure 1. Data-based modelling with linguistic equations (Juuso, 2013).

2.3 Uncertainty

The norm values obtained from different time periods can
have differences, i.e. the parameters of the scaling func-
tions can be represented as fuzzy numbers. Thus the feasi-
ble range is defined a type-2 trapezoidal membership func-
tion. A strong increase in uncertainty may demonstrate
a change of operating conditions. The scaling functions
monotonous and increasing if the ratios,

— _ (¢)j—min(x;)
(Xj = 4;],7(01), ! ’
ot = ™))

N CATET

“4)

are both in the range [%, 3], see (Juuso, 2009).
The coefficients of the second order polynomials can be
represented by

I T ov)
pZ 0w ®)
o = e DA

where Ac; =c;—(¢;); and Ac;r = (cp)j—cj.
The ratios (xj_ and Ocj_ are calculated with interval arith-

metic. The constrant range [%, 3] must be taken into ac-
count before calculating the coefficients (5). Also the ex-
tension principle is needed when calculating the scaled
values as fuzzy numbers.
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2.4 Natural language

All the scaled variables are in the same range [-2, 2] where
integer numbers correspond labels, e.g. {very low, low,
normal, high, very high}. Fuzzy numbers can be mod-
ified by fuzzy modifiers, which are used as intensifying
adverbs (very, extremely) or weakening adverbs (more or
less, roughly). The resulting terms,

A CAy CA3 C A4 CAs, (6)
correspond to the powers of the membership in the pow-
ering modifiers (Table 1). The vocabulary can also be
chosen in a different way, e.g. highly, fairly, quite (Ju-
uso, 2012a). Only the sequence of the labels is important.
Linguistic variables can be processed with the conjunction
(and), disjunction (or) and negation (not). More examples
can be found in (De Cock and Kerre, 2004).

For a time period, the variables are represented by fuzzy
numbers whose similarities are compared with the original
and modified labels.

Table 1. Modifiers of fuzzy numbers (Juuso, 2016)

Fuzzy number  Fuzzy label Degree of membership
Ay extremely A u?
Ay very A u?
Az A u
Ag more or less A /.L%
As roughly A ,LL%
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3 Recursive analysis

All the phases of the data-based LE modelling shown in
Figure 1 can be used in the recursive analysis as well. The
recursive part focuses on the scaling and the interactions
are updated only if needed.

3.1 Scaling

The parameter of the scaling functions can be recursively
updated by using the norms (1) with the defined orders.
The norm values are updated by including new equal sized
sub-blocks in calculations since the computation of the
norms can be done from the norms obtained for the equal
sized sub-blocks, i.e. the norm for several samples can be
obtained as the norm of the norms of the individual sam-
ples:

1 K
Sl = {= YICMD "y )
Si=1
1 &
= [ Y (M), ®)
S i=1

where K is the number of samples {x;}¥ ;. In automation
and data collection systems, the sub-blocks are normally
used for arithmetic mean (p = 1).

Firstly, the parameters of the scaling functions can be
recursively updated with by including new samples in cal-
culations. The number of samples can be increasing or
fixed with some forgetting or weighting (Juuso, 2011a).

In the second level, the orders of the norms are rede-
fined if the operating conditions change considerably. The
new orders are obtained by using the generalised skewness
(2) for the data extended with the data collected from the
new situation. If the changes are drastic, the calculations
are based on the new data only. The decision of starting
the redefinition is fuzzy and the data selection is impor-
tant.

3.2 Interactions

Linear regression and parametric models are used in the
recursive tuning of the interaction equations. The set of
equation alternatives (Figure 1) is useful in the recursive
analysis since the set is validated with domain expertise.

In the first level, the interaction models are not changed.
The coefficients are obtained from the data collected from
the chosen time period. Uncertainties can be calculated
by comparing the coefficients extracted from several short
periods.

In the second level, the revised scaling functions may
require updates for the interactions as well. However, the
re-tuning is started only if the current equations do not op-
erate sufficiently well. The earlier chosen set of alternative
equations is used first. New equations are included if new
variables become important. The selected variable groups
(Figure 1) are analysed first.

Considerable changes in operating conditions mean that
the full data-based analysis is needed. This is the third
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level, which is used to form the model basis for the case-
based reasoning (CBR), see (Juuso and Ahola, 2008).

3.3 Fuzzy logic

The recursive data analysis produces parameters for the
scaling functions and interactions. Uncertainties of the pa-
rameters, which are also obtained in the calculations, are
used in detecting changes in operating conditions. The de-
tection is based on fuzzy inequalities <, <, =, > and >
between the new fuzzy parameters and the fuzzy parame-
ters of the case. The resulting a 5X5 matrix includes the
degrees of membership of these five inequalities for five
parameters. The results are interpreted with the natural
language interface which provides an important channel
in explaining the changes to the users.

3.4 Smart adaptive systems

The recursive analysis presented above refines the levels
of adaptation. The adaptation to a changing environment
has two sub-levels: first updating the scaling functions and
then interactions if needed. Similar settings are realised
with the set of equation alternatives. The adaptation to a
new or unknown application includes the full data-based
modelling (Figure 1).

4 Temporal analysis

Temporal analysis focused on important variables pro-
vides useful information, including trends, fluctuations
and anomalies, for decisions on higher level recursive
adaptation.

4.1 Trend indices

Trend analysis produces useful indirect measurements for
the early detection of changes. For any variable j, a trend
index IjT(k) is calculated from the scaled values X; with a
linguistic equation

1 k
Xi(i
nL+1-kZ’ J(l)a

I=K—nj,

k
LX)

i= —ng

17 (k 9
i ( = s +1 ©))
which is based on the means obtained for a short and a
long time period, defined by delays ng and ny, respec-
tively. The index value is in the linguistic range [—2, 2],
representing the strength of both decrease and increase of
the variable x;. (Juuso, 2011b; Juuso et al., 2009)

An increase is detected if the trend index exceed a
threshold IjT (k) > €. Correspondingly, IjT (k) < —¢, for
a decrease (Figure 2). The derivative of the index I].T(k),

denoted as AIJT (k), is used for analysing the full set of the
triangular episodic representations. Trends are linear if
the derivative is close to zero: —&; < Al (k) < —&". The
concave upward monotonic increase (D) and the concave
downward monotonic decrease (B) are dangerous situa-
tions, which introduce warnings and alarms. The concave
downward monotonic increase (A) and the concave up-
ward monotonic decrease (C) mean that an unfavourable
trend is stopping.
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MJ.T (k)
Alarm

+2 0]

Concave upward (D)
Monotonic increase

Concave upward (C)
Monotonic decrease

Derivative of trend index
o

Linear decrease (F) Constant Linearincrease (E) f—>
T
1; (k)
Concave downward (B) Concave downward (A)
Monotonic decrease Monotonic increase
2 O
Alarm -2 0 +2
Trend index

Figure 2. Triangular episodic representations defined by the in-
dex IJ-T (k) and the derivative AIJT (k).

Severity of the situation can be evaluated by a deviation
index .
1P (k) = 5(Xj(k) +17 (k) + Al (k).
This index has its highest absolute values, when the differ-
ence to the set point is very large and is getting still larger
with a fast increasing speed (Juuso et al., 2009). This can
be understood as a third dimension in Figure 2.

The trend analysis is tuned to applications by selecting
the time periods n; and ng. Further fine-tuning can be
done by adjusting the weight factors w’! and w/* used for
the indices IjT (k) and AIJT (k). The thresholds ef =g =
£2+ =&, = 0.5. The calculations are done with numerical
values and the results are represented in natural language.

The trend analysis can be used for the parameters of the
scaling functions and interaction coefficients. Trend of the
parameters Oc]T, ocj*, Ac; and Ac}' give useful information
about changes of the scaling functions. The ranges [-2, 2]
are [1, 3], [4, 3]. [c; —min(x;), max (x;) — c;], respec-
tively.

(10)

4.2 Fluctuations

The fluctuation indicators, which were introduced to de-
tecting cloudiness and oscillations, are important improve-
ments aimed for practical use. The indicator calculates
the difference of the high and the low values of the cor-
rected irradiation as a difference of two moving general-
ized norms:

A (k) = |5 M [, = [15"M ]y (A1)

J

where the orders p, € R and p; € R are large positive and
negative, respectively. The moments are calculated from
the latest K; 4 1 values, and an average of several latest
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values of Axf (k) is used as an indicator of fluctuations.
(Juuso, 2012b)

4.3 Changes of operating conditions

Changes of the scaling functions and interaction coeffi-
cients are symptoms of changes in operation. The intelli-
gent trend analysis provides early warning about changes
in variable levels, fluctuations and uncertainty. All the
variables and intelligent indices are represented in the
same range [-2, 2], i.e. the same analysis and linguistic
interpretation can be applied in all of them. The corre-
sponding levels and their degrees of membership can be
used in the fuzzy decision making.

The full analysis is needed fairly seldom although the
process changes considerably. For example, new phenom-
ena activate with time in wearing, but the models used in
prognostics can be updated by expanding the scaling func-
tions (Figure 3).

Failure

Li
i !
| Starting situatlon
!
i
i
1

Uncertainty |
Distribution|
Possibility

Refined RUL

! S

==Days1-42
=+=Days1-80
===Days1-120 b
—Days1-128

----- 4

1 ! 1
0 b1 40 B0 & 100 12 140

ﬂme{dT
T Change to worsening situation

Change to worsening situation

Figure 3. Recursive adaptation in prognostics (Juuso, 2015).

5 Conclusions

The nonlinear scaling approach is the main part of the
data processing chain which is the integrating part of the
natural language interface. The calculations are done in
numeric forms, but the levels and all the indices based
on them can be represented in natural language. Data-
driven extraction of variable meaning and a set of compact
models, with not too many variables in individual equa-
tions, form the basis for using the recursive data analysis
in practical applications. Included uncertainty representa-
tions and the natural language interface help in combining
the data analysis with the domain expertise. Complexity
needs to be reduced and used in a gradually refining way
in practical applications. The recursive data analysis also
provides more refined steps for the development of smart
adaptive systems.
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