Skip to main content
Log in

Solidification microstructures and carbides morphology in rapidly solidified Fe−Al−Cr−C alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The combined effects of alloying additions and heat treatment on the evolution and development of the microstructures of Fe3Al-based Fe−Al−Cr−C alloys produced by melt suction processing have been examined. Particular emphasis has been placed on the distribution and morphology of carbides in rapidly solidified Fe3Al-based intermetallics. The results suggest that the formation of intrinsically hard and brittle Fe3AlC and Cr7C3 type carbides depends on the alloying content. These carbides tend to form preferentially along the grain boundaries where more continuous and coarse networks are observed, especially for alloys having higher Cr and C content. These networks are fragmented as a result of heat treatment at 1200 °C and subsequent air cooling and quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. McKamey, Physical Metallurgy and Processing of Intermetallic Compounds (eds. N. S. Stoloff and V. K. Sikka), p. 351, Chapman and Hall, London (1996).

    Google Scholar 

  2. K. Vedula, Intermetallic Compounds: Principles and Practice, Vol. 2 (eds. J. H. Westbrook and R. L. Fleischer), p. 199, Wiley, Chichester, UK (1994).

    Google Scholar 

  3. G. Sauthoff, Materials Science Technology, Vol. 8 (eds. R. W. Cahn, P. Haasen, and E. J. Kramer), p. 643, VCH, Weinheim, Germany (1996).

    Google Scholar 

  4. C. T. Liu, J. Stringer, J. N. Mundy, L. L. Horton, and P. Angelini, Intermetallics. 5, 579 (1997).

    Article  CAS  Google Scholar 

  5. D. G. Morris, Intermetallics. 6, 753 (1998).

    Article  CAS  Google Scholar 

  6. D. G. Morris and M. A. Munoz-Morris, Intermetallics. 7, 1121 (1999).

    Article  CAS  Google Scholar 

  7. C. T. Liu, E. H. Lee, and C. G. McKamey, Scripta metall. 23, 875 (1989).

    Article  CAS  Google Scholar 

  8. C. T. Liu, C. G. McKamey, and E. H. Lee, Scripta metall. 24, 385 (1990).

    Article  CAS  Google Scholar 

  9. N. S. Stoloff and C. T. Liu, Intermetallics. 2, 75 (1994).

    Article  CAS  Google Scholar 

  10. L. Pang and K. S. Kumar, Acta mater. 46, 4017 (1998).

    Article  CAS  Google Scholar 

  11. D. G. Morris, M. A. Munoz-Morris, and J. Chao, Intermetallics. 12, 821 (2004).

    Article  CAS  Google Scholar 

  12. D. J. Gaydosh, S. L. Draper, R. D. Noebe, and M. V. Nathal, Mater. Sci. Eng. A. 150, 7 (1992).

    Article  Google Scholar 

  13. C. G. McKamey and D. H. Pierce, Scripta metall mater. 28, 1173 (1993).

    Article  CAS  Google Scholar 

  14. S. Viswanathan, B. R. Shelton, J. K. Wright, and V. K. Sikka, Scripta metall mater. 29, 589 (1993).

    Article  CAS  Google Scholar 

  15. C. G. McKamey and P. J. Maziasz, Processing, Properties and Applications of Iron Aluminides (eds. J. H. Schneibel et al.), p. 147, TMS, Warrendale, PA (1994).

    Google Scholar 

  16. A. Schneider and G. Sauthoff, Steel Res. Int. 75, 55 (2004).

    CAS  Google Scholar 

  17. A. Schneider, R. Falat, G. Sauthoff, and G. Frommeyer, Intermetallics. 13, 1322 (2005).

    Article  CAS  Google Scholar 

  18. R. Falat, A. Schneider, G. Sauthoff and G. Frommeyer, Intermetallics. 13, 1256 (2005).

    Article  CAS  Google Scholar 

  19. D. G. Morris, M. A. Morris, and C. Baudin, Acta mater. 52, 2827 (2004).

    Article  CAS  Google Scholar 

  20. C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, Mater. Sci. Eng. A. 258, 84 (1998).

    Article  Google Scholar 

  21. D. G. Morris and M. A. Morris, Intermetallics. 8, 997 (2000).

    Article  CAS  Google Scholar 

  22. D. J. Gaydosh, S. L. Draper, and M. V. Nathal, Metall. Trans. A 20, 1701 (1989).

    Article  Google Scholar 

  23. W. R. Kerr, Metall. Trans. A 17, 2298 (1986).

    Article  Google Scholar 

  24. C. G. McKamey, J. A. Horton, and C. T. Liu, Scripta metall. 22, 1679 (1988).

    Article  CAS  Google Scholar 

  25. C. G. McKamey, J. A. Horton, and C. T. Liu, J. Mater. Res. 4, 1156 (1989).

    Article  ADS  CAS  Google Scholar 

  26. C. G. McKamey and C. T. Liu, Scripta metall. 24, 2119 (1990).

    Article  CAS  Google Scholar 

  27. C. G. McKamey and P. J. Maziasz, Intermetallics. 6, 303 (1998).

    Article  CAS  Google Scholar 

  28. Y. Sun, F. Xue, J. Mei, X. Yu, and L. Zhang, Scripta metall mater. 32, 1181 (1995).

    Article  CAS  Google Scholar 

  29. Z. Zhang, Y. Sun, and J. Guo, Scripta metall mater. 33, 2013 (1995).

    Article  Google Scholar 

  30. Z. Zhang, Y. Sun, and G. Shen, Scripta mater. 38, 21 (1998).

    CAS  Google Scholar 

  31. J. H. Schneibel, E. P. George, and I. M. Anderson, Intermetallics, 5, 185 (1997).

    Article  CAS  Google Scholar 

  32. J. A. Jimenez and G. Frommeyer, Mater. Sci. Eng. A. 220, 93 (1996).

    Article  Google Scholar 

  33. M. Palm, Intermetallics. 13, 1286 (2005).

    Article  CAS  Google Scholar 

  34. M. A. Morris and D. G. Morris, Acta metall. mater. 38, 551 (1990).

    Article  CAS  Google Scholar 

  35. A. Bahadur and O. N. Mohanty, J. Mater. Sci. 26, 2685 (1991).

    Article  ADS  CAS  Google Scholar 

  36. M. Palm and G. Inden, Intermetallics. 3, 443 (1995).

    Article  CAS  Google Scholar 

  37. A. Taylor and R. M. Jones, J. Phys. Chem. Solids 6, 16 (1968).

    Article  ADS  Google Scholar 

  38. J. E. Wittig, E. Wogt, R. Möller, and G. Frommeyer, Scripta metall. 21, 721 (1987).

    Article  CAS  Google Scholar 

  39. A. Schneider, R. Falat, G. Sauthoff, and G. Frommeyer, Intermetallics. 11, 443 (2003).

    Article  CAS  Google Scholar 

  40. V. Shankar Rao, J. Mater. Sci. 39, 4193 (2004).

    Article  ADS  CAS  Google Scholar 

  41. L. Pang, S. M. Han, and K. S. Kumar, Acta mater. 50, 3623 (2002).

    Article  CAS  Google Scholar 

  42. M. Karlýk, P. Kratochvil, M. Janecek, J. Siegl, and V. Vodickova, Mater. Sci. Eng. A. 289, 182 (2000).

    Article  Google Scholar 

  43. S. Kobayashi, A. Schneider, S. Zaefferer, G. Frommeyer, and D. Raabe, Acta mater. 53, 3961 (2005).

    Article  CAS  Google Scholar 

  44. L. Pang and K. S. Kumar, Phil. Mag. Lett. 76, 323 (1997).

    Article  ADS  CAS  Google Scholar 

  45. J. Herrman, G. Inden, and G. Sauthoff, Steel Res. Int. 75, 343 (2004).

    Google Scholar 

  46. W. K. Choo and K. H. Han, Metall. Trans. A 16, 5 (1985).

    Google Scholar 

  47. F. Stein, A. Schneider, and G. Frommeyer, Intermetallics. 11, 71 (2003).

    Article  CAS  Google Scholar 

  48. L. Anthony and B. Fultz, Acta metall. mater. 43, 3885 (1995).

    Article  CAS  Google Scholar 

  49. Y. Nishino, C. Kumada, and S. Asano, Scripta mater. 36, 461 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vedat Akdeniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akdeniz, M.V., Mekhrabov, A.O. Solidification microstructures and carbides morphology in rapidly solidified Fe−Al−Cr−C alloys. Met. Mater. Int. 14, 397–402 (2008). https://doi.org/10.3365/met.mat.2008.08.397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.08.397

Keywords

Navigation