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ABSTRACT

This thesis looks at the effectiveness of using nanosatellite class star trackers to perform optical

navigation. Although star trackers used for these missions lack the accuracy and sensitivity of

sensors employed on larger spacecraft, they offer great resolution relative to its compact size.

Two Extended Kalman Filter-based navigation filters illustrate the applications of this class

of sensor. The first filter looks at horizon-based techniques using observations of Mars and

its moons to assist the navigation filter in a hyperbolic approach. Results show low position

(< 300 m) and velocity (< 0.15 m/s) errors as spacecraft reaches periapse. The filter formulation

serves as a basis for a design case study exploring different possible sensor configurations for

this mission type. The second filter looks at landmark-based techniques using absolute and

relative landmarks as observations. Measurement frequency appears as a key parameter in this

study, simulation results show position errors in the order of tens of kilometers, or better even

if absolute landmarks are only available every 30 minutes. The accuracy of the results are

validated through series of Monte Carlo simulations.
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Chapter 1

Introduction

Over the past decades, optical navigation has become an increasingly popular technique to

orbital estimation and guidance with scores of examples of successful missions. These techniques

can provide autonomous and self-contained navigation estimates for satellites orbiting the Earth

or other planets such as Mars. Earth orbit satellites have the ability to rely on ground tracking

for orbital information. However, tracking stations are priority based and the allotable time is

demanding. When communications to ground station is restricted or constrained, the ability to

provide self sufficient orbit information becomes critical. This research involves examining the

feasbility of implementing this technique on nanosatellites.

Nanosatellites (nanosats) refer to a class of small satellites with a mass between 1− 10kg. The

development of nanosatellites has been a growing part of modern technology in recent years.

The driving force behind this growth partly lies with the economic efficiency offered by this

class of satellite. That is, nanosats have lower production and manufacturing costs, as well as

lower associated launch vehicles costs. Additionally, multiples of these satellites can be launched

together to further reduce launch costs. In large numbers, nanosatellites can enable missions

that larger satellites are incapable of such as [2]:

• Constellations for low data rate communication

• Use formations to gather data from multiple points

• In-orbit inspection of larger spacecraft.

Star trackers are a type of sensor frequently employed on nanosats. They are small scale optical

sensors used primarily for attitude determination. Compared to the optical sensors on large

1
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satellites for larger scale missions, star trackers rarely exhibit the same degree of accuracy and

sensitivity. Star trackers offer a small compact size and weight, along with a powerful internal

computer. These aspects of the star tracker make it a prime candidate as an optical sensor

for nanosatellite missions. If the star tracker’s optical properties can allow it to sufficiently

perform optical navigation. Then it can be used for orbit determination in addition to attitude

estimation and open up the door to a wide variety of possible mission applications.

This research looks at the capabilities of using nanosatellite startrackers to perform OpNav.

The baseline sensor used in the research is reflective of the optical properties of a Sinclair

Interplanetary ST-16 star tracker. The research outlines two EKF-based navigation filters that

looks at two different types of optical navigation. The first looks at horizon-based OpNav

techniques. The filter demonstrates promising results and shows potential to being an enabling

technology for various mission types. This framework was further used to conduct case studies

that explores system performance with respect to sensor configurations. The second framework

presents a landmark-based approach, with an in-depth study on the effects of measurement

availability on the performance of the system. Monte-Carlo simulations were further conducted

to assesss the performance of the filter.

In Chapter 2, contains a historical review on optical navigation missions and studies. Simul-

taneously this chapter also presents a brief overview on star trackers and Kalman filtering

principles. Chapter 3 outlines a framework for using nanosatellite-class instruments to conduct

horizon based optical navigation, with the majority of focus on the performance of the system

based on Monte Carlo simulations. Chapter 4 uses the framework outlined in chapter 3 to

conduct case studies, looking at tradeoffs with regards to different sensor configurations. Chap-

ter 5 looks at the feasibility of using nanosatellite-class startrackers to conduct landmark-based

optical navigation. In this chapter, the correlation between measurement availability and sys-

tem performance is explored in detail. Accuracy of results are validated through Monte Carlo

simulations. Chapter 6 summarizes the contributions of this thesis and provides directions this

research can pursue in the future.



Chapter 2

Background

This chapter provides some background knowledge on the contents of this thesis. It starts

off with a historical overview on optical navigation. Following with an explanation on the

mathematical notations used in this thesis. Then it provides a description of the primary sensor

used for this research, ST-16 star tracker. Lastly, it ends with a discussion outlining the basic

formulation of Kalman filters.

2.1 Historical Overview of Optical Navigation

This section reviews some of the previous missions where optical navigation techniques were

applied, paying attention to the techniques used. It also takes a look at some of the previous

related studies conducted by researchers.

OpNav is a well known and established method used for orbit determination used for decades.

OpNav involves using optical data (images) to derive spacecraft navigation knowledge according

to the information provided by the data. Special features identified in the images, can also be

tracked through proceeding frames to provide relative navigation information. OpNav grants

the spacecraft its own orbit determination capabilities, providing autonomous and self-contained

navigation estimates for the spacecraft, and reducing the reliance on ground-based tracking

stations.

Ground tracking stations use a radar system to determine the range, velocity, and bearing of an

object. This allows the determination of the orbital trajectory with a high degree of accuracy.

However, the amount of allotable communication time to these ground tracking stations is

priority based. Since nanosatellite class missions are not primary missions, the amount of

3
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ground tracking available is scarce. With this in mind, the ability of the satellite to have its

own orbit determination capabilities becomes highly important.

Optical navigation dates back to as early as the Apollo missions in the 1960s. This mission used

lunar landmark sightings to provide navigation information to its guidance system [3][4][5].

This approach shines best when the target is in close proximity, and is fairly common for many

small-body missions. The following two sections outline the two main categories of OpNav.

2.1.1 Landmark-based Optical Navigation

The first type of OpNav categories involves deriving navigation information from observations

of landmarks in the images. These landmarks can be distinctive landforms such as craters,

coast lines shapes, and islands, or they could be collection of landforms. Landmark tracking is

a highly explored technique in this category of OpNav, it involves identifying, matching, and

tracking landmarks across consecutive frames to calculate the relative motion of the spacecraft.

Cataloging unique landmarks is also a common practice, where information pertaining to a

unique landmark is recorded into a catalog. During navigation, if these cataloged landmarks

are identified, it can be used to determine navigational information.

Landmark-based OpNav has a high degree of flexibility in the sense that as long as features can

be identified, it can be used for navigation. This technique shines best in close proximity opera-

tions, due to the inherent range restrictions required to properly resolve landmark observations.

The remainder of this section presents a discussion of the prior work in the field of landmark-

based OpNav, discussing several recent and historical approaches to landmark tracking and

examine how researchers have handled processing of landmark features.

The Near Earth Asteroid Rendezvous (NEAR) mission [6] applied optical navigation around

asteroids. As the spacecraft passes close to these bodies, it applied optical navigation techniques

from observations of the bodies to provide information to determine spacecraft orbits. These

small bodies have irregular shapes and gravitational fields which make traditional orbit deter-

mination techniques difficult. As such, landmarks such as craters become an essential part to

the optical observations due to their highly available nature. The NEAR mission was the first

to operationally make use of craters on the surface of a central body. The landmarks are de-

tected manually on each individual frame then tracked through consecutive frames to calculate

the orbital change. These observations have proven to be a powerful data type for determining

spacecraft orbits for close flybys and low proximity orbiting.



Chapter 2. Background 5

Markley explores the ability of earth sensors to determine orbital state using landmark tracking

and compares the methodology to orbit determination by using more conventional sensor data

such as gyro, star and sun sensor [7].

Toda and Schlee explored different techniques for using unknown landmarks in orbital navigation

[8]. In their analysis, they assume the initial orbital parameters are available, and they use the

spacecraft position to estimate the position of the first landmarks detected. Tada and Schlee

further explore the effects of the data rate and observation instances on accuracy of the optical

navigation.

In addition to orbit determination, landmark-based navigation can also be used during landing

scenarios. Johnson, et al. propose an optical navigation method for planetary descent. Their

algorithm is based on matching 2D images to 3D depth maps. They use the optical data

combined with measurements from inertial sensors in an Extended Kalman Filter to estimate

the lander positions [9]. Shuang, et al. explores optical navigation for asteroid landing missions

[10].

2.1.2 Horizon-based Optical Navigation

Apart from landmarks, horizon based navigation techniques have also been rising in popularity

over the years. This type of optical navigation uses the lit horizon of celestial bodies to perform

optical navigation. By identifying the orientation of the lit portion of the target, it is possible

to derive geometric information of the observer with respect to the target and the Sun with the

help of emphemeral data. This method often couples the targets on a background field of stars,

which allows conventional star tracking if the number of stars are sufficient.

Horizon-based OpNav has stricter range restrictions when compared to landmark-based OpNav.

Landmark-based methods can be applied even on the surface of the planet, the only requirement

is that the landmarks are resolvable. However, horizon-based techniques have a specific span of

range requirements, close enough to get a clear view of the lit horizon, but not close enough to

lose sight of it. Horizon-based OpNav can be applied at a much higher range than landmark-

based OpNav, since it is easier to resolve horizon observations than distinctive landmarks. At

even high ranges to the planet, it is possible to use the geometry of observed planetary bodies

to provide navigation information. The remainder of this section takes a look at some of the

prior works in the field of horizon-based OpNav

Horizon-based OpNav was first explored during the Gemini program, gradually improved over

the years. It was demonstrated in the Apollo missions and achieves operational success during
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the Voyager 1 flyby of Jupiter [11]. Recently NASA’s Orion project has once again rekindled

the approach of horizon-based optical navigation techniques. The mission investigated using

horizon-based techniques to autonomously navigate back to Earth in the case of a communica-

tions failure.

Christian and Lightsey [12] presents an Extended Kalman Filter (EKF)-based navigation solu-

tion using images from the Messenger mission to calculate orbital parameters during a Venus

flyby. They refine their processing and navigation models with hypothetical cis-lunar maneu-

vers.

Deep Space 1 had the autonomous, onboard, optical-navigation system AutoNav [13]. This

system autonomously determines the position of the spacecraft using images of distant asteroids.

This significantly reduces the reliance on the Deep Space Network for tracking and enabled

additional mission capabilities.

2.2 Overview on ST-16 Star tracker

Compared to the sensors employed on large class spacecraft missions, star trackers are a type

of small sized, low weight optical sensors used for attitude determination. They observed star

distributions as its underlying principle to provide an attitude estimation. Generally the pro-

cessing chain of a star tracker’s operations can be described using five steps: imaging, star

detection, measuring star positions, matching, and attitude solutions [14].

1. Imaging focuses the light from the light source (stars) onto the detector of the star tracker

and digitally forms the image.

2. Star detection uses image processing techniques to identify suitable stars and isolate star

intensity patterns.

3. Star vector computation centroids the star images and calculates star vectors according

to a camera model.

4. Matching compares the the observed stars with star patterns from an onboard star catalog.

5. Attitude solution estimates the attitude of the star tracker according to the identified star

patterns.

The orientation accuracy of the star tracker is heavily dependant on the sensor’s ability to

resolve stars with high degree of precision.
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This thesis examines the effectiveness of using nanosatellite class star trackers for optical nav-

igation. The employed sensor models are reflective of the characteristic optical properties of a

Sinclar Interplanetary ST-16 star tracker. The ST-16 was chosen due to it possessing size and

optical design parameters typical of a nanosatellite class star trackers. Table 2.1 shows the key

parameters of the ST-16 star tracker [14].

Table 2.1: Key Parameters for the ST-16 Star Tracker

Parameter Value

Focal Length 16 mm

Lens f/1.6

Pixel Size 2.2µm

Detector Resolution 1944× 2592 pixels

Field of View 7.5◦ × 10.5◦ half-angle

Accuracy < 7 arc-sec RMS cross-boresight

< 70 arc-sec RMS around boresight

Size 59× 56× 31.5 mm

Exposure Time 100 ms

2.3 Mathematical Notations

This section introduces the notational coventions used in this thesis. Table 2.2 contains the

convention for variable diacritics.

Table 2.2: Variable diacritic convention.

Diacritic Definition

x Value truth
x̂ Estimated value
x̄ Nominal or Reference value
x̃ Corrupted value
ẋ Time derivative

A bolded symbol represents a vector while a non-bolded symbol represents a scalar. For example,

a =
[
a1 a2 a3

]T
is a vector, while a1, a2, and a3 are scalars.

The unary cross-matrix operator, also known as a skew-symmetric matrix is frequently used in

this document. For a, its corresponding cross-matrix would be:
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a× ≡


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.1)

Principal axis rotation about axis-j is denoted as Cj . The sense of these rotations provides

the transform into the rotated frame. For example if Frame-B is obtained from Frame-A by an

x-axis rotation through an angle θ, then:

CBA = C1 (θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (2.2)

In this work, I represents an identity matrix of the form

I ≡


1 0 0

0 1 0

0 0 1

 (2.3)

2.4 Overview of Kalman Filters

The application of Kalman filtering based techniques are often used in studies of optical-based

navigation systems evident from the prior works overview. The Kalman filter was first intro-

duced in 1960 by Rudolph E. Kalman. It offers a very useful approach in state estimation. The

filter propagates a system using a set of known dynamics. It also allows the incorporation of

multiple different types of measurements into the state update of the filter.

A type of Kalman filter that is frequently used in this research is the Continuous-Discrete

Extended Kalman Filter (EKF). This type of EKF propagates nonlinear dynamics and mea-

surements. This type of filter usually follows a standard formulation.

The estimator propagates the state according to a corresponding dynamics model:

ẋ = f (x, u) (2.4)

The state covariance is propagated using the linearization:
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Ṗ = FP + PFT + Q (2.5)

The Kalman gain is calculated using:

Kk = P−k HT
k

(
HkP

−
k HT

k + Rk

)−1
(2.6)

used in the state update

x̂+
k = x̂−k + Kk

[
ỹ − h

(
x̂−k
)]

(2.7)

and the state covariance update

P+
k = [I−KkHk] P

−
k (2.8)

the Jacobians F and H are the state transition- and measurement sensitivity- matrix, respec-

tively. They are evaluated by taking the partial derivatives of the state function and measure-

ment function with respect to the elements of the state.

F =
∂f

∂x
(2.9)

H =
∂h

∂x
(2.10)

Q and R are the process- and measurement- noise covariance, respectively, corresponding to

the noise modelled in the system. The quantity ỹ represents the actual corrupted measurement.

The term ỹ − h
(
x̂−k
)

is referred to as the innovation and represents the measurement error.



Chapter 3

Horizon-based Optical Navigation

This chapter outlines an OpNav framework using horizon based techniques. The main focus of

the chapter looks at the performance of the framework. The developed framework is a nanosatel-

lite compatible EKF-based navigation filter using a hyperbolic Mars-approach reference mission.

The filter uses observations of Mars and its moons as measurements to correct for initial errors

in the spacecraft state. This framework represents a collaboration between researchers in SAIL.

The math described in this chapter is reproduced from the respective paper written by Enright,

et al. [1].

3.1 Reference Mission

This section discusses the reference mission outlines the reference scenario and formulation for

the navigation system. This includes the basic reference frames, approach geometry as well as

the system dynamics.

This work uses the upcoming 2018 Mars Insight Lander mission as an inspirational mission.

The Insight Lander mission will be accompanied by the Mars Cube One (MarCO) satellites

[15]. They are two 6U cubesats designed to observe and relay data from Insight during the

latter spacecraft’s entry, descent, and landing phases. Although MarCO will use conventional

ground-based tracking, autonomous navigation capabilities may enable future missions when

demand exceeds the capacity of the Deep Space Network.

10
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Figure 3.1: Hyperbolic Mars-approach trajectory.

3.1.1 Frames of Reference

The reference scenario involves the terminal phase of an interplanetary transfer from Earth to

Mars. The scenario begins as soon as the spacecraft enters the sphere of influence of Mars. The

mission trajectory is a planeto-centric hyperbolic trajectory. Figure 3.1 shows an illustration of

the approach geometry.

The P -frame is the basic frame of reference for this framework. Its origin is located at the Mars

barycentre. The P1 axis of the P -frame aligns with the theoretical periapse direction, and P3

axis in the direction of the orbital angular velocity, with the P2 axis completing the right-handed

coordinate frame.

Additionally, several other frames of references are defined for use throughout the chapter.

Table 3.1 lists all the frame definitions used for this chapter. The definition of the B-frame

depends on the pointing rule used for the spacecraft. This is a rule the placed on the pointing

orientation of the spacecraft, either velocity0aligned, or Mars pointing. The term Si describes

the orientation of the i-th sensor, in the case that the spacecraft is equipped with more than a

single sensor.

It was assumed that all inertial measurements and ephemeris predictions are made with respect

to Frame-E. Assuming the spacecraft approaches Mars in the ecliptic, thus

CPE ≡ C3 (ηsun + π − αM) C1 (π) (3.1)
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Table 3.1: Frame Identification

Frame Symbol Centre X-Axis Z-Axis

J2000 (ICRS) I Solar
System

Barycentre

Vernal Equinox Earth spin axis

J2000Ecliptic E Solar
System

Barycentre

VE projection into
ecliptic

Normal to ecliptic

Periapse P Mars Direction of periapse Angular momentum
direction (of S/C)

Orbit (RTN) O Spacecraft Outward radius Angular momentum
direction (of S/C)

Body (Mars
Pointing)

B Spacecraft Parallel to orbit
normal

Towards Mars

Body
(velocity-aligned)

B Spacecraft Parallel to orbit
normal

Aligned with velocity

Sensor S Spacecraft Increasing columns Boresight
Target T Spacecraft Normal to boresight

and planet vectors
Towards Planet

where αM is the right ascension of Mars in Frame-E.

The state of the spacecraft is defined by Cartesian position, rP , and velocity, vP . Calculating the

corresponding orbital elements, allows the determination of semimajor axis, a, and eccentricity

e, that define the shape of the hyperbola. The semi-major axis, a, can be found using:

a =

(
v2

µ
− 2

r

)−1

(3.2)

The angular momentum of the orbit is:

hP = r×PvP (3.3)

thus the eccentricity, e can be determined using:

e =

√
a+ h2

µ

a
(3.4)

Angle η∞ defines the hyperbolic asymptotes with respect to the P1 axis
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Figure 3.2: Body, Orbit, and Periapse references frames.

η∞ = − arccos

(
−1

e

)
(3.5)

Assuming the approach occurs at the aphelion of the heliocentric transfer ellipse, then angle to

the sun ηSun is given by:

ηSun = η∞ −
π

2
(3.6)

Figure 3.2 contains an illustration of the O-frame. The rotation from Frame-P to Frame-O is a

function of the spacecraft position and velocity. Thus, CPO can be expressed in terms of basis

vectors as:

CPO =
[

O1P O2P O3P

]
(3.7)

where
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O1P =
rP
r

(3.8)

O3P =
r×PvP∥∥r×PvP

∥∥ (3.9)

where a× is the skew-symmetric matrix of vector a (see Section 2.3). The last vector completes

the right-handed frame:

O2P = O×3P O1P (3.10)

The rotation CBO is defined by the pointing rules of the spacecraft attitude. Pointing rules are

important for keeping a specific viewing orientation when making observations. Also, during

insertion burns it is useful to align the spacecraft with the velocity vector. For the scenario

in this chapter two individual pointing rules are considered. First, a Mars-pointing mode that

keeps the limb of Mars off-centre from the sensor boresight by a specified angular distance, ξ.

In this setting, CBO is written as

CBO ≡ C1 (ρ− ξ) C2

(
−π

2

)
(3.11)

where ρ is the angular radius of Mars

ρ = arcsin
Rm
r

(3.12)

Second, a velocity-aligned mode that keeps the B3 axis aligned with the velocity vector, where

B1 is defined using the angular momentum and B3 from the linear velocity as:

B3O =
vO
v

(3.13)

B1O =
r×OvO∥∥r×OvO

∥∥ (3.14)

with B2 completing the right-handed frame.

The transform CSB is defined by the sensor mounting angle, γ. This transform represents the

orientation of the sensor mounting with respect to the body frame.
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CSB = C (γ) (3.15)

The last set of transforms CSB represents a rotation between S and T :

CTS = C1 (ρc) C3 (θc) (3.16)

where ρc represents an angle the centre of Mars makes from the camera boresight and in an

azimuthal direction θc measured from the x-axis of the detector in the S-frame.

3.1.2 System Dynamics

The navigation filter consists of two essential components. The simulator represents the truth

dynamics of the system, it predicts the true state of the system and the synthetic sensor measure-

ments. The estimator represents the filter. Both components continuously propagates position,

velocity, aand attitude over the course of the scenario. The spacecraft is assumed to be in un-

powered flight, such that the translational motion is perturbed only by disturbing accelerations.

The attitude motion is based on the specific pointing rule, dependent on spacecraft position. A

simple model of the attitude error dynamics is presented in place of an explicit control system

model.

The orbital position is propagated in the P -frame using a Cartesian formulation for the dynam-

ics. The net acceleration of the spacecraft in the P -frame, v̇P , is expressed as:

v̇P = aMars,P +
∑

δai,P (3.17)

where aMars,P is the gravitational acceleration due to Mars and δai,P represent other pertur-

bation terms. The primary perturbations modelled are third-body gravitational effects from

Jupiter and the Sun. They can be written as:

aMars,P = −µMars

r3
rP (3.18)

ai,P = −µdist

(
∆rDS,
∆r3

DS

−
∆rDM,

∆r3
DM

)
(3.19)
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where ∆rDS is the vector from the disturbing body to the spacecraft, and ∆rDM is the vector

from the disturbing body to Mars. The third-body perturbations are incorporated into the

truth model for the simulation, but are omitted in the estimator.

These perturbations are used to introduce large differences between the truth and estimator

dynamics. If the system can perform well in this case, including third-body perturbations into

the onboard estimator will most likely result in an improvement in the performance.

The employed attitude error dynamics is an approximation to the behaviour of a real system.

Under the assumption that spacecraft attitude CBP can closely track a reference attitude trajec-

tory C̄BP , the attitude error can be represented as an error rotation vector (see Appendix A-1),

φ, thus

CBP =
(
I− φ×

)
C̄BP (3.20)

where the attitude error dynamics is modelled as a first order system driven by random noise

φ̇ = −φ
τ

+ wφ (3.21)

wφ is a zero-mean Gaussian random variable with known covariance, Qφ.

3.1.3 Spacecraft State

The state of the spacecraft is a set of parameters describing spacecraft motion and configuration.

It is written as:

xT =
[

rTP vTP ψT · · · φT
]

(3.22)

The attitude error φ is expressed as an error rotation vector. The system uses measurements

from one or more star trackers, each with a nominal body-frame orientation C̄SiB, and with an

unknown mounting error ψi. The Cartesian position and velocity of the spacecraft rP and vP

are both measured in the periapse frame.
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3.2 Sensor Models

This framework uses a number of measurements extracted from star tracker images to provide

useful navigation information to the filter. The set of measurements include:

• Sensor-referenced directions to Phobos and Deimos

• Attitude with respect to an inertial frame (Frame-P )

• Phase angle between the spacecraft, the sun, and Mars (by measuring the illuminated

fraction of Mars)

• The orientation angle of the terminator on the surface of Mars relative to the sensor.

The framework also models measurement availability according to a set of rules. The governing

heuristics are as follows:

1. If the sun lies within a fixed exclusion angle (35◦) of the sensor boresight, then no mea-

surements are available.

2. Phobos and Deimos are only available when their apparent visual magnitude is brighter

than a threshold value (a conservative value of 5.75 was chosen from the reference star

tracker design).

3. Attitude measurements are available when three or more stars are visible in the field of

view (and not blocked by Mars).

4. Phobos and Deimos are not visible during eclipses and transits (i.e., when they pass in

front or behind Mars).

5. The Mars position can be estimated as long as the part of the illuminated limb is within

the FOV.

6. Phase and terminator angles can only be measured when the entire disk of Mars lies within

the FOV.

The measurement availability directly affects the observation matrix
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h =


h1

h2

...

 (3.23)

and the measurement sensitivity matrices:

H =


H1

H2

...

 (3.24)

where h and H are composed of rows from available measurements.

3.2.1 Attitude Measurements

Each sensor has an intertial orientation that is expressed as:

CSP = CSBCBP (3.25)

But the actual orientation of the spacecraft in the body frame is based on the state estimate.

CBP = C (φ) C̄BP (3.26)

Expanding further in terms of the nominal mounting orientation C̄SB and the mounting errors,

ψi gives

CSB = C (ψ) C̄SB (3.27)

and thus

CSP = C (ψ) C̄SBC (φ) C̄BP (3.28)

The pseudomeasurement ∆ (for each sensor) is introduced to represent the (first order) error

rotation vector between the ideal and measured attitudes.
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CSP =
(
I−∆×

)
C̄SBC̄BP (3.29)

Equating Equation (3.28) and Equation (3.29) gives:

(
I−∆×

)
C̄SB = C (ψ) C̄SBC (φ) (3.30)

by transforming φ into the S-frame, the effect of the nominal C̄SB rotation can be removed.

(
I−∆×

)
= C (ψ) C

(
C̄SBφ

)
= C (ψ) C (φS) (3.31)

Solving for ∆ vector and adding Gaussian attitude measurement noise, ν∆, gives the expression

for the noisy attitude error pseudomeasurement

∆̃ = ∆ + ν∆ (3.32)

Similarly, the estimated pseudomeasurement is determined using:

(
I− ∆̂

×)
= C

(
ψ̂
)

C
(
φ̂S

)
(3.33)

In order to evaluate the partial derivatives first-order approximations was applied to the non-

linear rotations in Equation (3.31) and Equation (3.33).

∆ ≈ ψ + φS = ψ + C̄SBφ (3.34)

Hence

∂∆

∂ψ
= I3×3 (3.35)

and

∂∆

∂φ
= C̄SB (3.36)
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3.2.2 Direction Measurements

The direction measurements involve direct observations of the solar-system bodies estimated in

the sensor frame. These bodies include the two moons of Mars; Phobos and Deimos. They rely

on the displacement vector, sSi , between the spacecraft and the bodies.

sS = CSP (ρP − rP ) (3.37)

The true vector can be calculated as:

sS = C (ψ) CSBC (φ) C̄BP (ρP − rP ) (3.38)

the target position, ρP , is predicted from ephemeris calculations. In this case JPL’s SPICE

toolbox [16] was used.

The estimator can effectively predict the ephemerides in the E-frame. Transforming the pre-

dicted ephemerides from the E-frame into the P -frame gives the following expression for the

predicted observations:

ŝS ≡ C (ψ) C̄SBC (φ) C̄BP (ρP − r̂P ) (3.39)

Assuming a pinhole camera model for the detector, the coordinates of the body can be estimated

using:

z̃ =
f

δpix

[
sS,x/sS,z

sS,y/sS,z

]
+ νz (3.40)

Using Pittelkau’s [17] relationship for focal-plane measurements, the measurement sensitivity

with respect to state components can be calculated as:

∂z

∂x
=

∂z

∂sS

∂sS
∂x

(3.41)

where
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∂z

∂sS
=

f

δpix

[
1/sS,z 0 −sS,x/s2

S,z

0 1/sS,z −sS,y/s2
S,z

]
(3.42)

Thus, the nonzero partial derivatives are

∂z

∂rP
= − ∂z

∂sS
CSP (3.43)

∂z

∂ψ
=

∂z

∂sS

∂sS
∂ψ

(3.44)

∂z

∂φ
= − ∂z

∂sS
CSB

∂sB
∂φ

(3.45)

This model is most suitable when the targets are close to being point sources. In this study, it

was determined through simulations that Phobos and Deimos never exceed an apparent angular

radius of two pixels.

3.2.3 Position Measurements

The apparent size of Mars can be used to provide useful information in estimating position.

The approach in obtaining an accurate estimate of ρ, ρc and θc is available in A-2. Using this

information, the range to the target r can be calculated by rearranging Equation (3.12):

r =
Rm
sin ρ

(3.46)

and the pseudomeasurement for sS can be calculated using Equation (A.6) from A-2:


sx

sy

sz

 = r


cos θc sin ρc

sin θc sin ρc

cos ρc

 (3.47)

The method to calculating sS is not partiticularly novel, numerous examplary techniques are

available in literature such as [18], [19], and [20].
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Writing the Mars-observation vector sS in terms of the filter state, the true observations are

given by

s̃S = −C (ψ) C̄SB
C (φ) C̄BP rP + νr (3.48)

and the modelled measurement

ŝS = −C (ψ) C̄SB
C (φ) C̄BP r̂P (3.49)

The measurement sensitivity matrices are then

∂sS
∂rP

= −CSP (3.50)

∂sS
∂ψ

= −∂rS
∂ψ

(3.51)

∂sS
∂φ

= −CSB
∂rB
∂φ

(3.52)

3.2.4 Phase Angle Measurements

Using orthographic projection [21], the illuminated portion of Mars can be used to obtain an

estimate of the phase angle, χ, between the sun, Mars and the observer. We have the following

relationship:

χ = π − arccos

(
sin b

sin ρ

)
− b (3.53)

where b is the semi-major axis of the terminator curve (see Figure 3.3)

The true value of χ can be calculated from vector calculations

χ = arccos

(
rTPρsun,P

rPRsun,P

)
(3.54)
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Figure 3.3: Mars observation geometry showing illuminated fraction and terminator angle

Taking the (implicit) partial derivatives of the expression gives the following for the measurement

sensitivity:

∂χ

∂rP
= −

(
ρTsun,P

r3 sinχ

)(
r2I− rP rTP

)
(3.55)

3.2.5 Terminator Angle Measurements

The terminator angle is defined as the orientation of the terminator ellipse on the Mars disk

projected onto the sensor field of view (see Figure 3.3). This ellipse is defined in vector space for

convenience. The major axis of the ellipse is orthogonal to the plane containing the spacecraft,

the Sun, and Mars. Hence, it points in the direction:

κP = −r×Pρsun,P (3.56)

The observed terminator angle results from the projection of this vector into Frame-T . Ex-

pressed as conponents of of κT , we have:

tanβ =
κT,y
κT,x

(3.57)

where

κT = CTSCSPκP (3.58)

The partial derivatives are of the form
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∂β

∂x
=

1

(1 + tan2 β)

[
−κS,y
κ2S,x

1
κS,x

0
] ∂κT
∂x

(3.59)

using Equation (3.16), the corresponding partial derivatives of κT are

∂κT
∂rP

=
∂C1 (ρc)

∂ρc
C3 (θc)κS

∂ρc
∂rP

+ C1 (ρc)
∂C3 (θc)

∂ρc
κS

∂θc
∂rP

+ CTPρ
×
sun,P (3.60)

∂κT
∂ψ

=
∂C1 (ρc)

∂ρc
C3 (θc)κS

∂ρc
∂ψ

+ C1 (ρc)
∂C3 (θc)

∂ρc
κS

∂θc
∂ψ

+ CTSκ
×
S (3.61)

∂κT
∂φ

=
∂C1 (ρc)

∂ρc
C3 (θc)κS

∂ρc
∂φ

+ C1 (ρc)
∂C3 (θc)

∂ρc
κS

∂θc
∂φ

+ CTSCSBκ
×
B (3.62)

Since CTS is state-dependent, the partial derivatives of ρc and θc must be evaluated. Based on

the following expression for ρc:

cos ρc = −
ẐTP rP
r

(3.63)

where ẐP is the sensor boresight-vector, rotated into the P -frame (i.e., the third row of CSP ).

The corresponding partials are

∂ρc
∂rP

=
ẐTP

r3 sin ρc

(
r2I− rP rTP

)
(3.64)

∂ρc
∂ψ

= − 1

r sin ρc

(
ẐTS

∂rS
∂ψ

)
(3.65)

∂ρc
∂φ

= − 1

r sin ρc

(
ẐTB

∂rB
∂ψ

)
(3.66)

See Equation (A.5) for the identity used to evaluate the latter terms in Equation (3.65) and

Equation (3.66).

The expression for θc is given as
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tan θc =
sx
sy

(3.67)

using this relationship, the resulting partials are then

∂θc
∂rP

=
1

1 + tan2 θc

[
1
sy
− sx
s2y

0
]
CSBCBP (3.68)

∂θc
∂ψ

=
1

1 + tan2 θc

[
1
sy
− sx
s2y

0
] ∂sS
∂ψ

(3.69)

∂θc
∂φ

=
1

1 + tan2 θc

[
1
sy
− sx
s2y

0
]

CSB
∂sB
∂φ

(3.70)

3.3 Measurement Error Models

This section outlines all the error models used in the simulations. These models capture the

effects of the measurement errors that exist in the scenario. The measurements for rS employs

a parametric model while χ and β uses an empirical model.

Measurements are of the form:

h̃j (x) = hj (x) + ν (x) (3.71)

the covariance for the measurement noise has the definition:

R (x) ≡ E
(
ν (x)ν (x)T

)
(3.72)

The goal here is to approximate the measurement covariance terms R (x) for each type of

measurement.

3.3.1 Attitude Covariance

The following popular model was adopted for the covariance in the attitude error ∆:
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R∆ =


σ2

bs 0 0

0 σ2
bs 0

0 0 σ2
roll

 (3.73)

where σbs represents the errors in the cross-boresight direction, these are identical. While σroll

is the roll error, which is usually significantly higher in comparison.

3.3.2 Direction Covariance

The accuracy of the direction measurements for the moons is dependent on the star tracker’s

centroiding accuracy, which in turn depends on the brightness of the target. In the simulations,

the apparent radius of Phobos does not exceed two pixels, thus, the image processing required is

very similar to that used for measuring star directions. The photometric brightness of planetary

bodies is approximated using

V = V (1, 0) + 2.5 log10

(
r2r2

sun

P (χ)

)
(3.74)

where V (1, 0) is the (tabulated) visual magnitude of the object at opposition and a distance of

1 au. Based on the NASA-Goddard Mars Factsheet [22], the values used were VPhobos (1, 0) =

11.8 and VDeimos (1, 0) = 12.89. The distances between Mars and the spacecraft, r, and Mars

and the sun, rsun are also measured in au. The phase function P (χ) is often approximated as

Lambertian sphere

P (χ) =
2

3

[(
1− χ

π

)
cosχ+

1

π
sinχ

]
(3.75)

Centroid noise generally increases for dim stars. The chart created by Enright, et al. [1] in

Figure 3.4 shows the relationship between centroid error and brightness for the ST-16RT. Using

Equation (3.74), Equation (3.75) and Figure 3.4, the values of σmoon can be approximated in

pixels. The corresponding measurement covariance is:

Rmoon = σ2
moonI2×2 (3.76)
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Figure 3.4: Approximate relationship between visual magnitude and centroid error for the
ST-16RT [1].

3.3.3 Position Covariance

The Mars position adopts the error model developed by by Hikes, et al. [23]. This model is

useful as it is expressed in terms of a few key quantities derived through geometric and detector

properties. Converting to the convention used in this thesis gives:

Rs = R


4

2ξ−sin(2ξ) 0 0

0 ξ
D

√
r2−r2M sin ξ

DrM

0

√
r2−r2M sin ξ

DrM

(r2−r2M)(2ξ+sin(2ξ))

4Dr2M

 (3.77)

where R and D are given by

R =
σ2

pixr
4δpixξ

Nlimbf2
(
r2 − r2

M

) (3.78)

D =
ξ

4
[2ξ + sin (2ξ)]− sin2 ξ (3.79)

where ξ is the half-width angle of the illuminated limb. It is measured from the centre of the

planet, and is calculated from the observation geometry at each time step. Nlimb is the number

of points extracted from the limb curve, it maintains a constant linear sample density in the

FOV, calculated using
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Figure 3.5: Measurement errors for phase and terminator angles.

Nlimb =
2ξ

kδpix
(3.80)

Equation (3.77) is expressed in a reference frame aligned with cusp and limb directions. To use

this quantity in the filter formulations, it must be converted into the S-frame, thus

Rs,S = CSTC3 (β) RsC
T
3 (β) CTS (3.81)

Both error models depend on the limb and terminator noise parameter, σpix, that captures the

variation in the precision of locating the respective curves in the detector. By analyzing various

images, Enright, et al. [1] determined the value of σpix to be in the range of 0.25 − 2.0 pixels.

Thus σpix was set to the conservative value of 2.0 pixels in this study.

3.3.4 Phase and Terminator Angle Covariance

Figure 3.5 shows the 1 − σ errors for χ and β at various ranges during approach. These data

curves were created by Enright, et al. [1] by analyzing large number of image and fomulating

the resulting error models. The curve shows the general trend in which the error decreases as

the spacecraft appraoches Mars, significantly more noticeable in β.



Chapter 3. Horizon-based Optical Navigation 29

3.4 Filter Formulation

This section describes the navigation filter developed in this study, it outlines all the important

aspects of the filter formulation and the differences from a standard implemencation. The filter

is based on a Continuous-Discrete Extended Kalman Filter (EKF) framework.

3.4.1 Filter Measurements

Measurement updates for the EFK is applied using the standard expressions in Section 2.3. ??,

Equation (2.7), and Equation (2.8), contain the expressiongs for the Kalman gain, state and

state covariance updates, respectively.

A nominal set of measurements for the filter has the form

h =



rP

χ

β

∆

zphobos

zdeimos

...


(3.82)

Measurement availability (in the FOV) directly impacts h. The Kalman gain, measurement

sensitivity is calculated during each step, following which the state and covariance are updated.

The filter is formulated to allow measurements from multiple sensors to be processed together.

3.4.2 Propagation

The estimator employs a simplified version of the system dynamics outlined in Section 3.1.2.

Such that the perturbation terms are omitted from the velocity dynamics, and instead only

includes the simplified version of the dynamics shown in Equation (3.18). While the attitude

error dynamics still employs the same first-order process described in Equation (3.21),

In order to partially compensate for the ommission of the perturbation terms in the velocity

dynamics, a process noise covariance term, Qv, is introduced in the propagation of the state

covariance. As a whole, the estimator dynamics are expressed as:
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ẋ = f (x, t) =


vP

−µrP
r3

0
−φ
τ

+


03×3 03×3

I3×3 03×3

03×3 03×3

03×3 I3×3


[

wv

wφ

]
(3.83)

The state covariance is propagated using Equation (2.5), where the state Jacobian is:

∂f

∂x
= F (x)|x=x̂

=


03×3 I3×3 03×3 03×3

µ
r3

(
3
r2

rP rTP − I3×3

)
03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 − 1
τ I3×3

 (3.84)

and the combined process noise covariance is:

Q =


03×3 03×3 03×3 03×3

03×3 Qv 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 Qφ

 (3.85)

3.5 Experiments and Simulations

This section presents a series of trials that looks at the performance of the developed navigation

filter. The trials aim to evaluate the general effectiveness of nanosatellite optical navigation,

the relative importance of different measurements made, and the versatility of the framework

to adapt to changes in the mission and satellite design. The filter outlines a solution for state

determination during a hyperbolic approach to Mars using a single star sensor. Thought sim-

ulations, it was determined that using the Mars-pointing rule, only a single instance occurs

when the sensor FOV is devoid of stars. This is due to the planet completely filling the camera

field of view. Otherwise, the Mars-pointing rule ensures that most of the field of view remains

unobstructed, and that at least three stars are present at all stages of the approach to allow for

conventional star tracking. Thus the choice of using a single sensor is justified as it is sufficient

in maintaining stable star tracking over the duration of the approach to provide a constant
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attitude solution. The importance of this chapter lies in identifying whether any fundamental

limitations exist in using star trackers for the outlined scenario.

A set of evaluation metrics are presented to gauge the performance of the system. However,

the most important metric depends on the specific mission type (e.g, flyby, orbit insertion,

coordinated observations). These presented performance metrics are selected due to their utility

in large variety of situtations:

• Position and Velocity Error. The magnitudes of the spacecraft position and velocity errors.

Can be evaluated at periapse, or anywhere along the spacecraft trajectory.

• Periapse Radius Error. The accuracy of the periapse radius estimate (derived from the

osculating orbital elements).

• Peritime Error. The accuracy of determining when the spacecraft reaches periapse. It is

most important when planning orbital insertion maneuvers. Calculated from osculating

elements.

A series of Monte-Carlo simulations allows for the determination of mean and standard errors

for the chosen performance metrics. For each trial the initial state estimates are varied according

to the distribution described by the initial state covariance. These trials are meant to validate

the performance of the filter by looking at the statistics of the results over a large number of

trials. It is also used to judge whether the single presented results are typical of filter behaviour.

Sets of Ntrial = 5000 trial Monte-Carlo simulations were executed for the following experiments

according to the respective configuration. This number of trials correspond to a standard error

in the performance statistics of approximately 1%. This degree of accuracy should suffice for

preliminary studies.

Table 3.2 shows the basic parameters governing the simulation. The reference scenario is based

on a hypothetical mission arriving at Mars in January 2019. The sensor design is based on

the demonstrated performance of the Sinclair Interplanetary ST-16RT star tracker. A few

simplifying assumptions were made (e.g., circular field of view), but otherwise the simulations

employ fairly conservative estimates of sensor precision.

3.5.1 Experiment 1: Basic Performance Evaluation

Experiment 1 outlines the nominal performance of the filter. It establishes a baseline expecta-

tion of the system behaviour. All possible measurements are enabled for this eperiment. The
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Table 3.2: Simulation Scenario Parameters

Scenario Start Date 2019 Jan 15 01:55:00 (UTC)
Initial Mars-Spacecraft Distance 571000 km

Initial Mars-Centric Speed 2.6694 km/s
Right Ascension of Sun (in P frame) −0.5236 rad

Initial Eccentricity 2.0
Initial Semi-Major Axis 6139.7612 km

Position uncertainty (1− σ), each axis 100 km
Velocity uncertainty (1− σ), each axis 10 m/s
Sensor mounting uncertainty, each axis 0.1 deg.

Attitude error uncertainty, each axis 1 deg.
Sensor FOV (half-angle) 7.5 deg.

Cross-axis attitude error (1− σ) 1× 10−3 deg.
Roll attitude error(1− σ) 1× 10−2 deg.

Attitude error time constant, τ 600 s
Attitude error process noise Qφ = (10−8)I3×3 rad2/s4

Velocity process noise (estimator only) Qv = (10−15)I3×3 m2/s4

trial employs a single optical sensor that maintains a Mars-pointing orientation throughout the

duration of the scenario. This pointing rule ensures that most of the FOV remains unobstructed

regardless of the range to Mars, such that conventional star tracking is available in addition to

the navigational measurements.

Figure 3.6 shows a chart of the availability over time. The chart shows all measurements are

available through most of the approach. Mars vector and attitude measurements display full

availability. The phase (Mars sun angle) and terminator angle measurements disappear the last

few hours before periapse, due to the Mars disk becoming too large for these measurements to

be made. In the last few hours before periapse the moons can no longer be found in the FOV

as a by-product of the specified pointing rule.

Figure 3.7 outlines the position error performance of the system over the course of the approach.

The solid blue line represents the magnitude of the position error over the duration of the

scenario, while the segmented red line is the 3−σ bound calculated from the diagonal elements

of the state covariance. The error appears very large initially, but improves over time as the

range to Mars decreases. At roughly 10 hr before periapse, the error bound drops to about

20 km, and during the final two hours the bound drops below 5 km.

Figure 3.8 shows the error in the estimator’s prediction of the peripase timing. This knowledge is

useful in the situations where mission-critical activities (e.g., insertion burns) are necessary. For

these activities, having a good estimate of the timing is critical. From the figure, the peritime

error is very large at about 17 min., but this rapidly deaceases as the scenario process due to
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Figure 3.6: Observation availability during approach scenario (Mars-Pointing).
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Figure 3.7: Position error during approach scenario

the state estimate convergence. In this trial, the error remains below 20 s in the final 24hr. and

lies between 0− 1 s in the final two hours before periapse.

Figure 3.9 shows the periapse radius estimate over the course of the simulation. This quantity

measures the accuracy of the periapse radius estimated using osculating orbital elements at each

step of the scenario. From the graph, the estimate converges slowly, reaching about 3 km in

error at roughly ten hours prior to periapse. The large motion in the beginning of the scenario

is driven mostly by the third-body pertubations acting on the spacecraft, since these effects are

most significant at the start of the simulation.

The typical baseline example described above can be reinforced with results from a set of Monte-

Carlo trials. Table 3.3 outlines all the trials conducted along with corresponding results. The
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Figure 3.8: Peritime error during approach.
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Figure 3.9: Periapse radius estimate compared to true, osculating, value.

performance errors shown in the table are representative of the statistics of the error measured

during periapse over a set of trials. The first row of Table 3.3 shows mean and standard

deviation values for the baseline case. The statistics demonstrate that the trajectories shown

in this study are indeed typical examples of the filter’s behaviour. Where mean values are

negligible, the corresponding standard deviation is presented.

While the position and velocity error statistics hold the most significance, the filter’s ability

to estimate attitude and sensor misalignment is also important. Overall sensor alignment is

accurate to approximately 15 µrad about three axes. The trials show a fair quantity of variability

in this value. This is likely due to the contribution from both the attitude and the misalignment
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Table 3.3: Estimator Performance at periapse

Mean Standard Deviation
Test |δr|

(km)
|δv|

(m/s)
|δψ|

(µrad)
Periapse Radius

Error (km)
Peritime Error

(ms)

Experiment 1
All Measurements 0.26 0.11 15.7 0.17 42

Experiment 2
No Terminator 0.27 0.11 12.7 0.18 45

No Phase 0.29 0.12 34.8 0.17 42
No Phobos 0.28 0.12 24.6 0.19 45
No Deimos 0.32 0.15 37.9 0.20 46
No Moons 0.40 0.19 38.5 0.23 52

Position Only 0.48 0.24 24.7 0.22 48
Position +
Terminator

0.29 0.14 20.9 0.22 49

Position + Phase 0.32 0.16 32.7 0.22 49
Position + Moons 0.27 0.12 18.3 0.18 43

Experiment 3
Two Sensors 0.22 0.10 19.1 0.13 40

Velocity pointing 10.77 2.70 17.8 0.48 1460
Vel.Point 8.8 Deg

Tilt
4.02 0.98 18.7 0.40 462

Vel.Point,
Wide-FOV, 11.8

Deg Tilt

1.81 0.44 24.5 0.30 217

error. Furthermore, the net error, ψ + φS , shows less variation than the estimates of ψ alone.

3.5.2 Experiment 2: Relative Measurement Contributions

The previous experiment presents results that display a baseline performance for the filter.

It looked at the performance of the filter in the presence of all the available measurements.

However, it is also worthwhile to explore the contributions each individual measurement to the

overall system. This is especially important when considering the fact that many measurements

require their own unique processing algorithms. The inclusion of a measurement that offers

minor improvements to the system should be considered in regards to the development and

comuptational investments.

The first set of tests in Experiment-2 looks at filter performance during the absence of a single

measurement. Attitude and Mars-position (Mars vecctor) are essential measurements, thus

they are enabled in all the trials. The results of this set can be seen in the first couple rows in
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Table 3.3. The loss of the terminator angle measurement makes minor impact on the overall

performance of the system, while the loss of the phase angle and the moons appear to have

quite significant impact on the accuracy.

The second set of tests looks at small set of measurement combinations seen in the last few

rows of Table 3.3. The table shows that the filter can still perform acceptable results (with

position errors of less than 0.5 km) when using only Position measurements although the

error is noticeably higher than the all measurements case. The addition of phase measurements

can help restore some of this drop in performance, reducing the error to a level closer to the

all measurements case. The moon measurements make a very significant contribution to the

performance of the filter, this is evident from the No Moons and the Position + Moons tests.

When moon measurements are added to the position measurements in the Position + Moons

test, it results in a significant reduction in error bringing the error to a similar value as the all

measurements case. In the No Moons test, where the moon measurements are taken away, the

filter performance significantly degrades to a level close to the just Position test.

3.5.3 Experiment 3: Pointing Rules and Sensor Placement

Experiment 3 looks at using the developed framework as a design tool to evaluate different

spacecraft configurations. This experiment begins conducts a few simple preliminary studies on

the topic, more in-depth studies are explored in Chapter 4 of the thesis. The aim of these studies

is to demonstrate the utility possessed by the developed framework rather than presenting

optimized results.

The first trial in this experiment examines the addition of a second star tracker mounted on

spacecraft, such that its boresight aligns with the orbit normal. The goal of this change is

to provide constant attitude information throughout the scenario via the second sensor. This

sensor does not make any Mars observations along the way, but when comparing results with

that of Experiment 1, an improvement in the position and velocity performance is visible.

The second trial employs the velocity-aligned pointing rule introduced in Section 3.1.1. All

the previous trials have used the original Mars-pointing rule that places the limb of Mars off-

centre in the FOV. This rule proved to be quite effective looking at the previous results, however

missions may have attitude requirements at specific times, that will not permit the spacecraft to

maintain a preset orientation over the entire duration. This velocity-aligned rule is introduced

as one of many possible pointing criteria that may arise. The rule keeps the spacecraft z-axis

(boresight) aligned with the velocity vector.
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Figure 3.10: Observation availability during approach scenario (Velocity Pointing).

Figure 3.10 shows the measurement availability for the velocity aligned mission scenario. The

figure shows the Mars vector observations are available until approximately four hours before

periapse. This results from the pointing rule, where the scenario starts with Mars being visible

in the FOV, but as the simulation proceeds the planet slowly drifts towards the edge of the

sensor in the image. By the last four hours before periapse the filter completely loses sight of

Mars. This means the filter is left without any position updates during the critical phase of the

scenario approaching periapse, which leads to a high increase in error as seen in Table 3.3. A

position error of ten kilometers represents almost a 40 times increase in error when compared

to the baseline case.

It is possible to restore some of the performance by adjusting the star tracker mounting on the

spacecraft, such that the spacecraft sees more of Mars as the scenario approaches its terminal

phase. In the pure velocity-pointing scenario, Mars begins off slightly off-centre in the −Y
direction in the image, and gradually drifts in the −Y direction until it goes out of view. By

canting the sensor mounting 8.8◦, Mars will start 6.5◦ off boresight in the +Y direction at the

beginning of the scenario, thus prolonging the amount of time that Mars remains in the sensor

field of view.

Figure 3.11 shows the resulting performance from the mounting angle adjustment. Now, the

planet now stays in view until about t − tp = 1.2 hours, which is an improvement from the

previous four hours. The results show a 4.4 km error in position during periapse, which is an

improvement compared to the previous 10 kilometers, but still worse than the results from the

Mars-pointing trials. This configuration is further explored by changing the sensor FOV to

10.5◦, and the cant-angle to 11.8◦. This change is justified as the ST-16 star tracker possesses
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Figure 3.11: Observation availability during approach scenario (Velocity Pointing, tilted sen-
sor mounting).

a rectangular 7.5× 10.5◦ FOV in reality, but the simulations assume a circular FOV. With this

change, the Mars observation persists until 50 min. before periapse, resulting in a further drop

in the position error from the original 4.4 km to 1.8 km at periapse.

These sets of trials show interesting results, but more importantly demonstrates the framework’s

ability to reflect these kinds of behaviour. This paves the way for possible indepth studies and

new alternate design and operational configurations.



Chapter 4

Sensor Case Studies

This chapter uses the outlined framework from Chapter 3 developed by Enright et al. [1] to

conduct case studies. The studies involve experimenting with various spacecraft configurations

and its effects on the overall system behaviour.

The parameters explored in this study were different cant-angles, and sensor fields of view. A

cant-angle, γ, is essentially tilting the sensor mounting angle by a certain rotation, an example

would be the 8.8◦ cant case from Experiment 3 in Chapter 3.

These studies use the position state covariance magnitude as a metric to gauge performance.

The position state covariance magnitude was chosen as opposed to the actual position error

magnitude due to the highly variable nature of the position error from trial to trial. This

variability stems from the noise present in the system. Even for two trials of the same initial

conditions the position error may turn out completely different due to noise. Due to Monte-Carlo

simulations being computationally expensive, the parameters are initially optimized based on

the state covariance. Afterwards, Monte-Carlo simulations can be applied to the critial points.

Three sets of tests were conducted to explore the effects of the mentioned parameters. The

first test looks at the effects of different cant-angles, and whether any particular angle offered a

significant increase in performance. The second test looks at changing the sensor field of view.

This change had a high degree of ambiguity due to the properties of the sensor. Field of view

angle θ, focal length f , and detector size Dsize, follow strict geometric relationships outlined in

Figure 4.1. Take note that the field of view angle mentioned hereafter represents a half-angle

(i.e, half of the total angle shown in the diagram).

The sensor properties follow the geometric relationship described by

39
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Figure 4.1: Geometric peroperties pertaining to field of view angle, focal length, and detector
sizing

tan(θ) =
Dsize

f
(4.1)

The detector size, Dsize, was kept constant. This allows for the direct adjustment of the field of

view angle which results in a compensating change in the focal length. Since the detector size

remains the same, the total number of pixels for the camera remains constant. Thus an increase

in the field of view angle will actually result in a lower relative resolution, since the total pixel

number remains the same but now projects across a bigger angle.

The third experiment looks at the combined effects of different field of view angles and differ-

ent cant-angles. In the majority of situations it is economically more efficient to adjust the

mounting angle of the sensor, than to make changes to the hardware to adjust the FOV siz-

ing. This experiment looks to explore if canting the sensor can retain some of the performance

improvement resultant from changing the FOV angle.

Monte-Carlo trials were conducted for these experiments. The results were sorted into a em-

pirical cumulative distribution function, and the median of this distribution was taken to be

the metric used to gauge the performance of the results. The median is used as opposed to the

mean because the median will not be skewed by small numbers of outliers, being a better typical

representation of the results. For cases where the initial guesses vary, the position covariance

will also experience some degree of variation. To account for this, a 95% confidence bound is

introduced. This bound is obtained by removing the top and bottom 5% of the sample of an

empirical cumulative distribution function. This removes possible outliers that are capable of

greatly skewing the statistics of the trials.
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Figure 4.2: Position covariance at periapse as a function of γ, θ = 7.5◦.

4.1 Experiment 1: Exploring Cant-Angles

Experiment 1 looks at the effects of different mounting angles on the performance of the system.

To properly demonstrate the effects of the cant-angle, this experiment was conducted using the

velocity-aligned pointing rule outlined in the previous chapter in Section 3.1.1. The cant-

angle follows the same orientation as Chapter 3 where it places the centre of Mars towards the

+Y direction in the sensor plane. The position state covariance magnitude during periapse is

recorded as a means of evaluating the performance of the system. The sensor field of view for

this experiment is θ = 7.5◦.

Figure 4.2 and Figure 4.3 presents the position and velocity results for the Monte-Carlo trials

for a sample size of 500, which corresponds to a standard error in the performance statistics

of 3%. Figure 4.2 shows that an increase in the cant-angle (x-axis) results in a decrease in

position uncertainty (during periapse, y-axis) until about 10◦ where a small degree of variation

is introduced as shown by the bounds. When the confidence bounds begin to separate, this

means that increasing γ will introduce more variability to the state uncertainty in the system.

At a cant-angle of approximately 15◦ the separation rate increases, but the overall trend still

indicates a decrease in error according to the median. This decreasing behaviour stops at around

17◦, afterwhich the error begins to increase. When choosing the optimum mounting angle, the

deciding factor is heavily dependant on the amount of tolerable variation introduced into the

system. For this study, the critical points of interest occur at 10◦ (no variation), 15◦ (small

variation), and 17◦ (heavy variation).
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Figure 4.3: Velocity covariance at periapse as a function of γ, θ = 7.5◦.

4.2 Experiment 2: Different Fields of View

Experiment 2 investigates the effects of having different sensor fields of view on the filter be-

haviour. In addition to the position covariance at periapse, the scenario introduces two new

metrics. The first metric is referred to as the instance of convergence (IOC), it is defined as

the instance in time during which the 3σ position covariance drops below 50 km. This choice

outlines a good conservative representation of the moment at which the filter drops below an

acceptable error threshold. The aim in establishing this metric is to examine the trend of dif-

ferent FOV angles on convergence, thus the specific value of the IOC holds less significance as

long as it is within an acceptable range.

The second metric fractional measurement availability (FMA) was introduced to associate mea-

surement availability with IOC. The FMA is defined as the fraction of total measurement

availability before IOC over IOC. If a measurement was available from the start of the scenario

until the IOC then the FMA is equal to 1.

Figure 4.4 outlines the effects of different sensor FOV angles on the position covariance during

periapse. The figure shows a decrease in error as the FOV angle increases. This is most likely

due to the fact that a larger FOV allows the filter to see certain measurements for longer. The

effect plateaus at about 30◦ and does not offer any more reduction in error. At this point,

increasing the FOV angle no longer has any significance as the filter measurement availability

is already 100% at a 30◦ FOV half-angle.
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Figure 4.4: Position covariance at periapse with respect to different field of view angles.
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(b) Zoomed in view 1◦ − 10◦, 500 trials.

Figure 4.5: IOC as a function of θ.

Figure 4.5a outlines the effects that different fields of view have on the IOC. The IOC (y-axis) is

measured in number of hours before the spacecraft reaches periapse (i.e at periapse t− tp = 0).

One of the expected trends before the trials was that for narrower fields of view angles the filter

would have a faster convergence time. The filter seeing a Large Mars earlier allows it to obtain

these measurements earlier on which speeds up the rate of convergence for the filter. This can

be seen from the figure as the general trend of the plot shows as the FOV angle decreases, so

does the time taken for the filter to drop below the convergence threshold. The opposite is also

true; increasing the FOV angle results in a slower convergence time. For instance at θ = 25◦,

the initial uncertainty is very high, and the filter requires until ten hours before periapse to

drop below the convergence threshold.

Although Figure 4.5a outlines a general trend, there still exists some discrepancies in the lower
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(a) Mars position measurement FMA.
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(b) Terminator angle measurement FMA.

Figure 4.6: FMA as a function of θ.

FOV angle ranges of the graph between 1◦ − 10◦. To investigate this, a set of 500 Monte-Carlo

trials were conducted on this 1◦− 10◦ range. This was to ensure this behaviour was not caused

by any variation, and was a common reccuring trend. Figure 4.5b shows the results from this set

of trials. There is not a large amount of variation in these results, only small amounts of it can

be seen in the 1◦ − 2.5◦ range. This means that the erratic trend represents typical behaviour.

Examining the relationship between FOV angle and FMA provides insight into the reasons

behind this erratic behaviour. The FMA at every field of view angle was plotted for each

measurement. The general trend for all the graphs indicate as the FOV angle increases so does

the FMA. This is expected as a larger field of view will allow the filter to see measurements for

longer periods of time. Only the measurements that are related to the erratic behaviour are

shown in this section, the rest can be seen in Appendix A-3.

Figure 4.6a shows the FMA graph for the Mars vector measurement. This measurement is the

main contributor to the very large drop in convergence time in the beginning of Figure 4.5b at

1◦. As seen from the FMA graph, small fields of view like 1◦ does not allow the filter to see

Mars very often thus drastically lowering the IOC, the convergence time recovers as the FOV

angle gets bigger as evident by the sharp changes in both graphs.

Figure 4.6b shows the FMA graph for the terminator angle, β. Both β and χ share the same

FMA plot since it is not possible to see one without seeing the other. The FMA plot for χ can

be seen in Appendix A-3 (see Appendix A-3). These measurements are the main contributors

to the behaviour that happens at FOV angles of 1.5◦−2◦ in Figure 4.5b. As the FMA for these

measurements sharply increase, this results in a sharp drop in the IOC.

The sudden jumps between FOV angles within the 4◦− 8◦ range results from the measurement

availability of Deimos. Looking at Figure 4.7, the FMA of Deimos displays a similar pattern of
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Figure 4.7: Deimos measurement fractional availability as a function of θ.

this behaviour. As the FMA for Deimos suddenly drops, the IOC increases, and as it suddenly

increases, the IOC drops.

Other than the cases discussed above, Figure 4.5b shows a very stable trend where increasing

the FOV angle results in a increase in IOC. The behaviour in this graph does stem from any

single measurement but rather represents a collective contribution from all the measurements.

The cases listed above are just examples of when one (or two) measurements dominate the

contribution.

4.3 Experiment 3: Combined Experiment

Experiment 3 looks at the combined effects of changing θ with different values of γ. The goal of

this experiment is to see whether changing γ can compensate for a performance change caused

by an adjustment in θ.

Figure 4.8 shows the position covariance at periapse for different θ for two different values of

γ (1◦ and 5◦). The figure shows the two cant-angle curves are similar except with a vertical

shift. Canting the sensor can reduce error for the same θ. seen from the graph, the γ = 1◦

line requires θ = 5◦ to reach a position covariance of 10km, while the γ = 5◦ line only requires

θ = 2.5◦ to reach the same position covariance. Although canting is effective at reducing system

error at specific times, this is not enough to conclude that a change in the FOV angle can be

completely compensated by adjusting the mounting angle. The ideal configuration depends on

specific mission requirements and attitude constraints.
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Figure 4.8: Position covariance at periapse as a function of θ for different γ.



Chapter 5

Landmark-based Optical Navigation

This chapter looks at a framework presented by Zhang, et al. [24] that explores landmark-based

optical navigation for orbit determination. Landmark-based tracking is a proven approach to

orbital estimation and guidance. Autonomous navigation systems have been used successfully

during proximity operations around planets and small bodies for many years. This method can

be used to obtain rapid orbit information in an Earth orbit before stable ground-tracking is

made available. It can also be applied to planets that lack tracking infrastructure for orbit de-

termination. This orbit determination method has a high degree of flexibility, as long as ground

pointing is possible and features are visible, it can be used to provide navigation information.

In this study, some of the challenges of deploying these techniques on nanosatellite missions

were considered. The optical sensors — most often star trackers — used on these spacecraft

rarely exhibit the same accuracy and sensitivity as those employed on larger spacecraft. The

formulation assumes that two types of landmark observations can be made: relative features

and absolute landmarks. Relative feature observations are the most numerous and can include

ephemeral observations such as clouds and shadows. Features are tracked from frame-to-frame

and provide relative navigation information. Absolute feature observations are those that can

be matched to a catalog of known landmarks. These are identified infrequently, but provide

the most important information for the navigation filter. These easurements are fused using an

Extended Kalman Filter. High-rate relative updates slow error growth when absolute measure-

ments are unavailable. Slower absolute motion provides significant state correction when these

measurements are available.

47
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5.1 System Dynamics and Reference Scenario

This section presents a detailed discussion of the reference scenario and the overall formulation

of the navigation system. This includes the basic frames of reference and orbit geometry, as well

as the dynamics of the simulation, filter, and camera.Notations in this chapter were adjusted

from the original paper to avoid conflict and maintain consistency with conventions used in this

thesis.

5.1.1 Reference Scenario

The scenario is based on a spacecraft in a planetary orbit (see Figure 5.1). The left hand side

(LHS) of the figure represents an illustration of the orbit plane, while the right hand side (RHS)

shows a side view of the orbit geometry. Applying a 90◦ rotation about the I3 axis to the LHS

of the figure results in the view on the RHS. The inertial I-frame is located at the centre of

mass of the planet. Any appropriate inertial frame definition can be used for I, but a standard

definition with the I3 axis aligned with the planetary spin axis was adopted. The spacecraft

state is described by Cartesian position, rI , and velocity, vI , vectors, both expressed in I.

x =

[
rI

vI

]
(5.1)

𝐼3

𝐼1
𝐷2𝐷3

S/C

M

𝜃𝑎

S/C

M

𝐼1

𝐼2

𝐷1

𝑅𝐼1 ൗ𝜋 2

𝐷3

Figure 5.1: Diagram of basic frames of reference.
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The spacecraft orientation is represented by the body frame, D. For notational simplicity the

spacecraft frame is assumed to be coincident with the frame of the navigation camera, but it

would be a trivial modification to include separate frames.

The nominal orientation of the body frame (and hence the spacecraft) is to have the D3 axis

pointed at the centre of the central planet and the D1 axis parallel to the orbit normal. For

this initial feasibility study spacecraft attitude is not considered as an independent part of the

state. Instead, it was assumed that the attitude determination and control system (ADCS) is

perfect, such that it is able to achieve the desired inertial attitude, CDI with no error or lag.

Thus, the spacecraft turns to keep its D3 axis aligned with where it thinks the planetary centre

is. The expression for the spacecraft orientation can be written as a function of its state. In

terms of basis vectors, the attitude matrix is:

CDI =
[

D1 D2 D3

]T
(5.2)

where

D3 = − r̂I
‖r̂I‖

(5.3)

D1 =
r̂×I v̂I∥∥r̂×I v̂I

∥∥ (5.4)

D2 = D×3 D1 (5.5)

The last frame is a rotating frame attached to the centre of the planet, denoted as the F -frame.

The F -frame is essentially the I-frame rotated about the I3 axis. Over the timescales of the

observations, the non-ideal effects (e.g., nutation, precession, etc.) can be neglected and treated

as a spin-axis rotation at constant rate, Ω. Thus the angular velocity between these two frames

is:

ωIFI =


0

0

Ω

 (5.6)
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because the spacecraft’s true attitude is defined as a function of the spacecraft’s estimated state,

the true angular velocity ωIDI of the spacecraft (and of D with respect to I) is defined by the

estimated state. Thus:

ωIDD =


ωID

0

0

 (5.7)

where the magnitude can be written in terms of orbital angular velocity:

ωID =
‖r̂×v̂‖
r2

(5.8)

5.1.2 Simulation Dynamics

The truth dynamics for the filter use a simple gravitational dynamics model that combines

spherically symmetric gravitational attraction with a set of arbitrary perturbational accelera-

tions.

ẋ =

[
vI

aI

][
vI

− µ
r3

rI + dI

]
(5.9)

For the initial test of the navigation approach it was assumed that the perturbation acceleration

is due only to the oblateness (i.e., J2 effect) of the central body. A common simplified model

[25] of J2 acceleration has the form:

dI,truth =


− µ
r5

[
J2

3
2R

2
M

(
1− 5

r23
r2

)]
r1

− µ
r5

[
J2

3
2R

2
M

(
1− 5

r23
r2

)]
r2

− µ
r5

[
J2

3
2R

2
M

(
3− 5

r23
r2

)]
r3

 (5.10)

The performance of the navigation filter was evaluated using an orbital scenario. The scenario

considers a spacecraft in a low, circular sun-synchronous orbit around Mars. The true and

estimated state of the satellite over seven hours was evaluated, which is sufficient to assess

filter convergence. This orbit choice is somewhat arbitrary but does illustrate significant, well-

understood perturbation effects.The corresponding orbit parameters for this Mars orbit scenario

can be see in Table 5.1.
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Table 5.1: Scenario Orbit Parameters for Mars and Earth

Mars
J2 0.001960
µ 4.282× 104 km3s−2

Simulation Time 7 hours
Orbit Altitude 450 km

Inclination 98o

Argument of periapse 90o

RAAN 0o

Initial Position [3840 0 0]T km
Earth

J2 0.001083
µ 3.986× 105 km3s−2

Start Time, after epoch 16 hours
Simulation Duration 7 hours

Initial Position [−47.38 − 7126 1156]T km

5.1.3 Filter Dynamics

To evaluate the efficacy of the navigational filter, the onboard propagator uses a simpler dy-

namics model simulation. In the initial trials, the J2 disturbance was dropped and assumes only

two-body dynamics where

dI,prop = w (t) (5.11)

To account for the un-modelled perturbations, an artificial process noise term w(t) was intro-

duced, where w(t) has a spectral density Q . The filter system dynamics is given as:

ẋ =

[
vI

− µ
r3

rI

]
(5.12)

The navigation filter is implemented as a Continuous-Discrete Extended Kalman Filter (EKF)

according to the formulation outlined in Section 2.4. Propagating this type of filter between

measurements relies on Equation (5.9) and Equation (5.11) for the state propagation. The

covariance here is propagated a little differently using:

Ṗ = FP + PFT + LQLT (5.13)



Chapter 5. Landmark-based Optical Navigation 52

where F is the Jacobian of the modelled dynamics:

F =

[
03×3 I3×3

∂aI
∂rI

03×3

]
(5.14)

whence

∂a

∂rI
=

µ

r3

(
3
rIr

T
I

r2
− I3×3

)
(5.15)

The Jacobian, L, of the system response to the disturbing acceleration is simply:

L =
[

03×3 I3×3

]
(5.16)

The disturbance spectral density, Q is assumed to be of the form

Q = QDI3×3 (5.17)

where QD is sized based on the expected magnitude of the un-modelled disturbance. The heuris-

tic nature of this approach is recognized and that the actual disturbing acceleration is neither

Gaussian nor zero-mean. This term is merely exploited in the conventional filter formulation in

order to keep the state covariance from becoming too small to effectively track the changes in

the system state.

Measurement updates use Equation (2.6), Equation (2.7), Equation (2.8) from Section 2.4:

5.1.4 Camera Observation Model

The navigation solution relies on imaging the planet and identifying absolute or relative features

in the image. In this study, the feature extraction and matching algorithms were not explicitly

modelled. Instead, the process was abstracted, making the assumption that an image processing

algorithm can highlight distinctive features and identify the projections of the feature directions,

sB, as coordinates (u and v) in the detector image Figure 5.2 shows the relative geometry

between the spacecraft, planet and planetary landmarks.

In order to integrate the optical measurements with the navigation filter the camera observations

must be written as a function of the system state. The analysis assumes a pinhole model for the
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Figure 5.2: Illustration of the measurement geometry.

camera. In this model the virtual detector is displaced along the camera boresight by the focal

distance, f . This displacement is along the B3 direction. The u and v axes of the image frame

are parallel to the −B1 and −B2 axes of the B-frame, respectively, and the measurements of u

and v can be scaled by the pixel dimension, δpix, so that they are in units of pixels:

u =
f

δpix

sD,1
sD,3

(5.18)

v =
f

δpix

sD,2
sD,3

(5.19)

The LOS vectors s are related to the planetocentric landmark position vectors f and the space-

craft position through simple vector arithmetic:

sI = fI − rI (5.20)

Rewriting Equation (5.20) in the body frame gives:

sD = CDI (fI − rI) (5.21)
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5.2 Absolute Measurements

Absolute measurements are recognized mapped landmarks such as well known craters and land-

forms. The positions of these features, fF , in the planet-fixed F -frame are known. These

landmarks are stored in an onboard catalog, and once matched, can provide absolute orbit in-

formation for the system. It was assumed that these mapped landmarks are relatively rare either

due to their inherent sparsity or the difficulty of identifying and registering the landmarks in

the detector images. Their frequency of appearance was assumed to be on an order of minutes.

5.2.1 Measurement Model

The measurements for absolute landmarks are defined as the pixel coordinates of the feature

points projected onto the image plane. Thus the simple measurement model

hAbs =

[
u

v

]
=

f

δpix

[
sx
sz
sy
sz

]
(5.22)

given that the LOS vector components are:

sD =


sx

sy

sz

 (5.23)

The measurement noise is white and Gaussian with zero mean. It represents the deviation in

pixel locations from their true locations on the image plane. It was assumed that the errors in

u and v measurements are independent with covariance:

RAbs = σ2
AbsI (5.24)

For this study, the coordinate uncertainty was assumed to be σAbs = 0.5 pixels.

The measurement sensitivity matrix for absolute measurements was evaluated through lineariz-

ing. Applying the chain-rule:

HAbs =
∂hAbs
∂sD

∂sD
∂x

(5.25)

where the partial derivatives are:
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Table 5.2: Filter Initial Conditions

Initial Parameter σ

Position error, each axis 5 km

Velocity error, each axis 0.01 km/s

Position uncertainty (1− σ), each axis 5 km

Velocity uncertainty (1− σ), each axis 0.01 km/s

∂hAbs
∂sD

=
f

δpix

 1
sz

0 − sx
s2z

0 1
sz
− sy
s2z

 (5.26)

∂sD
∂x

= −CBI

[
I3×3 03×3

]
(5.27)

5.2.2 Experiment 1 Results

For this experiment, it was assumed that the only absolute measurements are made. The time

frame between the appearance of each global landmarks are denoted as the absolute measure-

ment period, ∆TAbs. For this scenario ∆TAbs = 600 s

A set of fI are generated randomly, this in turn emulates knowledge of the landmark locations

on the Martian surface. One set of absolute measurements contains Nabs = 5 feature points.

This number was chosen somewhat arbitrarily. Realistically, a known landmark would yield a

number of feature points much greater than five, however since the feature points are directly

generated and image processing was not considered, it was decided that Nabs = 5 is sufficient

for this feasibility study.

The initial guess for the filter was chosen by adding error to the initial conditions from the

truth simulation. Table 5.2 outlines the amount of error added, as well as the corresponding

uncertainty that stems from the added error. Thus the initial covariance for the filter is equal

to the square of the corresponding uncertainty (σ2), where the covariance P has the form

P0 =

[
σ2
pos 0

0 σ2
vel

]
(5.28)
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Figure 5.3: Filter position performance with only absolute measurements, ∆TAbs = 600 s.

Figure 5.3 and Figure 5.4 show the performance of the filter over the course of the simulation.

In Figure 5.4, the velocity aspect of the filter is plotted on a log scale for readability. The tip of

the spikes represent the time step right before an absolute measurement. From the results, it

can be seen that the error falls mostly within the 3− σ bound and the estimate converges at a

rapid pace. However, there exists a large spike in position error at the start. This is most likely

due to the filter propagating an incorrect state estiamte from the initial guess. In the absence of

measurements, this causes the system error to spike at the beginning of the scenario, however,

the filter quickly converges with further measurements.

A new metric was introduced, used to gauge the overall performance of the system. This metric

is called the mean pre-update error (PRE). It is defined as the mean of the error magnitude

before every absolute update over the course of one trial. This is a conservative value as it

represents the system at its worse before every absolute update. The mean pre-update error

from this trial is 3.36 km on position, and 0.00723 km/s for velocity. If the absolute measurement

period was increased to 1200 s (doubling it), the mean pre-update errors becomes 8.08 km and

0.0107 km/s on position and velocity, respectively. This behaviour suggests that performance

deteriorates rather quickly as absolute measurements become less frequent.

5.3 Relative Measurements

Relative landmarks are uncataloged image features. These can be un-recognized craters, or

transient features such as terminator lines and clouds. In the model, these features are tracked



Chapter 5. Landmark-based Optical Navigation 57

0 0.5 1 1.5 2

Time (s) ×104

10-3

10-2

10-1

V
e

lo
c
it
y
 E

rr
o

r 
M

a
g

n
it
u

d
e

(k
m

/s
)

Velocity Error

3σ Bound

Figure 5.4: Filter velocity performance with only absolute measurements, ∆TAbs = 600 s.

between consecutive image frames to provide relative information to the navigation filter. The

frequency of these measurements is much higher than that of absolute measurements, assumed

to be on the order of seconds.

5.3.1 Measurement Model

The measurements for relative landmarks is defined as the rate of change of the pixel coordinate

of the feature point projected onto the image plane.

hrel =

[
u̇

v̇

]
(5.29)

To form the observation pseudomeasurements, the velocity is approximated using a finite-

difference approximation between image frames.

ĥrel =

[
(uk−uk−1)

∆t
(vk−vk−1)

∆t

]
(5.30)

When processing the relative measurements, the system has no position information on the

measured features, but it is possible to approximate rI based on the observed image points.

Using some simple vector addition, the feature location can be written as a combination of

position and a scaled LOS vector:
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fI = rI + sCID
1√

(uδpix)2 + (vδpix)2 + f2


uδpix

vδpix

f

 = rI + smI (5.31)

In order to find a numeric value of fI the intersection was constrained to lie on the surface

of a sphere (alternately, intersecting the LOS vector with an ellipsoid is also possible if higher

fidelity was desired). Thus,

R2
M = fTI fI = r2 + 2smT

I rI + s2 (5.32)

This is a simple quadratic in s.

In order to incorporate the relative measurements into the filter the Jacobian matrix Hrel must

be evaluated. Recognizing that u and v are functions of sB, the idealized measurement given in

Equation (5.29) can be expanded as

hrel =

[
∂u
∂sD
∂v
∂sD

]
ṡD (5.33)

or

hrel =
f

δpix

[
aT

bT

]
ṡD (5.34)

where

∂u

∂sD
=


1
sz

0

− sx
s2z

 (5.35)

and

∂v

∂sD
=


0
1
sz

− sy
s2z

 (5.36)
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differentiating Equation (5.21) with respect to time gives the apparent rate of change of the

LOS vectors:

ṡD = ĊDI (fI − rI) + CDI

(
ḟI − ṙI

)
(5.37)

where ĊDI and ḟI are defined by:

ĊDI = −ωIF×I CDI (5.38)

and the landmark motion is due to planetary rotation

ḟI = ωIF×I fI (5.39)

Making the above substitutions and simplifying leads us to the following equation that describes

the rate of change of the feature vector with respect to the spacecraft expressed in the body

frame.

ṡD = CDI

(
ωFI×I fI − vI

)
− ωDI×D sD (5.40)

The measurement sensitivity matrix can be found by evaluating the partial

Hrel =
∂hrel
∂x

=
f

δpix

[
∂
∂x

(
aT ṡD

)
∂
∂x

(
bT ṡD

) ] (5.41)

Expanding the first partial derivative gives:

∂

∂x

(
aT ṡD

)
= aT

∂ṡD
∂x

+ ṡTD
∂a

∂x
(5.42)

= aT
∂ṡD
∂x

+ ṡTD
∂a

∂sD

∂sD
∂x

(5.43)

Several of these terms have already been derived in Equation (5.40) and Equation (5.27). The

remaining terms are fairly simple to evaluate:

∂a

∂sD
=


0 0 − 1

s2z

0 0 0

− 1
s2z

0 2sx
s3z

 (5.44)
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The term ∂ṡD/∂x can be taken from Equation (5.40):

∂ṡD
∂x

= −ĊDI

[
I3×3 03×3

]
−CDI

[
03×3 I3×3

]
(5.45)

Similarly, for the second row of Hrel:

∂

∂x

(
bT ṡD

)
= bT

∂ṡD
∂x

+ ṡTD
∂b

∂x
(5.46)

= bT
∂ṡD
∂x

+ ṡTD
∂b

∂sD

∂sD
∂x

(5.47)

where

∂b

∂sD
=


0 0 0

0 0 − 1
s2z

0 − 1
s2z

2sy
s3z

 (5.48)

Similar to Experiment 1, the measurement noise is also assumed to be zero-mean and Gaussian.

The measurement covariance for the relative pseudomeasurements is related to the covariance

of the individual feature point measurements. Covariance values can be calculated from Equa-

tion (5.30) and Equation (5.24).

Rrel = σ2
relI =

2σ2
Abs

∆t2
I (5.49)

5.3.2 Experiment 2 Results

In this simulation, both relative and absolute measurements are made. The appearance of an

absolute landmark at a time step will override any relative measurements made in that same

time update, this is important in selecting the corresponding measurement matrix during the

state update. The time frame between each relative measurement is denoted as the relative

measurement period, ∆t. In this scenario, the absolute measurement interval was set to ∆T =

600 s, and a relative measurement period of ∆t = 1 s was used. Figure 5.5 shows a flowchart of

the measurement process.
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Figure 5.5: Flowchart outlining measurement process and hierachy.
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Figure 5.6: Filter position performance with absolute and relative measurements, ∆TAbs =
600 s.

The relative feature points are generated randomly on the FOV in a manner similar to that

used for absolute measurements. Placement of the features is less critical than in the absolute

case because since the image-to-image motion are expected to be comparatively small.

For consistency, this experiment employs the same initial conditions from Experiment-1. Fig-

ure 5.6 and Figure 5.7 detail the performance of the filter. From the graphs, it can be seen that

the filter reaches a stable performance after two or three absolute updates. There still exists a

spike in error at the beginning of the scenario similar to Experiment 1. The uncertainty in this

case is also visibly lower when compared to Experiment 1.
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Figure 5.7: Filter velocity performance with absolute and relative measurements, ∆TAbs =
600 s.

Figure 5.8 and Figure 5.9 show the behaviour of the state uncertainty for system over the dura-

tion of one absolute measurement period. In the case of having both measurements, the state

covariance is about 60% lower than Experiment 1. This trend suggests less state uncertainty in

the dual measurements case, and also demonstrates the ability relative measurements possess

in reducing the growth rate of the uncertainty.

The effect of increasing ∆TAbs on overall system performance was investigated. Additionally, a

comparison between having both measurements as opposed to only absolute measurements for

each respective absolute measurement period was conducted. The relative measurement period

was kept consistent with the other tests at ∆t = 1 s. Figure 5.10 and Figure 5.11 shows that

increasing the ∆TAbs causes the mean PRE to increase. The addition of relative measurements

cause the PRE to decrease by a certain margin. This margin becomes larger the higher the

absolute measurement period. For absolute measurement periods of 600 s and 1200 s, the

addition of relative measurements yield mean pre-update errors of 1.20 km and 0.00376 km/s in

the ∆TAbs = 600 s case, and 2.84 km and 0.00479 km/s in the ∆TAbs = 1200 s case. Comparing

this to the results from the absolute only case in Experiment-1, results show a reduction in

position error of approximately 50% or more.

Relative measurements extend the capabilities of the filter by lowering error growth. The

performance of the filter using only absolute measurements with an absolute measurement

period greater than 30 minutes show PRE position errors of 15 km or greater. 30 minutes was

selected as a critical point as it is unrealistic to assume the time between the occcurrence of two

absolute landmarks exceed 30 minutes. The addition of the relative measurements perserve the
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Figure 5.8: Position uncertainty over between two absolute measurements.
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Figure 5.9: Velocity uncertainty over between two absolute measurements.

performance of the filter, such that even at ∆TAbs = 3000 s (50 mins), the filter is still able to

maintain mean pre-update position errors of less than five km, this can be seen in Figure 5.10.

Figure 5.12 and Figure 5.13 present the results for a ∆TAbs = 1800 s case scenario. The average

system uncertainty and error is higher than the case shown in Figure 5.6 and Figure 5.7. The

overall system behaviour shows that the errors fall mostly within the 3 − σbound with PRE

of 2.27 km and 0.00414 km/s. The areas where the error exceeds 3 − σ bound results from the

process noise covariance being insufficient to account for the error caused by the un-modelled

distrubance. This happens when ∆TAbs is too large. The high peak, low peak patterns in the

position graphs are caused by the velocity error. During measurement updates, not ever update
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Figure 5.10: Mean pre-update position error at various ∆TAbs.
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Figure 5.11: Mean pre-update velocity error at various ∆TAbs.

corrects the velocity error by the same amount, thus causing the high and low behaviour seen

in the position graph.

Figure 5.14 shows the plots of the RAAN for the three cases outlined in the legend. The relative

measurement period ∆t = 1 s for the dual measurement cases. All three plots track the true

RAAN quite well. The error between the truth and estimate for each respective case is ranked

from highest to lowest in the order:

1. Absolute and Relative Measurements, ∆TAbs = 1800 s

2. No Relative Measurements, ∆TAbs = 600 s
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Figure 5.12: Filter position performance with absolute and relative measurements, ∆TAbs =
1800 s.
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Figure 5.13: Filter velocity performance with absolute and relative measurements, ∆TAbs =
1800 s.

3. Absolute and Relative Measurements, ∆TAbs = 600 s

This trend demonstrates that a case with no relative measurements can perform better than

absolute and relative measurements if the difference between the two absolute measurement

periods is large enough.
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Figure 5.14: Graph of the right ascension of the ascending node for the three test scenarios
compared to truth.

5.4 Improving Dynamics Fidelity

One drawback to the simplistic implementation of Experiment 2 is the comparatively large effect

of the J2 perturbation. Relying on visual observations for onboard corrections while neglecting

this dominant disturbance in the onboard propagator is unrealistic. This section considers a

revision to the navigation filter that can be used to incorporate a more accurate onboard model,

as well as a revised model of the true disturbance environment.

5.4.1 Simulation and Propagator Dynamics

To enhance the fidelity of the results for this experiment, new models are proposed both for

the true dynamics and the onboard propagator. As a truth model, the J2 disturbance model is

replaced with the SGP4 propagator [26], a model that includes a number of other perturbing

accelerations including atmospheric drag and third-body perturbations. Rather than explicitly

integrating the accelerations using Equation (5.9), a preexisting implementation of SGP4 was

employed to calculate the propagator spacecraft trajectory. To complement the enhanced truth

dynamics model, the estimator dynamics was revised to include the effect of J2 perturbations.

Essentially, the truth model of Experiment 1 becomes the propagator model for Experiment 2.

The primary complication of this change is the need to revise the F matrix in the calculation

of Ṗ (see Equation (5.13)). Given that:

∂a

∂rI
=

µ

r3

(
3
rIr

T
I

r2
− I3×3

)
+
∂dI
∂rI

(5.50)
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To evaluate the partial derivatives of the disturbance term, Equation (5.10) was rewritten as:

dI,J2 = D [A (r) + B (r, r3)] rI (5.51)

where

A =
1

p5


1 0 0

0 1 0

0 0 3

 (5.52)

B =
r2

3

r7
I3×3 (5.53)

D = −3

2
µJ2R

2
M (5.54)

Thus, the partial derivatives of dI become:

∂dI
∂rI

= D

{
A + B +

∂A

∂r
rI
∂r

∂rI
+
∂B

∂r
rI
∂r

∂rI

+
∂B

∂r3
rI
∂r3

∂rI

}
= D

{
A + B +

∂A

∂r

rIr
T
I

r
+
∂B

∂r

rIr
T
I

r

+
∂B

∂r3

[
03×2 rI

]}
(5.55)

where

∂A

∂r
= −5

r
A (5.56)

∂B

∂r
= −7

r
B (5.57)

∂B

∂z
=

2

r3
B (5.58)
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Table 5.3: C/NOFS Two-Line Elements

C/NOFS

1 32765U 08017A 15331.67318444 .04350869 -29703-4 91012-3 0 9996

2 32765 12.9936 147.3205 0006618 28.7193 333.2561 16.29614997418738

Substituting back into Equation (5.55) gives:

∂dI
∂rI

= D

{
A

[
I3×3 −

5

r2
rIr

T
I

]
+ B

[
I3×3 −

7

r2
rIr

T
I +

2

r3

[
03×2 rI

]]}
(5.59)

5.4.2 Experiment 3 Results

In this final experiment, the system applies the two-line element set (TLE) for C/NOFS in cor-

respondence with the SGP4 propagator to generate the truth trajectory. C/NOFS is identified

by the NORAD catalog number 32765. The TLE for C/NOFS is given in Table 5.3. The filter

initial conditions are set in the same manner as Experiments 1 and 2, with the same initial state

covariance and error added to the initial state.

To visualize the significance of the improvement, two tests were conducted. Both tests use the

SGP4 propagation as the truth trajectory, with ∆TAbs = 600 s and ∆t = 1 s. The first test

uses the simple two-body dynamics as the filter dynamics, same as Experiment 1 and 2. While

the second test, uses the enchanced filter dynamics that includes the effect of J2 perturbations.

This new trajectory is based on an Earth orbit, the corresponding Earth orbit parameters can

be seen in Table 5.1.

Figure 5.15a and Figure 5.16a illustrate the performance of the two tests. With both tests

plotted on the same graph, it can be seen that the test with the J2 filter dynamics has lower error

over the majority of the simulation. The errors in both cases remain within their 3− σ bound,

with the two-body test having mean pre-update errors of 1.01 km and 0.00319 km/s, and the J2

test with mean pre-update errors of 0.229 km and 0.000495 km/s. Note the results from these

two tests cannot be directly compared to Experiments 1 and 2.

Series of 5000 trial Monte-Carlo (MC) simulations were conducted to validate the accuracy of

the experiment results. This sample size corresponds to a 1% standard error in the presented

pefromance statistics. Table 5.4 gives a description of the test settings for each of the MC trials.
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Figure 5.15: Filter position performance with high fidelity dynamics.
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Figure 5.16: Filter velocity performance with high fidelity dynamics.

Table 5.5 presents the results from the MC simulations. The MC statistics compare closely with

the results shown in Experiment 1 and 2, demonstrating that the previous results represent

typical filter performance. A second metric similar to the PRE was introduced called the

Post-update error (POE), it follows the same logic as the PRE except it measures mean error

after the absolute measurement state updates. Looking at the error difference between the

PRE and POE for a test gives insight into the amount of state correction for each absolute

measurement upate. This error difference is very large for the tests that employ two-body

estimator dynamics. This suggests the state correction during an absolute measurement is

quite large. These values are 2.486 km, 1.067 km, and 2.069 km for the No Relative, Low ∆TAbs,

and High ∆TAbs tests, respectively. Adding relative landmarks help reduce this error difference

as it drops from 2.486 km to 1.067 km. This error difference is less significant in the SGP4 test.

The higher fidelity dynamics help keep the estimate close to the true trajectory, highlighting

the importance of a good estimator model.
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Table 5.4: Monte-Carlo Test Details

Test Details

SGP4 J2 Filter Dynamics, δ = 1 s, ∆TAbs = 600 s

No Relative Relative Measurements OFF, Absolute Measurements at 600s

Low ∆TAbs ∆t = 1 s, ∆TAbs = 600 s

High ∆TAbs ∆t = 1 s, ∆TAbs = 1800 s

Table 5.5: Filter Performance and Measurement Occurance

Pre-update Error Post-update Error
Test r

(km)
σr

(km)
v

(m/s)
σv

(m/s)
r

(km)
σr

(km)
v

(m/s)
σv

(m/s)

SGP4 0.248 0.0291 0.55 0.0484 0.110 0.0126 0.46 0.0278
No Relative 2.86 0.218 6.3 0.355 0.374 0.0641 3.1 0.101
Low ∆TAbs 1.33 0.0355 4.1 0.0527 0.263 0.0276 2.9 0.0519
High ∆TAbs 2.55 0.0888 4.2 0.0635 0.481 0.0464 3.0 0.0640

In this chapter a landmark-based optical navigation filter was developed that employ the use

of absolute and relative landmarks. Measurement availability is shown to be a key parameter

in this study. Absolute landmarks provide valuable information to the filter but are not always

available. Relative landmarks on the other hand are common but do not provide as much

information as absolute landmarks. Simulation results indicate relative landmarks help reduce

error growth in the absence of absolute landmarks and retain system performance.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis explored two different types of optical navigation. Both frameworks have sensor

sensitivity and accuracy modelled based on the performance of the Sinclair Interplanetary ST-

16 nanosatellite star tracker.

The first framework applied horizon-based techniques, fusing measurements from observations of

Mars and its moons using a Cartesian EKF. Error models capture the variation in measurement

noise caused variations in variations in target shape, illumination, and size. The filter presents

position errors (1 − σ) of a few hundred meters and velocity errors of 15 cm/s or better for a

Mars-pointing scenario that keeps Mars in view for the entire duration. The filter offers a very

good estimate of periapse timing and radius, this degree of accuracy in the periapse timing

should be highly sufficient for direct entry and orbit insertion operations.

The results from the horizon-based framework was validated through series of Monte-Carlo

simulations. From the results of the various Monte-Carlo simulations, it appears all the sensor

measurements make useful contribution to the overall performance of the system, with some

being more dominant than others. Simple case scenarios such as just using Mars position and the

moons are shown to still be viable albeit with an increase in error. The system behaviour shows

measurements made during the terminating phase of the approach have the most significan

impact on the performance of the system. Missions that places constraints on the spacecraft

orientation can greatly affect the performance. This can be compensated for by adjusting the

corresponding sensor mounting.

71
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This first framework served as a basis for a series to case studies that investigates the effects of

sensor configuarations on the performance of the system. The parameters that were looked at

were the cant-angle and sensor FOV. In a velocity-aligned case canting the sensor can help to

reduce error at specifc instances in time, however as the cant angle increases a significant amount

of variation gradually gets introduced into the results. The tests show for a Mars-pointing case,

a narrower (smaller) sensor FOV can help speed up convergence time, in exchange for an increase

in error. On the other hand, widening the FOV slows down convergence time but helps reduce

error and increase measurement availability time, this effect plateaus at the instance where

increasing the FOV further does not add any additional information. The study also looks at

the combined effects of cant-angles and FOV angles. Canting the sensor can help reduce error

for certain instances in time for the same FOV angle, but canting is not enough to completely

compensate for an adjustment in FOV angle.

The second filter explores landmark tracking techniques using two types of landmark measure-

ments for orbit determination. Absolute landmarks are landmarks that can be matched to an

onboard catalog that provides absolute navigation information. While relative observations are

image features that are matched between consecutive frames. The relative measurements occur

at a much higher frequency but can only provide information regarding relative motion to the

system. The estimator fuses the two types of measurements using an Extended Kalman Filter

to provide an update to the system state. The effects of having only absolute measurements as

opposed to having both on the overall behaviour and performance of the system was investi-

gated. The addition of relative landmark observations help reduce the growth of error during

periods that are devoid of absolute measurements.

In the first two experiments of this study, a simplistic filter was used to account for a relatively

large well-known and modelled disturbance. This drawback was rectified by using a higher

fidelity truth simulation and incorporating J2 perturbations into the filter dynamics. This

change resulted in less overall error throughout the duration of our simulation. It also helps keep

the estimator propagation closer to the truth trajectory, lowering the overall system dependence

on frequent measurements.

These conducted studies demonstrate the operational utility of nanosatellite-class star trackers

through their ability to be used as guidance sensors in optical navigation missions. The results

show promising behaviour with with regards to the respective scenario. This leads to the

conclusion that the frameworks developed can be used as an enabling technology for a new

innovative mission class.
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6.2 Future Works

Future works outline possible future directions for this research. Additional case studies from

Chapter 4 can be conducted with regards to different sensor configurations along with the

addition of more sensors. These can be but not limited to star trackers, gyroscopes, IMUs, or

even LiDARS. An example is the two sensor case that was briefly explored in Chapter 3.

Solar radiation pressure (SRP) was not considered in the perturbation dynamics for Chapter 3.

Simulations show the influence of SRP on Mars has a magnitude comparable to Jupiter’s grav-

itational effects at during the beginning of the trajectory. The influence of Jupiter’s increases

over the duration of the scenario as the spacecraft gets closer quickly exceeding SRP. Modelling

the disturbance effects of SRP can improve filter fidelity.

The system introduced in Chapter 5 is based on a contracted scenario in which the spacecraft’s

inertial orientation is assumed to be known with a high enough degree of accuracy that allows

the system to achieve the desired inertial pointing at any point in time. Future research can

consider incorporating attitude into the state, transforming it from a known quantity into an

estimated part of the system.

The image processing in the framework from Chapter 5 is abstracted. Future research can look

to indepth modelling of the image processing, and look into analyzing real or synthetic images

with various processing routines.

In both filters, atmospheric effects such as drag was not modelled. These effects are small when

compared to the effects of gravity from the planet. However, including these effects into the

filter dynamics can improve system fidelity.

Long term directions can consider the merging of the two frameworks. Turning it into a sin-

gle system that can perform both horizon-based navigation and also apply landmark-tracking

techniques depending on the situation.



Appendix A

Mathematical Derivations and

Supplementary Results

A-1 Small Rotations

The representation of spacecraft state in Chapter 3 uses error rotation vectors to represent small

angle rotations in attitude error, φ and mounting error, ψ. A common, first-order approximation

treats this as a series of Euler angle rotations:

C (φ) = Rx (φx) Ry (φy) Rz (φz) ≈
(
I− φ×

)
(A.1)

This representation led to problems with the conditioning of the state covariance matrix and

using a second-order rotational approximation gave better numerical behaviour.

C (φ) ≈
(

1− 1

2
φTφ

)
I +

1

2
φφT − φ× (A.2)

Rather than a series of Euler angles, φ is assumed as an axis-angle rotation of the form:

φ = φa (A.3)

where a represents the unit vector for the axis for rotation.

Assuming measurements take the form:
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m = C (φ) n (A.4)

the derivative can be computed using rotational approximation, resulting in

∂m

∂φ
=

1

2

(
nTφI− nφT

)
+ n× (A.5)

A-2 Planetary Observations

Perspective projection is an issue when analyzing extended images of Mars. Even if planetary

oblateness is neglected and the target is assumed to be spherical, the projection of the target

onto the detector plane will not be a circular arc. This problem must be taken into account

in order to obtain an accurate estimate of the direction vector to the target ,sS . Authors have

shown that the resulting projection on the detector is in fact an ellipse [18].

Many of the measurements in Chapter 3 rely on the detector plane image processing. The

following outlines the process taken by Enright et al. [1] to correct for the perspective effects.

sS can be expressed in spherical coordinates as:
sx

sy

sz

 = r


cos θc sin ρc

sin θc sin ρc

cos ρc

 (A.6)

relating sS to the corresponding detector coordinates gives:

z =

[
u

v

]
=

f

δpix

[
sx/sz

sy/sz

]
=

f

δpix

[
cos θ tan ρ

sin θ tan ρ

]
(A.7)

These points are reprojected into pseudo-Cartesian coordinates where radial distances from the

origin are true arclength distances:

z′ =

[
u′

v′

]
= ρ

[
cos θ

sin θ

]
(A.8)
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To fix the azimuthal distortion. The origin of the new coordinates are shifted to (ρc, θc). The

new arclength, λ, and azimuthal, α, coordinates can be found from:

cosλ = cos ρ cos ρc + sin ρ sin ρc cos (θ − θc) (A.9)

sinα =
sin ρ sin (θ − θc)

sinλ
(A.10)

cosα =
cos ρ− cosλ cos ρc

sinλ sin ρc
(A.11)

The corresponding rectangular coordinates are:

z′′ =

[
u′′

v′′

]
= λ

[
cosα

sinα

]
(A.12)

If the estimated centre was close to the true centre, fitting a circle to the z′′ coordinates will

allow the determination of the true centre and angular radius of the planet. Converting back

to boresight coordinates give:

cos ρ = cosλ cos ρc + sinλ sin ρc cosα (A.13)

sin (θ − θc) =
sinλ sinα

sin ρ
(A.14)

cos (θ − θc) =
cosλ− cos ρ cos ρc

sin ρ sin ρc
(A.15)

A-3 Measurement Availability Plots

This section contains all the remaining fraction measurement availability plots that were not

used in Chapter 4 Experiment 2.

The attitude availability remains consistent and available throughout the duration of the sim-

ulation and thus omitted.
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Phase angle shares the same availability with terminator angle, seen in Appendix A-3.

Phobos availability experiences a large creep in the beginning of the scenario between the 1◦ to

3◦ range, afterwards it consistently stays at full availability for the rest of the trials.

Appendix A-3 shows the FMA for when both moons can simultaneously be seen. The behaviour

in this graph is primarily dominated by Deimos since Phobos no longer displays any kind of

change after the 3◦ point.
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