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ABSTRACT 

Maximum likelihood estimation is a method of estimating the parameters of a statistical model in statistics. It has been 

widely used in a good many multi-disciplines such as econometrics, data modelling in nuclear and particle physics, and 

geographical satellite image classification, and so forth. Over the past decade, although many conventional numerical 

approximation approaches have been most successfully developed to solve the problems of maximum likelihood 

parameter estimation, bio-inspired optimization techniques have shown promising performance and gained an incredible 

recognition as an attractive solution to such problems. This review paper attempts to offer a comprehensive perspective 

of conventional and bio-inspired optimization techniques in maximum likelihood parameter estimation so as to highlight 

the challenges and key issues and encourage the researches for further progress. 
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1 Introduction 

Parameter estimation is of very important significance to identifying 

systematic static and dynamic models since it is known that these indispensable 

parameters are often deterministic of the systematic probabilistic certainty 

properties. Maximum likelihood method is on the basis of probabilistic 

statistics elements. This twofold leads to forming maximum likelihood 

parameter estimation which is deemed as one of classically probabilistic 

Bayesian methods. Maximum likelihood estimation has attractive limiting 

properties of consistency, asymptotic normality and efficiency. It is widely 

utilized in plenty of domains like dynamic parameter identification in aircrafts, 

error coefficient estimation in guidance inertia instruments and flow 

surveillance in traffic engineering. Till date, several optimization methods 

have been proposed to solve the problems of maximum likelihood parameter 

estimation, which can be broadly divided into three categories, conventional 

parsing methods, conventional numerical approximation and bio-inspired 

optimization approaches. 

Nowadays, maximum likelihood parameters in static systems are generally 

estimated by conventional parsing methods. However, since most of the 

problems of maximum likelihood parameter estimation in dynamic systems are 

highly nonlinear, they are difficult to solve by conventional parsing method. 

As a result, researchers tend to seek for conventional numerical approximation 

techniques to overcome the difficulties. Among these conventional techniques, 
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the typical ones are Gauss-Newton or 

Newton-Raphson algorithm, Lagrange multipliers 

algorithm, recursive or iterative least squares 

methods and Monte Carlo expectation maximization 

algorithm. 

Over the past few decades, modern bio-inspired 

optimization techniques which are the stochastic 

search methods inspired by the biological 

evolutionary nature, are becoming much popular in 

maximum likelihood parameter estimation. They can 

be grouped into several categories, namely, swarm 

intelligence based algorithms, evolution based 

algorithms and neural network based algorithms. 

More recently, as they have shown promising results 

in estimating the maximum likelihood parameters, 

they have been promptly progressed. 

The taxonomy of the conventional parsing, 

numerical approximation and bio-inspired 

optimization approaches is presented in Figure 1. 

Surrounding the taxonomic category, we give a 

detailed in-depth investigation of these techniques so 

as to propel the march of maximum likelihood 

parameter estimation. The reminder of the paper is 

arranged below. Section 2 presents the description 

and formulation of maximum likelihood parameter 

estimation of static and dynamic systems. Section 3 

describes the conventional numerical approximation 

techniques. Section 4 depicts the bio-inspired 

optimization techniques. Finally, conclusions and 

future work are discussed in Section 5. 

2 Description and formulation of 
maximum likelihood parameter 
estimation of static and dynamic 
systems 

2.1 Maximum likelihood functions of static 

systems 

In practice, in accordance with stochastic 

observed sequences in static systems which are either 

independent or serial, maximum likelihood functions 

can be classified into two categories, independent 

observation, serial observation. 

Figure 1: The taxonomy of the conventional parsing, numerical approximation and bio-inspired optimization approaches. 

If y(1), y(2), ⋯ , y(N)  is a set of stochastic 

independent observed sequence and θ  is an 

unknown parameter, then there exists a likelihood 

function 
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L(YN│θ)=p(y(1)│θ)p(y(2)│θ)⋯p(y(N)│θ)=∏ p(y(i)|θ)𝑁
𝑖=1 .     (1) 

If y(1), y(2), ⋯ , y(N)  is a set of stochastic 

serial observed sequence and θ  is an unknown 

parameter, then there exists a likelihood function 

L(YN│θ)=p(y(N),y(N-1),⋯,y(2),y(1)│θ).     (2)

The maximum likelihood function can be 

expressed by the following equation 

Max−L(YN│θ) = Max (L(YN│θ)).     (3) 

2.2 Maximum likelihood functions of dynamic 

systems 

The typical model of general linear dynamic 

systems is shown in Figure 2.

Figure 2: The schematic model of general linear dynamic system. 

In Figure 2, for the convenience of computation, 

assume that there is 

A(z−1) = C(z−1).

  As a result, the system can be expressed as 

A(z−1)y(k) = B(z−1)u(k) + D(z−1)v0(k),

(4) 

where u(k) is the system input, y(k) is the system 

output, and v0(k) is a white noise sequence with the

normal distribution, i.e. v0(k)~N(0,σ2) , A(z−1),

B(z−1)and D(z−1) are the polynomials in the shift

operator z−1 whilst they are presented below

{

A(z−1) = 1 + a1z−1 + a2z−2 + ⋯ + ana
z−na

B(z−1) = b1z−1 + b2z−2 + ⋯ + bnb
z−nb

A(z−1) = 1 + d1z−1 + d2z−2 + ⋯ + dnd
z−nd

(5) 

The inner variables m(k) and n(k) are 

unmeasurable. Assume that the system is 

asymptotically stable, that the degrees na, nb and

nd  are known, and y(k) = 0 , u(k) = 0 , and

$v_0(k)=0$ for k ≤ 0. 

Define the parameter vectors a, b, d, 𝛉, Y(k), 

U(k) and V0(k) as 

𝐚 ≔ [a1, a2, ⋯ , ana
]T ∈ ℝna ,

𝐛 ≔ [b1, b2, ⋯ , bnb
]T ∈ ℝnb ,

𝐝 ≔ [d1, d2, ⋯ , dnd
]T ∈ ℝnd ,

𝛉 ≔ [
𝐚
𝐛
𝐝

] ∈ ℝna+nb+nd ,

𝐘(k) = [y(k − 1), y(k − 2), ⋯ , y(k − na)]T ∈ ℝna ,

𝐔(k) = [u(k − 1), u(k − 2), ⋯ , u(k − nb)]T ∈ ℝnb ,

𝐕𝟎(k) = [v0(k − 1), v0(k − 2), ⋯ , v0(k − na)]T

∈ ℝnd ,

where the superscript T denotes the matrix transpose. 

Accordingly, the system expression (1) is also 

considered as 

y(k) = −𝐚TY(k) + 𝐛TU(k) + 𝐝T𝐕𝟎(k) + v0(k).

(6) 

For a given set of measurements 𝐮𝐍: =

[u(1), u(2), ⋯ , u(N)  and 𝐲𝐍: =

[y(1), y(2), ⋯ , y(N) , let the likelihood function 

L(𝐲𝐍|𝐮𝐍−𝟏, θ) equal the probability density function

p(𝐲𝐍|𝐮𝐍−𝟏, θ).

The likelihood function L(𝐲𝐍|𝐮𝐍−𝟏, θ) can be

expressed as

L(yN|uN-1,θ)= p(yN|uN-1,θ)= ∏ p(-aTY(k)+bTU(k)+dTV0(k)+v0(k)|yN-1,uN-1,θ)𝑁
𝑘=1 . (7)

The maximum likelihood function can be 

expressed by the following equation 

Max−L(yN|uN-1,θ) = Max(L(yN|uN-1,θ)).

(8) 
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3 Conventional numerical 
approximation techniques 

3.1 Gauss-Newton or Newton-Raphson 

algorithm 

Either Gauss-Newton or Newton-Raphson 

algorithm [Li and Ding (2011); Stoica and Babu 

(2011); Wang et al. (2012); Haryanto and Hong 

(2013); Hu and Liu (2013); Dosiek et al. (2013); 

Mohsin et al. (2013); Yao et al. (2014)] is a 

modification of Newton's method for finding 

successively a minimum or better approximations to 

the roots of real-valued functions. They are often 

used to solve non-linear least squares problems. 

Li and Ding (2011) presented a maximum 

likelihood multi-innovation stochastic gradient 

algorithm for the identification problems of 

Hammerstein finite impulse response moving 

average systems. 

Stoica and Babu (2011) introduced a 

maximum-likelihood method for the nonparametric 

estimation of smooth spectra from irregularly 

sampled observations by using the Newton-Raphson 

method. 

Wang et al. (2012) developed a new penalized 

maximum likelihood cost function by transforming 

the variables of target position and bearings. They 

presented a location-penalized maximum likelihood 

estimator for bearing only target localization on the 

basis of the Quasi-Newton algorithm. 

Haryanto and Hong (2013) applied the ML 

method for the parameter identification of SISO- and 

MISO-Wiener-Hammerstein model. And they 

proposed an iterative gradient-based search approach 

for the maximum likelihood estimation. 

Hu and Liu (2013) proposed a recursive 

maximum likelihood method based on interior-point 

algorithm to online estimate the uncertain 

aerodynamic parameters for hypersonic vehicles by 

the Gauss-Newton method. 

Dosiek et al. (2013) presented a method of 

directly estimating the variance of each mode 

estimate in addition to estimating the frequency and 

damping of each mode in an online setting using a 

recursive maximum likelihood estimator. The 

variance estimates are achieved using two 

closed-form multidimensional Taylor series 

approximations, the details of which are fully 

derived. 

In Mohsin et al. (2013), concentration of acidity 

and major ions in the rainfall in UK is analyzed by 

assuming a bivariate pseudo-Gamma distribution. 

The model parameters are estimated by using the 

maximum likelihood method and the goodness of fit 

is checked. Furthermore, the non-informative 

Jeffreys prior for the distribution parameters is 

derived and a hybrid Gibbs sampling strategy is 

proposed to sample the corresponding posterior for 

conducting an objective Bayesian analysis. Finally, 

related quantities such as the deposition flux density 

are derived where the general pattern of the observed 

data appears to follow the fitted densities closely. 

Yao et al. (2014) proposed a novel nonlinear 

feature bias adaptation compensation framework for 

large vocabulary speech recognition exploiting the 

core ideas in extreme learning machine. More 

specifically, they estimated a nonlinear 

time-dependent bias using an extreme learning 

machine-like single-hidden-layer neural network to 

compensate for the mismatch between the training 

and testing data. In the single-hidden-layer neural 

network, the lower-layer weights are randomly 

generated and the output layer contains only linear 

units just as in the extreme learning machine. 

Different from extreme learning machine, however, 

the single-hidden-layer neural network is optimized 

to maximize the likelihood of either the transformed 

feature, for which a closed-form solution is derived, 

or the observed feature, for which an efficient 

second-order Gauss-Newton method is developed. 

3.2 Lagrange multipliers algorithm 

Lagrange multipliers algorithm [Baltagi and 

Bresson (2011); Pan et al. (2014); Ogasawara (2016)] 

is a method for finding the local maxima and minima 

of a function subject to equality constraints in the 

domain of mathematical optimization. 

Baltagi and Bresson (2011) proposed maximum 

likelihood estimators for panel seemingly unrelated 

regressions with both spatial lag and spatial error 
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components. They studied the general case where 

spatial effects are incorporated via spatial errors 

terms and via a spatial lag dependent variable and 

where the heterogeneity in the panel is incorporated 

via an error component specification. They proposed 

joint and conditional Lagrange multiplier tests for 

spatial autocorrelation and random effects for this 

spatial SUR panel model. The small sample 

performance of the proposed estimators and tests are 

examined using Monte Carlo experiments. An 

empirical application to hedonic housing prices in 

Paris illustrate these methods. The proposed 

specification uses a system of three SUR equations 

corresponding to three types of flats within 80 

districts of Paris over the period 1990-2003. They 

tested for spatial effects and heterogeneity and find 

reasonable estimates of the shadow prices for 

housing characteristics. 

Pan et al. (2014) proposed a systematic 

regularization optimization approach considering a 

Lagrangian dual relaxation of the maximum 

likelihood detection problem. 

In Ogasawara (2016), inverse expansions of 

parameter estimators are given in terms of their true 

values, where the estimators are obtained by the 

maximum likelihood and weighted score methods 

with constraints placed on the parameters using 

Lagrange multipliers. The corresponding expansions 

for estimated Lagrange multipliers are also given. 

These expansions are derived before and after 

studentization. The results with studentization give 

one-sided confidence intervals for the parameters up 

to third-order accuracy. As an application of the 

weighted score method, a modified Jeffreys prior to 

remove the asymptotic biases of the Lagrange 

multipliers as well as the parameter estimators is 

obtained under canonical parametrization in the 

exponential family. 

3.3 Recursive or iterative least squares 

algorithm 

Recursive or iterative least squares algorithm 

[Wang et al. (2010); Li et al. (2012); Stathakis et al. 

(2014); Dutta et al. (2014)] is considered as an online 

approach to solving the least squares problems by a 

given iteration algorithm. 

Wang et al. (2010) dealt with the parameter 

identification problem of Hammerstein output error 

auto-regressive systems with different nonlinearities 

by combining the key-term separation principle and 

the auxiliary model identification idea. They used the 

key-term separation principle to present auxiliary 

model based recursive generalized least squares 

algorithms. 

Li et al. (2012) presented a recursive maximum 

likelihood least squares identification method for 

input nonlinear finite impulse response moving 

average systems. 

Stathakis et al. (2014) presented an affinely 

modified version of the ML estimation that 

uniformly outperforms over all SNR values of the 

traditional maximum likelihood estimation in terms 

of the mean-square errors in closed-form. 

Dutta et al. (2014) applied TRANUS to calibrate 

the land-use module of the Grenoble model, based on 

the mean-square errors. 

3.4 Monte Carlo expectation maximization 

algorithm 

Monte Carlo expectation maximization 

algorithm [Denoeux (2011); Liu et al. (2012); 

Augustyniak (2014); Martin and Hanb (2016); 

Galimberti and Soffritti (2014); Wang et al. (2015); 

González et al. (2015); Sun et al. (2016)] is an 

iterative method for finding maximum likelihood or 

maximum a posteriori estimates of parameters in 

statistical models, where the model depends on 

unobserved latent variables. The expectation 

maximization iteration alternates between a 

log-likelihood parameter estimation expectation step 

and a  log-likelihood parameter estimation 

maximization step. These estimated parameters are 

then used to determine the distribution of the latent 

variables in the next log-likelihood parameter 

estimation expectation step. 

Denoeux (2011) used the expectation 

maximization algorithm to estimate the parameters in 

a parametric statistical model when the observations 

are fuzzy and are assumed to be related to underlying 

crisp realizations of a random sample. 
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Likewise, Liu et al. (2012) proposed an efficient 

maximum likelihood direction-of-arrival estimator 

based on a spatially over-complete array output 

formulation, where the Monte Carlo expectation 

maximization algorithm is exploited. 

Based on both the Monte Carlo expectation 

maximization algorithm and the sampling 

importance, Augustyniak (2014) developed a novel 

approach to calculate the maximum likelihood 

estimator and asymptotic variance covariance matrix 

of the Markov switching GARCH model. 

 To avoid specification of a particular 

distribution for the error in a regression model, 

Martin and Hanb (2016) proposed a flexible scale 

mixture model with a nonparametric mixing 

distribution. They exploited hybrid predictive 

recursion expectation maximization algorithm to 

solve this model. 

Galimberti and Soffritti (2014) introduced a 

novel approach that assumes that the error terms 

follow a finite mixture of t distributions. This 

assumption allows for an extension of multivariate 

linear regression models, making these models more 

versatile and robust against the presence of outliers 

in the error term distribution. The issues of model 

identifiability and maximum likelihood estimation 

are addressed. Identifiability conditions are provided 

and an expectation maximization algorithm for 

estimating the model parameters is developed. 

The pyramidal dual-tree directional filter bank 

transform is a new image decomposition. Wang et al. 

presented a new color image segmentation algorithm 

based on pyramidal dual-tree directional filter bank 

domain hidden Markov tree model. A color image 

segmentation using pyramidal dual-tree directional 

filter bank domain hidden Markov tree model is 

developed, in which expectation maximization 

parameter estimation, Wang et al. (2015) multi-scale 

raw segmentation, context based multi-scale fusion, 

and majority-vote based color component fusion are 

used. 

In González et al. (2015), the maximum 

likelihood estimation of the parameters of interest for 

the controlled branching process is addressed under 

various sample schemes. Firstly, assuming that the 

entire family tree can be observed, the corresponding 

estimators are obtained and their asymptotic 

properties investigated. Secondly, since in practice it 

is not usual to observe such a sample, the maximum 

likelihood estimation is initially considered using the 

sample given by the total number of individuals and 

progenitors of each generation, and then using the 

sample given by only the generation sizes. 

Expectation maximization algorithms are developed 

to address these problems as incomplete data 

estimation problems. 

Sun et al. (2016) presented a recursive 

maximum likelihood state estimator based on the 

expectation maximization algorithm for Markov 

jump linear systems with uncertain mode-dependent 

delays. To calculate the posterior probability of each 

possible candidate time delay, a recursive algorithm 

is derived within the Bayesian framework 

conditioned on the likelihood density function of 

state with respect to the candidate time delay related 

to the reference mode. By combining the optimal 

principle of expectation maximization and the 

interacting multiple mode approximation, they 

proposed a double-reweight interacting multiple 

model algorithm to obtain the maximum a posterior 

estimator of state that is of low computational 

complexity. 

3.5 Other numerical approximation 

algorithms 

Besides the aforementioned methods, there are 

some other numerical approximation algorithms to 

be worth noting. 

Wen and Chen (2011) developed a very efficient 

and stable computation algorithm for nonparametric 

maximum likelihood estimation of gamma-frailty 

Cox models with clustered current status data, based 

on a set of self-consistency equations and the 

contraction principle. 

Baghishani and Mohammadzadeh (2011) 

proposed a computationally efficient strategy to fit 

spatial generalized linear mixed models, based on the 

data cloning method suggested by Lele et al. in 2007 

instead of the Bayesian approach. 

Pence et al. (2011) combined polynomial chaos 

theory with maximum likelihood estimation for a 
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novel approach to recursive parameter estimation in 

state space systems. 

Hirai and Yamanishi (2013) addressed the issue 

of estimating the number of mixture components for 

a Gaussian mixture model from a given data 

sequence. They computed the normalized maximum 

likelihood code length for the data sequence relative 

to a Gaussian mixture model, then to find the mixture 

size that attains the minimum of the normalized 

maximum likelihood on the basis of the minimum 

description length principle. 

In settings where high-level inferences are made 

based on registered image data, the registration 

uncertainty can contain important information. 

Risholm et al. (2013) proposed a Bayesian non-rigid 

registration framework where conventional 

dissimilarity and regularization energies can be 

included in the likelihood and the prior distribution 

on deformations respectively through the use of 

Boltzmann's distribution. The posterior distribution is 

characterized using Markov chain Monte Carlo 

methods with the effect of the Boltzmann 

temperature hyper-parameters marginalized under 

broad uninformative hyper-prior distribution. The 

Monte Carlo chain permits estimation of the most 

likely deformation as well as the associated 

uncertainty. On synthetic examples, they 

demonstrated the ability of the method to identify the 

maximum a posteriori estimate and the associated 

posterior uncertainty, and demonstrated that the 

posterior distribution can be non-Gaussian. 

A new modal parameter estimation method to 

directly establish modal models of structural 

dynamic systems satisfying two physically motivated 

constraints is presented. The constraints imposed in 

the identified modal model are the reciprocity of the 

frequency response functions and the estimation of 

normal real modes. The motivation behind the first 

constraint comes from the fact that modal analysis 

theory shows that the frequency response function 

matrix and therefore the residue matrices are 

symmetric for non-gyroscopic, non-circulatory, and 

passive mechanical systems. Therefore, El-Kafafy et 

al. (2016) proposed a constrained maximum 

likelihood modal parameter estimation method and 

successfully applied it to two real experimental 

data-sets measured on fully trimmed cars. 

  Skaug and Yu (2014) used the Laplace 

approximation to perform maximum likelihood 

estimation of univariate and multivariate stochastic 

volatility models. The implementation of the Laplace 

approximation is greatly simplified by the use of a 

numerical technique known as automatic 

differentiation. 

4 Bio-inspired optimization techniques 

4.1 Swarm intelligence based approaches 

Swarm intelligence based approaches are based 

on the collective behaviors of decentralized, 

self-organized natural systems such as ant colonies, 

bird flocking, animal herding, bacterial growth, fish 

schooling, microbial intelligence, and so forth. The 

emergence of intelligent behaviors leads to various 

swarm intelligence algorithms for difficult types of 

optimization problems. The typically proposed 

algorithms are particle swarm optimization, 

antcolony optimization, artificial bee algorithm, 

artificial bee colony algorithm, bat algorithm, 

bacterial foraging, artificial immune systems and 

firefly algorithm. They are used to seek for 

maximum likelihood or maximum a posteriori 

estimates of parameters in statistical models. 

An et al. (2012) presented a novel 

parametrization for arbitrary covariance matrices that 

allow independent updating of individual parameters 

while retaining validity of the resultant matrices. 

They used particle swarm optimization based 

parameter matching technique to mitigate the issues 

related with the existence of multiple candidate 

solutions that are equivalent under the permutation of 

the components in Gaussian mixture models. 

Chang and Chen (2013) proposed a modified 

particle swarm optimization approach to compute the 

maximum likelihood functions and find the global 

minimum cost function for array calibration. 

Tay et al. (2013) proposed a novel algorithm 

called the evolutionary data-conscious AIRS 

algorithm that accentuates and capitalizes on 3 

additional immune mechanisms observed from the 

natural immune system. These mechanisms are 

associated to the phenomena exhibited by the 
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antibodies in response to the concentration, location 

and type of foreign antigens. Bio-mimicking these 

observations empower evolutionary data-conscious 

AIRS algorithm with the ability to robustly adapt to 

the different density, distribution and characteristics 

exhibited by each data class. This provides 

competitive advantages for the algorithm to better 

characterize and learn the underlying pattern of the 

data. 

To reduce the high computational burden of 

maximum likelihood method and make it more 

suitable to engineering applications, Zhang et al. 

(2013) applied the artificial bee colony algorithm to 

maximize the likelihood function for 

direction-of-arrival estimation. The algorithm is 

originally used to optimize multi-variable functions 

by imitating the behavior of bee colony finding 

excellent nectar sources in the nature environment. It 

offers an excellent alternative to the conventional 

methods in maximum likelihood 

method-direction-of-arrival estimation. The 

performance of artificial bee colony-based maximum 

likelihood and other popular meta-heuristic-based 

maximum likelihood methods for direction-of-arrival 

estimation are compared for various scenarios of 

convergence, signal-to-noise ratio, and number of 

iterations. The computation loads of artificial bee 

colony-based maximum likelihood and the 

conventional maximum likelihood methods for 

direction-of-arrival estimation are also investigated. 

Giacomina et al. (2015) proposed a probabilistic 

approach for designing nonlinear optimal robust 

tracking con-trollers for unmanned aerial vehicles. 

The controller design is formulated in terms of a 

multi-objective optimization problem that is solved 

by using a modified particle swarm optimization 

algorithm, offering high likelihood of finding an 

optimal or near-optimal global solution. 

Inspired by ant's stochastic behavior in search 

for multiple food sources, Xu et al. (2015) proposed 

a cooperating multi-task ant system for tracking 

multiple synthetic objects as well as multiple real 

cells in a bio-medical field. In their framework, each 

ant colony is assumed and assigned to fulfill a given 

task to estimate the state of an object. Furthermore, 

two ant levels are used, i.e., ant individual level and 

ant cooperation level. In the ant individual level, ants 

within one colony perform independently, and the 

motion of each individual is probabilistically 

determined by both its intended motion modes and 

the likelihood function score. In the ant cooperation 

level, each ant adjusts individual state within its 

influence region according to heuristic information 

of all other ants within the same colony, while the 

global best template at current iteration is found 

among all ant colonies and utilized to update ant 

model probability, influence region, and probability 

of fulfilling task. 

4.2 Evolution based approaches 

Evolution based approaches follow the 

evolutionary principles of Charles Darwin's theory of 

survival of the fittest. They usually use multi-agents 

or search vectors with mutation and crossover factors 

to carry out the search. Among these approaches, 

frequently used ones are genetic algorithm or 

differential evolution based approaches. 

Evolutionary relationships among species can be 

represented by a phylogenetic tree and inferred by 

optimizing some measure of fitness, such as the 

statistical likelihood of the tree (given a model of the 

evolutionary process and a data set). The 

combinatorial complexity of inferring the topology 

of the best tree makes phylogenetic inference ideal 

for genetic algorithm. Two existing algorithms for 

phylogenetic inference (neighbor-joining and 

maximum likelihood) are co-utilized within a genetic 

algorithm and enable the phenotype and genotype to 

be assigned quite different representations [Poladian 

(2005)]. 

Aguirregariria (2005) presented a hybrid genetic 

algorithm to obtain maximum likelihood estimates of 

parameters in structural econometric models with 

multiple equilibria. The algorithm combines a pseudo 

maximum likelihood procedure with a genetic 

algorithm. The genetic algorithm searches globally 

over the large space of possible combinations of 

multiple equilibria in the data. The pseudo maximum 

likelihood procedure avoids the computation of all 

the equilibria associated with every trial value of the 

structural parameters. 
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Obtaining good estimates of structural 

parameters from observed data is a particularly 

challenging task owing to the complex likelihood 

functions that often accompany such problems. As a 

result, sophisticated optimization routines are 

typically required to produce maximum likelihood 

estimates of the desired parameters. Evolutionary 

algorithms comprise one such approach, whereby 

nature-inspired mutation and crossover operations 

allow the sensible exploration of even multi-modal 

functions, in search of a global maximum. The 

challenge, of course, is to balance broad coverage in 

parameter space with the speed required to obtain 

such estimates. Reed et al. (2013) proposed a 

modified version of the differential evolution 

algorithm to address the problem. Their idea is to 

adjust both mutation and cross-over rates, during the 

optimization, in a manner that increases the 

convergence rate to the desired solution. 

4.3 Neural network based approaches 

Neural network based approaches mainly 

depend on a family of models inspired by biological 

neural networks to estimate or approximate the 

maximum likelihood parameter estimation functions. 

Their distinct properties are both interconnected 

neurons to exchange messages between each other 

and their adaptive connections with numeric weights. 

In Jelonek and Reilly (1990), a neural 

network-based system for a maximum-likelihood 

estimation of directions of arrival is described. A 

novel analog neural network implementation of the 

maximum-likelihood algorithm is presented. 

Properties of the neural network are discussed with 

respect to stability and convergence. The 

performance and behavioral simulations of the 

network's dynamics are presented. 

Firmino et al. (2014) introduced a two-step 

method for correcting and combining forecasting 

models. Firstly, the stochastic process underlying the 

bias of each predictive model is built according to a 

recursive ARIMA algorithm in order to achieve a 

white noise behavior. At each iteration of the 

algorithm the best ARIMA adjustment is determined 

according to a given information criterion. Then, in 

the light of the corrected predictions, it is considered 

a maximum likelihood combined estimator. 

Applications involving single ARIMA and artificial 

neural networks models for Dow Jones Industrial 

Average Index, S\&P500 Index, Google Stock Value, 

and Nasdaq Index series illustrate the usefulness of 

the proposed framework. 

Clinical risk likelihood prediction is important 

for individuals at risk of cardiovascular disease given 

the fact that it is the leading causes of death in many 

developed counties. To this end, Tay et al. (2015) 

introduced a novel learning algorithm to develop a 

cardiovascular disease risk prediction tool. This 

novel neural-inspired algorithm, called the artificial 

neural cell system for classification, is inspired by 

mechanisms that develop the brain, empower it with 

capabilities such as information processing/storage 

and recall, decision making, and initiate actions on 

external environment. 

4.4 Other bio-inspired optimization 

approaches 

In particular, hybrid conventional and 

bio-inspired optimization approaches are worth 

noting. They fully take advantages of two types of 

methods to perform maximum likelihood estimation. 

Mirikitani and Nikolaev (2011) built on 

electricity spot prices by proposing an expectation 

maximization algorithm for maximum likelihood 

estimation of recurrent neural networks utilizing the 

Kalman filter and smoother. This involves inference 

of both parameters and hyper-parameters of the 

model which takes into account the model 

uncertainty and noise in the data. The expectation 

maximization algorithm uses a forward filtering and 

backward smoothing expectation step, followed by a 

hyper-parameter estimation maximization step. The 

model is validated across two data sets of different 

power exchanges. It is found that after learning a 

posterior hyper-parameters, the proposed algorithm 

outperforms the real-time recurrent learning and the 

extended Kalman Filtering algorithm for recurrent 

networks, as well as other contemporary models that 

have been previously applied to the modeling of 

electricity spot prices. 

9



5 Outlook and future work 

The focus of the paper is the investigation of the 

recent use of conventional and bio-inspired 

optimization techniques in maximum likelihood 

estimation. Among the conventional numerical 

approximation techniques, a large percent of research 

works are related to Gauss-Newton or 

Newton-Raphson and Monte Carlo expectation 

maximization algorithms. Meanwhile, swarm 

intelligence based and evolution based approaches 

are more popular in the bio-inspired optimization 

techniques. Especially, ant colony optimization, 

particle swarm optimization and differential 

evolution have gained more and more attention from 

the researchers because they all have comparatively 

better global search performance, compared with the 

conventional numerical approximation techniques. 

Despite the success of the recent use of 

conventional and bio-inspired optimization 

techniques in maximum likelihood estimation, many 

challenging problems still remain unsolved. In this 

context, it is typical that the considered models are 

nonlinear due to the nonlinearity of the behavior of 

the modeled systems. On the other hand, these 

models have many parameters or are of high 

dimensionality. Moreover, the measurements are 

imperfect due to measurement noise and partial 

observation. Additionally, the conventional 

numerical approximation techniques are mostly 

attributed to the local derivative-based methods. 

They require that the optimization problems should 

be differentiable and asymptotic. The Monte Carlo 

expectation maximization algorithm easily gets 

trapped in a local maximum as the objective being a 

non-concave optimization problem, and is greatly 

affected by the initialization conditions. However, 

the bio-inspired optimization techniques do not use 

the gradients of the problems being optimized. These 

properties make maximum likelihood parameter 

estimation a challenging optimization problem, 

calling for the development of advanced optimization 

methods. 

Further work is needed to develop the advanced 

bio-inspired optimization techniques adaptive to 

maximum likelihood parameter estimation of 

complex modeled systems with high nonlinearity and 

dimensionality, i. e., bio-inspired optimization 

approaches for large scale nonlinear problems. In the 

meantime, of course, we need to further improve the 

conventional numerical approximation techniques in 

maximum likelihood parameter estimation. Last, but 

not least, we yet need to develop the hybrid 

conventional and bio-inspired techniques to be 

suitable for estimating maximum likelihood 

parameters in light of their mutual merits.  
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