
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT2174127

 554

Lightron : A GUI Integrated, Rust Based Web Server
Apurva Solanki1, Aryan Parekh1, Gaurav Chawda1, Mrs. Geetha S.2

1Diploma Student, Department of Computer Engineering, Shri Bhagubhai Mafatlal Polytechnic, Mumbai, Maharashtra,

India
2Lecturer, Department of Computer Engineering, Shri Bhagubhai Mafatlal Polytechnic, Mumbai, Maharashtra, India

Article Info

Volume 7, Issue 4

Page Number: 554-560

Publication Issue :

July-August-2021

Article History

Accepted : 07 Aug 2021

Published : 14 Aug 2021

ABSTRACT

Day by day, the number of users are increasing on the internet and the web

servers need to cater to the requests constantly, also if compared to the past

years this year, due to a global pandemic and lockdown in various countries, the

requests on the web have surged exponentially. The complexity of configuring a

web server is also increasing as the development continues. In this paper, we

propose a Lightron web server, which is highly scalable and can cater many

requests at a time. Additionally, to ease users from the configuration of the web

server we introduced Graphical User Interface which is beginner friendly.

Keywords : Web Server, Concurrency, Rust, GUI, Asynchronous, Non-Blocking,

HTTP.

I. INTRODUCTION

Whenever a user accesses the web, he/she uses an

HTTP client program called web browser to fetch

contents from what's called a web server which is an

HTTP server program. HTTP client and server

normally use TCP as transport layer protocol.

Whenever a user visits a particular website, the

browser will send an HTTP GET request with some

metadata stored in HTTP request headers to the web

server. The web server will parse the request and

prepare the HTTP response. If the server doesn't find

the requested content then it will respond with a 404

status code, alternatively, if the server finds the

requested content it will respond with a 200 status

code. There are many types of status codes i.e.

Informational, Successful, Redirects, Client errors,

Server errors. websites can also be dynamically

generated which is integrated with some database

engines, but in this paper, we’ll be going to limit our

discussion to static websites only.

Traffic on the web servers is increasing rapidly due to

many clients connecting to the web server in such a

short time interval. That's why the server must cope

up with many requests at a time, therefore support for

concurrency and parallelism is indispensable. There

are many concurrency models available but each one

has its drawbacks. Configuring a web server is also a

tedious task and if not configured properly it can be

vulnerable to security attacks.

Considering the above problems, In this paper, we

introduce a Lightron web server that can handle

many requests at a time by utilizing multiple cores of

the processor and also make use of the non-blocking

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT2174127

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Apurva Solanki et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 554-560

555

IO operations provided by the operating system. We

have also solved the complication of configuration by

introducing a lightweight, user-friendly GUI.

II. BACKGROUND

A. HTTP Protocol

Hyper Text Transfer Protocol is one of the most

widely used web protocols. It is a stateless protocol in

which each transaction is independent of all other

transactions. There are HTTP clients which in most of

the cases are web browsers who initialize the

transactions by sending HTTP requests which are

replied to by the HTTP server’s response. Mainly

there are 2 types of HTTP requests: GET & POST.

GET is used to fetch content from the server and

POST is used to submit content to the server. In

HTTP requests, there are numerous headers like the

method: which is used to indicate whether request

type is GET or POST, URI or HOST: which is used to

indicate server’s domain name and in some cases

requested file, version: which is used to indicate

HTTP protocol versions. On the other hand, HTTP

response contains headers like status code: which is

used to denote the result of transaction, content-type:

specifies what kind of file is transferred, server: which

contains server name and version.

There are multiple versions of HTTP protocol [1]

namely HTTP/1.0, HTTP/1.1, HTTP/2, HTTP/3 in

which HTTP/3 is still in the development phase.

HTTP/1.1 supports pipelining, virtual hosting, and

chunked responses. HTTP/2 is faster than HTTP/1.1

and supports additional features such as server push

and multiplexing.

B. HTTP over TLS (HTTPS)

For Encrypting transactions between client and server,

HTTPS is used. Secure HTTP or HTTPS is achieved

using Transport Layer Security protocol. For RSA-

based encryption process, The client first sends a

ClientHello message with some random bytes called

“Client Random” and the server replies with a

ServerHello message with some random bytes called

“Server Random” and an SSL certificate for

authentication purposes. Now the client creates a

“premaster secret” which is also random bytes but

encrypted with the server's public key and sends it to

the server. The server then decrypts the premaster

secret and both client and server create a session key

based on client random, server random, and

premaster secret. Now all the communication

between client and server will be encrypted with a

session key. There is another encryption process

called Diffie-Hellman which is moderately different

than RSA.

C. Virtual Hosting

Hosting every single website with an individual

server is quite expensive and inefficient. That’s why

support for virtual hosting is necessary. Through

virtual hosting one can host many websites using a

single web server. There are mainly 2 types of virtual

hosting, Port-based & Domain Name based. Using

port-based virtual hosting one can utilize multiple

ports for each website hosted on a single machine and

therefore only a single IP address is used. In domain-

based virtual hosting, a single port and IP address is

utilized, and the domain name of the website is used

to distinguish between multiple websites. There is

also an IP-based virtual hosting to host multiple

websites on a single machine but utilizing multiple IP

addresses.

D. Rust

The web servers which are popular in the software

industry are mostly developed using the C

programming language. Although C has lower

overhead and is blazingly fast, it is not memory safe

and many bugs arise while developing concurrent

applications. Therefore, Mozilla has developed the

Rust programming language [2] as an alternative.

In modern High-level programming languages such as

Python and Java, garbage-collector is used to ensure

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Apurva Solanki et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 554-560

556

memory safety, but garbage-collector often comes

with a price of performance drop. Rust uses an

elegant approach for memory safety without using

garbage-collector by using “Ownership & Borrowing”.

In Rust, each value has only one owner and when the

owner goes out of scope the value will be discarded.

There can be multiple shared references of the value

but only one mutable reference. Also, there can be a

transfer of ownership called move.

Rust also supports all modern features that high-level

programming languages have such as Object-oriented

programming, functional programming, and pattern

matching. It also has an efficient C foreign function

interface.

III. Working and Implementation

Lightron web server is developed to ease the

configuration of websites in development

environments as the other web server in the industry

only supports terminal-based configuration which can

be time-consuming for beginners. On the other hand,

Lightron supports Graphical User Interface using

which one can easily host websites in a development

environment and focus more on website development

rather than server configuration. The Lightron web

server consists of two major components namely

• Lightron Core

• Lightron GUI

A. Lightron Core

This module represents the functional part of the

Lightron web server. The function of this module is to

first read the configuration file generated by Lightron

GUI or the user itself. Then according to the

configuration file, the server will allocate resources

for each website mentioned.

Lightron web server is compatible with both HTTP

and HTTPS protocol. The normal unencrypted HTTP

protocol is served using the HTTP/1.1 version whilst

encrypted HTTPS protocol is powered by a faster

HTTP/2.0 version. In the Rust ecosystem, there are

various crates to extend the functionality of the

program. In the case of Lightron Hyperium H2 crate

is used to implement HTTP/2.0 specification. Also,

rustls crate provides support for transport layer

security or the TLS handshake process. By using rustls

Lightron can perform TLS version 1.3 handshake

which reduces the time it takes to encrypt

connections. Earlier TLS version 1.2 required two

roundtrips to complete the TLS handshake but in

version 1.3 that was reduced to only one round-trip

[3]. Lightron also uses a TLS extension called

Application-Layer Protocol Negotiation or ALPN [4]

to specify which protocol version will get priority for

further HTTPS communication; this will negotiate

HTTP/2 communication directly in the TLS

handshake itself rather than negotiating it later and

wasting one extra roundtrip for it as in Connection-

Upgrade process.

As described in the introduction section, Lightron

supports both port-based, and domain name-based

virtual hosting. In port-based virtual hosting Lightron

creates separate kernel level threads for each website,

this further isolates the behavior of individual

websites and can utilize multi-core processors by

spreading the load of the website across multiple

cores.

Now in domain-based virtual hosting, For HTTP

communication, the Server will make use of the

HOST header in the request to identify multiple

domain names and For HTTPS communication, the

Server will make use of TLS Extension called SNI or

Server Name Indication to distinguish SSL certificate

and Private key for each virtually hosted website and

select SSL Certificate and Private key in runtime so

that each virtually hosted website can have its distinct

SSL Certificate and Private key for secure

communication.

Lightron can also utilize one of the important features

of HTTP/2 which is Server-Push [5] [6]. In Server-

Push, the server can send the web resources without

the client requesting it. Using this the server does not

have to wait for the client’s request therefore it

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Apurva Solanki et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 554-560

557

reduces the latency and increases the throughput as in

one request server is sending selected necessary

dependencies for that file. But the Server-Pushed files

need to be chosen wisely otherwise If the Server-

Pushed file is not required by the client then there

can be wastage in bandwidth.

B. Lightron GUI

This module is isolated from the Lightron core as this

module contains different elements of GUI which is

independent of the server. As we discussed above the

web server configuration can be intimidating for

beginners, GUI-based configuration can be helpful for

them and therefore the main task of GUI is to

generate the configuration file. The configuration file

is the bridge between Lightron core and Lightron

GUI. Popular web servers that are present in the

industry use complex file formats for configuration

files. The file formats like XML, JSON, YAML are

complicated and error-prone that’s why Lightron uses

TOML (Tom’s Obvious Minimal Language) file format

which is pretty easy to understand and parse [7].

Lightron GUI is developed using FLTK or Fast Light

ToolKit framework in Rust Programming language

which makes it lightweight and the memory footprint

of the GUI is also very low between 45-50MB only.

Also, FLTK produces a very small binary around 5MB

so including it in the setup file will not make a huge

difference. Because FLTK & Rust is cross-platform the

GUI and Whole web Server supports major operating

systems.

GUI can also be useful for monitoring web server’s

status like current CPU load, current memory usage.

GUI can also be used for troubleshooting a web server

by reading or changing log levels to more verbose so

one can pinpoint an exact issue. By using GUI, the

user does not even need to see the configuration file

as the GUI lists all the hosted websites and their

parameters based on the configuration file.

Figure 1. Lightron Web Server GUI Dashboard

C. Concurrency Model

There are various concurrency models or design

patterns through which we can handle multiple

requests simultaneously.

Let’s start with a simple approach which is the

Threadpool model. In this model, the group of

spawned threads are ready to handle requests and are

waiting for them. When a request arrives one of the

free threads will be assigned to serve that request. In

this way, we can parallelly serve multiple requests

based on the number of threads spawned at the

beginning and increase the throughput of the server.

But this model comes with a drawback which is the

number of threads spawned is fixed and spawning

threads also comes with the cost of operating system

overhead. Also, there can be a wastage of

computation resources if the number of requests is far

less than the number of threads because in this case,

most threads will be in a waiting state doing nothing.

Then there is an event-driven approach, where

servers can serve multiple requests using non-

blocking IO operations that are provided by the

operating systems. In this method only a single thread

is used which is an event scheduler whose job is to

accept the connection, read the requested file and

send that back to the client but all these operations

are asynchronous and non-blocking meaning that the

thread does not have to wait for the completion of the

event instead it will ask the operating system to notify

on the completion of the event. The major constraint

of this method is that the operating system must

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Apurva Solanki et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 554-560

558

support non-blocking IO operations. Although many

operating systems like Linux and Windows support

non-blocking network IO; they lack support or have

very experimental support for non-blocking disk IO

and because of that in some cases, the task becomes

synchronous and blocking resulting in degraded

performance.

Lightron web server is based on the Tokio framework

[8] which is a runtime for writing asynchronous,

event-driven, and non-blocking applications in the

Rust programming language. Tokio is based on

AMPED or Asymmetric Multi-Process event-driven

architecture as described in [9]. This architecture is an

extension of the above described event-driven

architecture and resolves major constraints of it by

introducing worker threads. By assigning blocking or

synchronous tasks to the worker thread, the event

scheduler will be free to assign other upcoming

requests to available worker threads this way we can

achieve maximum throughput and efficiency. The

default number of worker threads is equal to the

number of cores available in the working system.

Tokio is not limited to AMPED architecture because

it also supports other features like a work-stealing

queue in which load amongst worker threads will be

distributed uniformly and therefore all the cores of

the CPU will be equally utilized.

IV. RESULTS AND DISCUSSION

To experiment and benchmark Lightron web-server

and Apache (Popular web-server in the industry) [10],

We have used AB or Apache Benchmark tool [11] to

load test and stress test web-servers in the host system.

The host system has the following configuration,

AMD E300 Dual Core CPU running a 1.3GHz, 4GB

RAM with the frequency of 800MHz running Arch

Linux with Kernel 5.10.43. All the results below are

dynamic and may vary depending on various factors

like configuration, room temperature, and OS.

Figure 2. Graphical comparison of response time

with respect to HTTP requests

First, with Fig. 2 we are flooding both the servers

with 5000 unencrypted HTTP requests but at a time

500 requests are generated parallelly and sent to the

server therefore 10 batches of 500 concurrent HTTP

requests are sent to the server. By using this test, we

can understand how the server behaves when many

concurrent requests are coming and how the response

time of the server increases in that period.

By analyzing the above graphs, we can see that when

the number of requests reaches 750-800, the response

time of Apache web is increasing rapidly around

400ms. On the other hand, the Lightron web server

has a response time of 340ms which is comparatively

less than the Apache web server.

When the number of requests goes from 1000 to 3500,

the response time of the Apache web server goes from

410ms to 500ms but in the same scenario, the

response time of the Lightron web server goes from

340ms to 450ms which is also lesser than Apache web

server.

When requests rise above 3500 the Lightron web

server’s response time increases faster than Apache

web server but at 5000 requests both the server has

800ms of response time.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Apurva Solanki et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 554-560

559

Figure 3. Graphical comparison of response time

with respect to HTTPS requests

In the previous benchmark, we have only tested

unencrypted HTTP protocol which is unlikely to be

used in real-world scenarios therefore In this test we

have used Encrypted HTTPS protocol which most

organizations and companies are using because of

security concerns and search engine indexing

priorities. The benchmark setup is identical to the

above test only difference is that both the web servers

are configured to use HTTPS protocol with their

default parameters.

By analyzing the above graph results, In Apache web

server as the requests rise from 0 to 500 subsequent

response time rapidly rises from 0ms to 3800ms;

moreover, in Lightron web server the response time

rises rapidly only from 0ms to 2700ms which is better

than Apache web server. In the Apache web server,

there is a steady incline in the response time about

2700ms to 4300ms for requests between 500 to 4000

and after that, there is a rapid increase in response

time. In contrast, the Lightron web server’s response

time steadily grows from 3100ms to 4000ms for

requests ranging between 1000 to 5000.

The peak response time for Apache is 5700ms and for

Lightron it is 4000ms.

V. ACKNOWLEDGEMENTS

We appreciate Mohammed Alyousef for giving advice

and suggestions to implement Graphical User

Interface for the Lightron web server. Also, a

shoutout to Rust & Tokio Documentation team for

making helpful guides. We are also grateful to Apache

Software Foundation for letting us use their products

such as Apache Web Server and Apache Benchmark

tool. Additionally, we want to thank unknown

reviewers for making this paper more readable and

understandable.

VI. CONCLUSION & FUTURE SCOPE

This paper Introduces a new web server called

Lightron which is developed using Rust Programming

Language as opposed to a standard C programming

language which is used by prominent web servers in

the industry. Rust’s memory safety, Scalability, and

Speed make the Lightron web server robust and its

performance as good as its counterpart. Using Tokio’s

Asynchronous, Event-driven, and work-stealing

architecture, Lightron achieves maximum

concurrency and efficiently manages the system's

resources. By integrating Graphical User Interface

with Lightron, beginners can easily configure a web

server in their development environment and focus

more on website development.

By implementing CGI or Common Gateway Interface,

we can integrate PHP to the web server and server

dynamic content over the web. The io_uring

subsystem which was released in Linux Kernel

version 5.1 provides a new interface for

Asynchronous Disk Operations which is highly

efficient and non-blocking, By using this we can

achieve more concurrency and throughput in our

web server. Windows is yet to release their

implementation of io_uring but they will release in

21H2 as described in this [12]. HTTP/3 is an

upcoming version of the HTTP protocol which will

use QUIC-UDP instead of TCP as transport layer

protocol and provides a significant performance boost

in communication between client and server. By

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Apurva Solanki et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 554-560

560

using it the server’s response time and latency will be

reduced.

VII. REFERENCES

[1]. Abdullah, S. A., & Ahmad, A. M. (2016). HTTP/2

in Modern Web and Mobile Sensing based

Applications Analysis, Benchmarks and Current

Issues. J Electrical & Electronic System, 5, 193.

[2]. Fulton, K. R., Chan, A., Votipka, D., Hicks, M., &

Mazurek, M. L. (2021). Benefits and Drawbacks

of Adopting a Secure Programming Language:

Rust as a Case Study. In Seventeenth Symposium

on Usable Privacy and Security (SOUPS 2021)

(pp. 597-616) USENIX.

[3]. Ralph Holz, Jens Hiller, Johanna Amann, Abbas

Razaghpanah, Thomas Jost, Narseo Vallina-

Rodriguez, and Oliver Hohlfeld. (2020). Tracking

the deployment of TLS 1.3 on the web: a story of

experimentation and centralization. SIGCOMM

Comput. Commun. Rev. 50, 3 (July 2020), 3–15.

DOI:https://doi.org/10.1145/3411740.3411742

[4]. Shoemaker, R. B. (2020). RFC 8737 Automated

Certificate Management Environment (ACME)

TLS Application‑Layer Protocol Negotiation

(ALPN) Challenge Extension.

[5]. Rosen, S., Han, B., Hao, S., Mao, Z. M., & Qian,

F. (2017, April). Push or request: An

investigation of HTTP/2 server push for

improving mobile performance. In Proceedings

of the 26th International Conference on World

Wide Web (pp. 459-468).

[6]. Zimmermann, T., Rüth, J., Wolters, B., &

Hohlfeld, O. (2017, June). How HTTP/2 pushes

the web: An empirical study of HTTP/2 server

push. In 2017 IFIP Networking Conference (IFIP

Networking) and Workshops (pp. 1-9). IEEE.

[7]. Jonathan, H. (2020, July). The 3 Best Config File

Formats. In https://jhall.io/posts/best-config-file-

formats.

[8]. Tokio-rs, (2021). Tokio Runtime. In

https://tokio.rs.

[9]. Pai, V. S., Druschel, P., & Zwaenepoel, W. (1999,

June). Flash: An efficient and portable Web

server. In USENIX Annual Technical

Conference, General Track (pp. 199-212).

[10]. Apache Software Foundation, (2020). Apache

HTTP Server Project (httpd).

https://httpd.apache.org.

[11]. Apache Software Foundation, (2020). ab-Apache

HTTP server benchmarking tool.

https://httpd.apache.org/docs/2.4/programs/ab.ht

ml.

[12]. Yarden S. (2021, May). I/O Rings – When One

I/O Operation is Not Enough. In

https://windows-internals.com/i-o-rings-when-

one-i-o-operation-is-not-enough

Cite this article as :

Apurva Solanki, Aryan Parekh, Gaurav Chawda, Mrs.

Geetha S., "Lightron : A GUI Integrated, Rust Based

Web Server", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 7 Issue 4, pp. 554-560, July-August

2021. Available at

doi : https://doi.org/10.32628/CSEIT2174127

Journal URL : https://ijsrcseit.com/CSEIT2174127

https://doi.org/10.32628/CSEIT2174127
https://search.crossref.org/?q=10.32628/CSEIT2174127&from_ui=yes
https://ijsrcseit.com/CSEIT2174127

