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Abstract: In order to improve the performance of microphone array-based sound
source localization (SSL), a robust SSL algorithm using convolutional neural net-
work (CNN) is proposed in this paper. The Gammatone sub-band steered
response power-phase transform (SRP-PHAT) spatial spectrum is adopted as
the localization cue due to its feature correlation of consecutive sub-bands. Since
CNN has the “weight sharing” characteristics and the advantage of processing
tensor data, it is adopted to extract spatial location information from the localiza-
tion cues. The Gammatone sub-band SRP-PHAT spatial spectrum are calculated
through the microphone signals decomposed in frequency domain by Gammatone
filters bank. The proposed algorithm takes a two-dimensional feature matrix
which is assembled from Gammatone sub-band SRP-PHAT spatial spectrum with-
in a frame as CNN input. Taking the advantage of powerful modeling capability
of CNN, the two-dimensional feature matrices in diverse environments are used
together to train the CNN model which reflects mapping regularity between the
feature matrix and the azimuth of sound source. The estimated azimuth of the test-
ing signal is predicted through the trained CNN model. Experimental results show
the superiority of the proposed algorithm in SSL problem, it achieves significantly
improved localization performance and capacity of robustness and generality in
various acoustic environments.

Keywords: Microphone array; sound source localization; convolutional neural
network; gammatone sub-band steered response power-phase transform spatial spectrum

1 Introduction

The aim of microphone array-based sound source localization (SSL) is to determine the location
information by applying a series of signal processing on multichannel received signals. It plays an
important role in numerous application fields including speech enhancement, speech recognition, human-
computer interaction, autonomous robots, smart home monitor system, etc [1-5].

Over the past decades, many microphone array-based SSL approaches have been presented. In
generally, the traditional approaches for SSL can be divided into two categories [6]. The first category is
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the indirect approach, which first computes a set of time difference of arrivals (TDOAs) between microphone
pairs, and then estimates the sound source location through TDOAs and geometry of array [7]. The second
category is the direct approaches, which achieve the sound source location by searching the extremum value
of a cost function, including multiple signal classification (MUSIC) algorithm [8], maximum-likelihood
estimators [9], steered response power (SRP) [10] and so on. The steered response power-phase transform
(SRP-PHAT) [11] is one of the most popularly used traditional SSL algorithm. In certain acoustic
environments, the traditional SSL approaches perform fairly well. However, the approaches suffer from
the drawback of lack of robustness to noise and reverberation, resulting in performance deterioration in
adverse acoustic environments. Therefore, robust SSL is still a challenging and worth studying task.

With the development of artificial neural network (ANN), the usage of deep learning for SSL task have
been proposed in recent years. The usage of deep learning for SSL task can be performed in two ways. The
first way is to apply deep leaming techniques in traditional methods, while the second way considers SSL
problem as a classification task and use deep learning to map the input features to the azimuth. For first
way, the related research is as follows. Wang et al. [12,13] adopted deep neural networks (DNN) to
predicted the time-frequency (T-F) masking, which is used to weight the traditional method. Pertila et al.
[14] predicted the T-F masking by convolutional neural network (CNN) and then estimated the azimuth by
SRP-PHAT weighted by T-F masking. Salvati et al. [15] used CNN to predict the weighting factors of
incoherent frequency bands, which are used to fuse the narrowband response power to realize SRP beamformer.

The second way of applying deep learning to SSL task has been more widely studied, and a variety of
input features types are involved by the approaches, such as inter-aural level difference (ILD), inter-aural
phase difference (IPD), cross-correlation function (CCF), generalized cross correlation (GCC) and so on.
The related research is as follows. An SSL approach based on CNN with multitask learning has been
proposed in [16], in which the IPD and ILD are combined as the input features. DNN was utilized in [17]
to map the combination of CCF and ILD to source azimuth. The approach in [18] taken CCF as input
feature to train DNN model of each time-frequency (T-F) unit. In [19], CCFs of all sub-bands are
arranged into a two dimensional feature matrix to train a CNN model. The methods in [20,21] jointed
ILDs and CCF as input features, an SSL algorithm fusing deep and convolutional neural network is
presented in [20], and a method based on DNN and cluster analysis is present in [21] to improve the
localization performance in the mismatched HRTF condition. The approach in [22] taken GCC as the
input feature of multi-layer perceptron (MLP) model. A probabilistic neural network-based SSL algorithm
proposed in [23] also taken GCC as the input feature. A CNN-based SSL method has been proposed in
[24], in which GCC-PHAT was extracted as the input feature. The approach in [25] taken the cross
correlations in different frequency bands on mel scale as input features, and trained the CNN model to
estimate the map of sound source direction of arrival. A SSL algorithm using a DNN for phase difference
enhancement has been proposed in [26], in which the input feature is the sinusoidal functions of the IPD.
A DNN-based SSL method has been proposed in [27], which extracted SRP-PHAT spatial spectrum as
input feature. The approaches in [28,29] extracted the phase information of short-time Fourier transform
(STFT) from the multichannel signals as the input feature of CNN. The method in [30] extracted the real
and imaginary part of the spectrograms as the input features to fed to a DNN model. A SSL approach
based on convolutional recurrent neural networks has been proposed in [31], which taken the phase and
magnitude component of the spectrogram of microphone signal as the input features. The approach in
[32] utilized CNN to learn the mapping regularity between raw microphone signals and the direction
without feature extraction.

In this paper, we focus on SSL in far-field and come up with a novel robust SSL approach. As our
previous work described in [27], the SRP-PHAT spatial power spectrum of the array signals contains
spatial location information robustly. Furthermore, considering the feature correlation of consecutive sub-
bands, the Gammatone sub-band SRP-PHAT spatial spectrum is adopted as the localization cue in this
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paper. The “weight sharing” characteristics of CNN [33—35] make it have greater advantages in processing
tensor data compared to traditional DNN, and it is widely employed in various applications of deep learning.
Therefore, we introduce CNN to establish the mapping regularity between the input feature and the azimuth
of sound source by taking its advantage of the powerful modeling capability. The probability that testing
signal belongs to each azimuth is predicted through the trained CNN model, and then the azimuth with
maximum probability is taken as the estimated azimuth. Experimental results demonstrate that the
proposed algorithm improves the localization performance significantly and has capacity of robustness
and generality in various acoustic environments.

The rest of the paper is organized as follows. Section 2 illustrates the proposed SSL algorithm based on
CNN, which include system overview, feature extraction, the architecture of CNN and the training of CNN.
The simulation results and analysis are presented in Section 3. The conclusions follow in Section 4.

2 Sound Source Localization Algorithm Using CNN
2.1 System Overview

The proposed algorithm treats the sound source localization problem as a multi-classification task, and
constructs the mapping regularity between spatial feature matrix and the azimuth of sound source through
CNN model. Fig. 1 illustrates the overall architecture of the proposed SSL system. The CNN-based
microphone array SSL system includes two phases, the training phase and the localization phase. The
signals received by microphone array are used as the system input. The Gammatone sub-band SRP-PHAT
spatial spectrum are calculated through the microphone signals decomposed in frequency domain by
Gammatone filters bank, and assembled into a spatial feature matrix as CNN input. In the training phase,
a CNN model which reflects mapping regularity between the spatial feature matrix and the azimuth of
sound source is learned. To enhance the robustness and generalization ability of CNN model, signals in
diverse reverberation and noise environments are taken together as training data. In the localization phase,
the probability that testing signal belongs to each azimuth is predicted through the trained CNN model,
and the azimuth with maximum probability is taken as the estimated azimuth.

Training Spatial feature
microphone Sub-band SRP-PHAT —» P4 . train
. matrix 1
signal

CNN >

Testing Spatial feature T
microphone Sub-band SRP-PHAT|—»| °P X predict
signal matrix

Figure 1: Overall architecture of the proposed SSL system based on microphone array
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2.2 Feature Extraction
The physical model for signal received by mth microphone in indoor scenarios can be formulated

Xm(8) = hy(xg, 1) x5(¢) + vi(t), m=1,2,....M (1)

where s(¢) denotes the clean sound source signal, 4,,(ry, f) represents the room impulse response from the
source position r, to the mth microphone, “*” denotes the linear convolution, v,,(¢) is additive noise for
the mth microphone, and M is the number of microphones. The room impulse response #,,(r;, ¢) is related
to the source position, microphone position, and acoustic environment.

As our previous work described in [27], the SRP-PHAT spatial power spectrum of the array signals
contains spatial location information, and it is dependent of the room impulse response and is
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independent of the content of the sound source signal in theory. The SRP-PHAT function of microphone
array signals is expressed as:

9=~ 35 [T K@K (0) g,
P mz:lnzm;rl/—oo ‘Xm(a)) (w)|e’ d ()

where P(r) represents the response power when the array is steered to the position r, Aft,,,(r) is the
propagation delay difference from the steering position r to the mth microphone and the nth microphone,
A,,.(r) is only related to the azimuth of the steering position r in the far-filed case, X,,(w) is the Fourier
transforms of x,,(f). From Eq. (2), we note that the phase information of the microphone array signals is
exploited through SRP-PHAT function.

Gammatone filter bank, which has different central frequencies and bandwidths, is used to simulate the
time-frequency analysis to acoustic signals by human auditory system. The impulse response of the ith
Gammatone filter is defined as:

o3

gi(t) = ct" te it cos(2nfit + @), >0 3)

where ¢ denotes the gain coefficient, n denotes the filter order, b; denotes the decay coefficient, f; denotes the
central frequency of the ith filter, and ¢ denotes the phase. The frequency response of the Gammatone filter
bank is depicted in Fig. 2.
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Figure 2: Frequency response of the Gammatone filter bank

The feature parameter extracted from the array signals is the basis of sound source localization.
Considering the spatial location information contained in the SRP-PHAT spatial spectrum and the time-
frequency analysis capability of the Gammatone filter, the SRP-PHAT spatial spectrum in each band of
Gammatone filter bank is exploited as the feature for sound source localization in this paper.

The microphone signals are decomposed into consecutive sub-bands in frequency domain by
Gammatone filters bank. The central frequencies of Gammatone filters ranges from 100 to 8000 Hz on
the equivalent rectangular bandwidth (ERB). The SRP-PHAT function of a Gammatone sub-band is
defined as:
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where P;(r) denotes the SRP-PHAT function of ith Gammatone sub-band, and G{w) is the Fourier transforms
of gi(t). We note that Eq. (4) of calculating Gammatone sub-band SRP-PHAT function is equivalent to
weighting frequency components in Eq. (2) by Gammatone multichannel bandpass filter.

The microphone signals are divided into 32 ms frame length without frame shift. Then the sub-band SRP
is calculated by Eq. (4). Afterwards, all Gammatone sub-band SRPs within a frame are arranged into a
matrix, which can be expressed as follows:

Pl(k,l’l) Pl(k,}’z) Pl(k,rL)
P(k) _ Pz(k:,l’l) Pz(k:, r2) . Pz(k:, VL) (5)
P[(k‘,}’l) P[(k',l"z) . P[(]f.,l’L)

where P(k) is the feature matrix of kth frame, and P;(r;, k) is the ith Gammatone sub-band SRP-PHAT at r; in
kth frame which is calculated by Eq. (4), I is the channel number of Gammatone filter, L is the number of
steering positions. In this paper, the channel number of Gammatone filter is 32. In the far-filed case, the
argument r; is simplified to the azimuth with a distance of 1.5 m from the steering position to the
microphone array, and the azimuth ranges from 0° to 360° with a step of 5°, corresponding to 72 steering
positions. Thus the dimension of SRP-PHAT feature matrix is 32 x 72.

2.3 The Architecture of CNN

CNN is introduce to train a set of SRP-PHAT feature matrices constructed in Section 2.2. To improve the
robustness and generality of model, training signals with known azimuth information in diverse
environments are used together to train the CNN model. The training azimuth ranges from 0° to 360°
with a step of 10°, corresponding to 36 training positions.

As depicted in Fig. 3, the CNN architecture of our algorithm includes one input layer, three
convolutional-pooling layers, a fully connected layer, and an output layer. The data of input layer is the
feature matrix P(k) of size 36 x 72 which is described in Section 2.2. For the three convolutional layers,
the size of convolution kernel is 3 x 3, the stride is 1, and the number of convolution kernels is 24, 48,
and 96 respectively. In order to ensure the same size of input and output feature, the output of 2D
convolution is zero-filled. Rectified Linear Unit (ReLU) activation function is performed after each 2D
convolution operation. For each of pooling layers, the maximum pooling operation of size 2 x 2 with
stride of 2 is adopted. After three convolution-pooling operations, the two-dimensional feature matrix
with size of 36 x 72 becomes a three-dimensional feature data with size of 5 x 9 x 96. The fully
connected layer is followed the last convolutional-pooling layer. We have introduced the Dropout method
to avoid overfitting. For the output layer, the softmax regression model is utilized to convert the feature
data to the probability that array signal belongs to each azimuth. The azimuth with maximum probability
is taken as the estimated source azimuth.

2.4 The Training of CNN

The training of CNN includes forward propagation process and back propagation process. Forward
propagation is the process of transferring features layer by layer. In the forward propagation process, the
output of network under the current model parameters is calculated for the input signal. The output of the
dth convolutional layer is expressed as follows:
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§? =ReLU(S” '« W + b9) (6)

where S¢ denotes the output of the dth layer, “*” denotes the convolution operator, ¥ denotes the weight of
the convolution kernel in dth layer, b denotes the bias of the dth layer, and ReLU is the activation function.
In order to improve the stability of the network, the batch normalization (BN) operation is performed before
the activation operation of the ReLU function in our method.

Convolution

Input +ReLU Fully connected
. Convolution Convolution layer Output layer
N Pooling +ReLU
Pooling Softmax
Input layer = D H
36x72 Convolutional layer . Pooling 1
36x72x24 Pooling layer Po Pooling layer Convolutional layer O‘;;‘;’f(;yer
18x36x24 Convolutional layer  9x18x48 9x18x96

18x36x48

Figure 3: The CNN architecture of the proposed algorithm

The output of the dth pooling layer is expressed as follows:

S = max pool(Sd’l) (7
The expression of the output layer is as follows:

§” = Softmax( (W?)" s>~ + 5”) ®)

where D represents the output layer, W and b” denote the weight and bias of the fully connected layer
respectively, $” is a vector with size of J, and J is the number of class labels, J = 36 in this paper.

The cross-entropy loss function £(W, b) is minimized in the back propagation process as follows:

EW.b) =Y Plog (S]D> - Zj: 2 1og<(50ftmax((WD)TsD1 + bD>) > )

J

Jj=1

where the subscript j represents the jth training azimuth position, SjD is the jth element of S, ZJD and
SjDrepresent the expected output and actual output of the output layer at the jth training position respectively.

The stochastic gradient descent with momentum (SGDM) algorithm is adopted to minimize the loss
function. The momentum is set to 0.9, the L2 regularization coefficient is set to 0.0001, the mini-batch is
set to 200, and the initial learning rate is set to 0.01. The learning rate is reduced by 0.2 times every 6 epochs.

Over-fitting often occurs during the construction of complex network models. Cross Validation and
DropOut are utilized to prevent over-fitting in the training phase. The training data is divided into training
set and validation set randomly according to the ratio of 7:3 for cross validation. The DropOut method is
introduced in the fully connected layer, and the Dropout ratio is set to 0.5.

3 Simulation and Result Analysis
3.1 Simulation Setup

Simulation experiments are conducted to evaluate the performance of the proposed algorithm. The
dimensions of the simulated room are given as 7 m x 7 m x 3 m. A uniform circular array with a radius
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of 10 c¢cm is located at (3.5 m, 3.5 m, 1.6 m) in the room. The array consists of six omnidirectional
microphones. The clean speech sampled at 16 kHz which are taken randomly from the TIMIT database
are adopted as the sound source signals. The Image method [36] is used to generate the room impulse
response between any two points. The microphone signal is derived by convolving the clean speech with
the room impulse response and then adding scaled Gaussian white noise. The microphone signals are
segmented into 32-ms frame length without frameshift and windowed by Hamming window. Voice
activity detection is performed before sound source localization.

The source is placed in the far-field, and the azimuth ranges from 0° to 360°with a step of 10°,
corresponding to 36 training positions. During the training phase, the SNR is varied from 0 to 20 dB with
a step of 5 dB, and the reverberation time T60 is set to two levels as 0.5 and 0.8 s. The microphone array
signals in different reverberation and noise environments are taken together as training data to enhance
the generalization ability of the CNN model.

The localization performance is measured by the percentage of correct estimates, which is defined
as follows:

P = nc/Nall (10)

where N,y is the total number of testing frames, 7. is the number of correct estimate frames, and the correct
estimate is defined that the estimated azimuth is equal to the true azimuth. The performance of the proposed
algorithm is compared with two related algorithms, namely the SRP-PHAT [11] and SSL based on deep
neural network (SSL-DNN) [27].

3.2 Evaluation in Trained Environments

In this section, the localization performance is investigated and analyzed in the situation that the test
signals are generated in the same setting as the training signals. Fig. 4 depicts the localization
performance as a function of SNR for SRP-PHAT, SSL-DNN and the proposed algorithm under various
reverberation environments.

T60=0.5s =
100 . ‘ . . 100 . . T60=0.8s
I sRP-PHAT I sRr-PHAT

__oof [ ssL-DNN M eof [ sLL-DNN 1
9 ] Proposed _ R 1 Proposed ]
g g i
b= 80 [ 1 = 80 4
£ ] E
@ ? B
O 70 . O 70 ]
] ©
o — o
8 60f 1 8 eof m 1
5 S
g S
& 50[ 1 & 501 1
c c
[0} [0
o <
Q 40 8 Q 401 .
[ (0]
£ £

30 1 30 [ 4

20 L 20 L ||

0 5 10 15 20 0 5 10 15 20
SNR(dB) SNR(dB)
(@) (b)

Figure 4: Performance comparison of different algorithms in trained environments. (a) Percentage of correct
estimates with T60 = 0.5 s (b) Percentage of correct estimates with T60 = 0.8 s
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From Fig. 4, it can be seen that the performance of SRP-PHAT deteriorates significantly as the SNR
decreases and the reverberation time increases, and the proposed algorithm is superior to the SRP-PHAT
method significantly. The reason is that the proposed algorithm exploits the Gammatone sub-band SRP-
PHATs as the feature matrix which consider the feature correlation of consecutive sub-bands, and
meanwhile the DNN model can extract efficient spatial location information from them. Furthermore, at
the same reverberation time, the performance improvement of the proposed algorithm compared with
SRP-PHAT method is greatest at moderate SNR (10 dB); for high SNR (above 10 dB), the performance
improvement increase gradually as the SNR decreases; for low SNR (below 10 dB), the performance
improvement increases gradually as the SNR increases. For example, in the T60 = 0.8 s scenario,
the performance improvement increases from 21.25% to 28.23% as the SNR increases from 0 to 10 dB,
and it decreases from 28.23% to 25.09% as the SNR increases from 10 to 20 dB. In addition, the
performance improvement of the proposed algorithm compared with the SRP-PHAT method is
more significant at higher reverberation time in the same SNR scenario. For example, when SNR = 20 dB,
the performance is increased by 17.49% and 25.09% respectively with T60 = 0.5 s and T60 = 0.8 s.

From Fig. 4, it can also be seen that the proposed algorithm outperforms the SSL-DNN method in most
environments, and the performance improvement is more significant at higher reverberation time. In
addition, at the same reverberation time, the performance improvement of the proposed algorithm
compared with the SSL-DNN method increase gradually as the SNR increases. For example, in the
T60 = 0.8 s scenario, the improvement of the percentage of correct estimates of the proposed algorithm
compared with the SSL-DNN algorithm increases from 1.07% to 9.34% as the SNR increases from O to
20 dB. In the low SNR and moderate reverberation environments, the percentage of correct estimates of
the proposed method is close to or slightly lower than that of the SSL-DNN method.

3.3 Evaluation in Untrained Environments

In this section, we investigate the robustness and generality of the proposed algorithm in untrained environment.
For the testing signals, the untrained SNR is varied from —2 to 18 dB with a step of 5 dB, and the untrained
reverberation time T60 is set to two levels as 0.6 and 0.9 s. Figs. 5 and 6 depict the performance comparison of
different algorithms under untrained noise and untrained reverberation environments, respectively.
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Figure 5: Performance comparison of different algorithms in untrained noise environments. (a) Percentage
of correct estimates with T60 = 0.5 s (b) Percentage of correct estimates with T60 = 0.8 s
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Figure 6: Performance comparison of different algorithms in untrained reverberation environments.
(a) Percentage of correct estimates with T60 = 0.6 s (b) Percentage of correct estimates with T60 = 0.9 s

As shown in Figs. 5 and 6, we have found that the regularity of data variation in untrained environment
are consistent with those described in Section 3.2, which reflects that the proposed algorithm is the robustness
and generality to untrained noise and reverberation. Specifically, compared with SRP-PHAT method, the
percentage of correct estimates is increased about 18% to 30% by the proposed method in diverse
environments. Compared with SSL-DNN method, in low SNR and moderate reverberation environments,
the proposed method and SSL-DNN method have similar localization performance; in other scenario, the
percentage of correct estimates is increased about 5% to 10% by the proposed method.

4 Conclusion

In this work, a robust SSL algorithm using convolutional neural network based on microphone array has
been presented. Considering the feature correlation of consecutive sub-bands, the sub-band SRP-PHAT
spatial spectrum based on Gammatone filter bank is exploited as the feature for sound source localization
in the proposed algorithm. CNN is adopted to establish the mapping relationship between the spatial
feature matrix and the azimuth of sound source due to its advantage on processing tensor data.
Experimental results show that the proposed algorithm provides better localization performance in both
the trained and untrained environments, especially in high reverberation environments, and achieves
superior capacity of robustness and generality.

Funding Statement: This work is supported by Nanjing Institute of Technology (NIT) fund for Research
Startup Projects of Introduced talents under Grant No. YKJ202019, NIT fund for Doctoral Research
Projects under Grant No. ZKJ2020003, the National Nature Science Foundation of China (NSFC) under
Grant No. 61571106, NSFC under Grant No. 61703201, Jiangsu Natural Science Foundation under Grant
No. BK20170765, Innovation training Program for College Students in Jiangsu Province under Grant No.
202011276110H, and NIT fund for “Challenge Cup” Cultivation support project under Grant No.
T720190010.



370 TIASC, 2021, vol.30, no.l1

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1T S. M. Kim and H. H. Kim, “Direction-of-arrival based SNR estimation for dual-microphone speech
enhancement,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 12, pp.
2207-2217, 2014.

[2] X.Li, L. Girin, R. Horaud and S. Gannot, “Estimation of the direct-path relative transfer function for supervised
sound-source localization,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no.
11, pp. 21712186, 2016.

[3] D. Salvati, C. Drioli and G. L. Foresti, “Sound source and microphone localization from acoustic impulse
responses,” IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1459-1463, 2016.

[4] S. Zhao, S. Ahmed, Y. Liang, K. Rupnow, D. Chen ef al, “A real-time 3D sound localization system with
miniature microphone array for virtual reality,” in 7th IEEE Conf. on Industrial Electronics and Applications,
Singapore, pp. 1853-1857, 2012.

[51 T. Long, J. D. Chen, G. Huang, J. Benesty and I. Cohen, “Acoustic source localization based on geometric
projection in reverberant and noisy environments,” IEEE Journal of Selected Topics in Signal Processing, vol.
13, no. 1, pp. 143-155, 2019.

[6] D. Salvati, C. Drioli and G. L. Foresti, “A low-complexity robust beamforming using diagonal unloading for
acoustic source localization,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26,
no. 3, pp. 609-622, 2018.

[71 . Benesty, “Adaptive eigenvalue decomposition algorithm for passive acoustic source localization,” Journal of
Acoustical Society of America, vol. 107, no. 1, pp. 384-391, 2000.

[8] S. Zhao, T. Saluev and D. L. Jones, “Underdetermined direction of arrival estimation using acoustic vector
sensor,” Signal Processing, vol. 100, pp. 160—168, 2014.

[9] C. Zhang, D. Florencio, D. E. Ba and Z. Zhang, “Maximum likelihood sound source localization and
beamforming for directional microphone arrays in distributed meetings,” IEEE Transaction on Multimedia,
vol. 10, no. 3, pp. 538-548, 2008.

[10] L. O. Nunes, W. A. Martins, M. V. S. Lima, L. W. P. Biscainho, M. V. M. Costa et al., “A steered-response power
algorithm employing hierarchical search for acoustic source localization using microphone arrays,” IEEE
Transaction on Signal Processing, vol. 62, no. 19, pp. 5171-5183, 2014.

[11] J. H. Dibiase, “A high-accuracy, low-latency technique for talker localization in reverberant environments using
microphone arrays,” Ph.D. dissertation. Brown University, Providence, RI, 2001.

[12] Z. Q. Wang, X. L. Zhang and D. L. Wang, “Robust TDOA estimation based on time-frequency masking and deep
neural networks,” in /9th Annual Conf- of the International Speech Communication, Hyderabad, India, pp. 322—
326, 2018.

[13] Z. Q. Wang, X. L. Zhang and D. L. Wang, “Robust speaker localization guided by deep learning-based time-
frequency masking,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 1,
pp. 178-188, 2019.

[14] P. Pertila and E. Cakir, “Robust direction estimation with convolutional neural networks based steered response power,”
in [EEE Int. Conf. on Acoustics, Speech and Signal Processing, New Orleans, LA, USA, pp. 6125-6129, 2017.
[15] D. Salvati, C. Drioli and G. L.Foresti, “Exploiting CNNs for improving acoustic source localization in noisy and

reverberant conditions,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 2, pp.
103—-116, 2018.

[16] C. Pang, H. Liu and X. Li, “Multitask learning of time-frequency CNN for sound source localization,” /EEE
Access, vol. 7, pp. 40725-40737, 2019.

[17] N. Ma, T. May and G. J. Brown, “Exploiting deep neural networks and head movements for robust binaural

localization of multiple sources in reverberant environments,” IEEE/ACM Transactions on Audio, Speech and
Language Processing, vol. 25, no. 12, pp. 2444-2453, 2017.



IASC, 2021, vol.30, no.l1 371

[18] N. Ma, J. A. Gonzalez and G. J. Brown, “Robust binaural localization of a target sound source by combining
spectral source models and deep neural networks,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 11, pp. 21222131, 2018.

[19] L. Zhou, K. Y. Ma, L. J. Wang, Y. Chen and Y. B. Tang, “Binaural sound source localization based on
convolutional neural network,” Computers, Materials & Continua, vol. 60, no. 2, pp. 545-557, 2019.

[20] S. Jiang, W. L., P. Yuan, Y. Sun and H. Liu, “Deep and CNN fusion method for binaural sound source
localization,” The Journal of Engineering, vol. 2020, no. 13, pp. 511-516, 2020.

[21] J. Wang, J. Wang, Z. Yan, W. X. and X. X., “DNN and clustering based binaural sound source localization in
mismatched HRTF condition,” in /EEE Int. Conf. on Signal, Information and Data Processing, Chongqing,
China, pp. 1-5, 2019.

[22] X. Xiao, S. K. Zhao, X. H. Zhong, D. L. Jones, E. S. Chng ef al., “A learning-based approach to direction of
arrival estimation in noisy and reverberant environments,” in IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Brisbane, QLD, Australia, pp. 28142818, 2015.

[23] Y. X. Sun, J. J. Chen, C. Yuen and S. Rahardja, “Indoor sound source localization with probabilistic neural
network,” IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6403—-6413, 2018.

[24] H. Zhu and H. Wan, “Single sound source localization using convolutional neural networks trained with spiral
source,” in 5th Int. Conf. on Automation, Control and Robotics Engineering, Dalian, China, pp. 720-724, 2020.

[25] S. Sakavicius and A. Serackis, “Estimation of sound source direction of arrival map using convolutional neural
network and cross-correlation in frequency bands,” in 2019 Open Conf. of Electrical, Electronic and Information
Sciences, Vilnius, Lithuania, pp. 1-6, 2019.

[26] J. Pak and J. W. Shin, “Sound localization based on phase difference enhancement using deep neural networks,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 8, pp. 1335-1345, 2019.

[27] X. Y. Zhao, S. W. Chen and L. Zhou, “Sound source localization based on SRP-PHAT spatial spectrum and deep
neural network,” Computers, Materials & Continua, vol. 64, no. 1, pp. 253-271, 2020.

[28] S.S.Mane, S. G. Mali and S. P. Mahajan, “Localization of steady sound source and direction detection of moving
sound source using CNN,” in /0th Int. Conf. on Computing, Communication and Networking Technologies,
Kanpur, India, pp. 1-6, 2019.

[29] S. Chakrabarty and E. A. P. Habets, “Broadband DOA estimation using convolutional neural networks trained
with noise signals, ” in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. New
Paltz, NY, USA, 136-140, 2017.

[30] G. L. Moing, P. Vinayavekhin, T. Inour, J. Vongkulbhisal, A. Munawar et al., “Learning multiple sound source
2Dlocalization, ” in 21st Int. Workshop on Multimedia Signal Processing. Kuala Lumpur, Malaysia, 1-6, 2019.

[31] S. Adavanne, A. Politis, J. Nikunen and T. Virtanen, “Sound event localization and detection of overlapping
sources using convolutional recurrent neural networks,” IEEE Journal of Selected Topics in Signal Processing,
vol. 13, no. 1, pp. 3448, 2019.

[32] J.J. Tong and Y. F. Zhang, “Robust sound localization of sound sources using deep convolution network,” in /5th
Int. Conf. on Control and Automation, Edinburgh, United Kingdom, pp. 196-200, 2019.

[33] K. Yang, J. Jiang and Z. Pan, “Mixed noise removal by residual learning of deep CNN,” Journal of New Media,
vol. 2, no. 1, pp. 1-10, 2020.

[34] D. J. Zeng, Y. Dai, F. Li, J. Wang and A. K. Sangaiah, “Aspect based sentiment analysis by a linguistically
regularized CNN with gated mechanism,” Journal of Intelligent & Fuzzy Systems, vol. 36, no. 5, pp. 3971—
3980, 2019.

[35] R. Chen, L. Pan, Y. Zhou and Q. Lei, “Image retrieval based on deep feature extraction and reduction with
improved CNN and PCA,” Journal of Information Hiding and Privacy Protection, vol. 2, no. 2, pp. 9—18, 2020.

[36] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room acoustics,” Journal of
Acoustical Society of America, vol. 65, no. 4, pp. 943-950, 1979.



	Robust Sound Source Localization Using Convolutional Neural Network Based on Microphone Array
	Introduction
	Sound Source Localization Algorithm Using CNN
	Simulation and Result Analysis
	Conclusion
	References


