
Web Intelligence (2018) 1
IOS Press

Energy Efficient Opportunistic Edge
Computing for the Internet of Things
Teemu Leppänen and Jukka Riekki
Center for Ubiquitous Computing, University of Oulu, P.O. Box 4500, FI-90014 University of Oulu, Finland

Abstract. Edge computing in Internet of Things enhances application execution by retrieving cloud resources to the close prox-
imity of resource-constrained end devices at the edge and by enabling task offloading from end devices to the edge. In this paper,
edge computing platforms are extended into the data producing end devices, including wireless sensor network nodes and smart-
phones, with mobile agents. Mobile agents operate as a multi-agent system on the opportunistic network of heterogeneous end
devices, where the benefits include autonomous, asynchronous and the adaptive execution and relocation of application-specific
tasks, while taking into account local resource availability. In addition to the vertical edge connectivity, mobile agents enable
horizontal sharing of the information between end devices. Use cases are presented, where mobile agents address challenges in
current edge computing platforms. An edge application is evaluated, where mobile agents as a multi-agent system process sensor
data in a heterogeneous set of end devices, control the operation of the devices and share their results with system components.
Mobile agents operate atop a REST-based mobile agent software framework that relies on embedded Web services for interop-
erability. A real-world evaluation and large-scale simulations show that energy consumption is reduced significantly in the edge
application execution.

Keywords: Internet of Things, Multi-agent systems, Mobile agents, Representational state transfer, Embedded Web services

1. Introduction

Internet of Things (IoT) has emerged as the next-
generation global distributed application platform. IoT
applications rely on large-scale networks of hetero-
geneous things. IoT system architectures interconnect
networked things to applications and services, allow-
ing large-scale contributions of information about real-
world phenomena. Things have a sensing, processing,
actuation and communication capabilities that enable
interactions with both the physical and virtual environ-
ment with a diverse set of communication technolo-
gies. Deployments include stationary things, such as
wireless sensor networks (WSN), and mobile things,
such as sensor-equipped smartphones. To handle the
heterogeneity of participating things, infrastructure
and application components, standardized means for
interoperability are required. Currently, the Web tech-
nologies are the universal solution that provide stan-
dardized protocols and interfaces for communications.

Today, common IoT system architectures are based
on hierarchical organizations of system components

into layers [8], as illustrated in Figure 1. Applica-
tions at the top layer rely on cloud computing infras-
tructures that provide virtually unlimited data storage
and data analysis capabilities with global connectiv-
ity. In the middle, a network layer contains middle-
ware and network infrastructure components to han-
dle bi-directional communications, i.e. data traffic to
the cloud and application-specific system control to
the lower layers. At this layer, the components typi-
cally have computational power that can be harnessed
for example for edge computing [44], hence the layer
is also called edge layer. The lowest layer is a device
layer, where the data producing things, i.e. low-power
resource-constrained embedded devices and smart-
phones, operate.

This cloud-centric layered approach is well justi-
fied from the point-of-view of client applications and
end users. Layers hide the heterogeneity of technolo-
gies and complexities from the application developers
at the cloud-side. However, the cloud-based applica-
tion execution model is not without challenges [44,66].

This is the accepted version of the work.
The final publication is available at IOS Press through https://www.iospress.nl/journal/web-intelligence-and-agent-systems/



2 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

(a) VM-based edge computing architecture (b) Software agent (SA) and mobile agent (MA) use cases

Fig. 1. Distributed approaches for IoT system architectures.

Operational latencies and bandwidth requirements for
the core network increase with large-scale data up-
load to the infrastructure side. Data upload is resource
consuming for battery-operated and mobile devices,
let alone with slow and unreliable connections. IoT
systems are inherently dynamic as devices at the de-
vice layer join and leave the systems at will. More-
over, access to the system services can’t be guaran-
teed, which degrades the expected quality of service
for applications. Lastly, the data producing end devices
are largely considered external to the application exe-
cution. When the end devices are both data producers
and consumers, the inherent resource consuming data
round-trip to the cloud is to be justified.

Edge computing [44,66] proposes a partial solu-
tion to these challenges. Application-specific cloud re-
sources are leveraged to the resource-rich infrastruc-
ture devices at the logical edges of the IoT networks.
Existing edge computing solutions, e.g. [6,13,53,62]
rely on virtual machines (VM) to bring tailored ap-
plication resources to the edge through code mobil-
ity. VM-based applications are then executed in close
proximity to end users and devices, generally improv-
ing quality of service and providing high bandwidth
and low latency. See Figure 1a for the illustration of
the VM-based edge architecture. Furthermore, at the
device layer, opportunistic computing [11] partitions
application execution between the infrastructure com-
ponents and end devices. The end devices are pooled
as a dynamic application execution platform and their
resources, e.g. sensors, data and connections, are op-
portunistically shared. End device mobility can be ex-
ploited in information delivery in a dynamic network
topology.

In this paper, we extend IoT edge computing plat-
forms with mobile agents to distribute application ex-
ecution at the device layer as a complementary tech-
nology that further improves the energy efficiency in
an edge application execution. Mobile agents are soft-
ware agents that are capable of autonomously control-
ling their own execution and migration between de-
vices in distributed systems, based on on their obser-
vations and interactions on the operating environment
[32]. As a multi-agent system (MAS), a number of mo-
bile agents can cooperate and collaborate through the
sharing of their data and results. The novelty of this
work lies in the integration of mobile agents as a MAS
into IoT edge computing platforms. This approach en-
ables reactive and adaptive edge application execu-
tion as application-specific tasks autonomously move
with regard to the local resource availability in the
layered architecture horizontally and vertically. Ben-
efits are shown for the energy efficiency of resource-
constrained IoT devices and in distributed opportunis-
tic application execution based on sharing of infor-
mation between system components. Figure 1b illus-
trates software and mobile agent operations, that are
addressed later in this paper, on the different layers of
the same IoT system architecture.

The rest of paper is organized as follows. In Section
2, the current edge computing solutions are reviewed
and main challenges identified. In Section 3, it is dis-
cussed how mobile agents are beneficial for edge com-
puting at the device layer. In Section 4, use cases for
mobile agents in IoT edge computing are presented. A
Web-integrated software framework for mobile agents
[34] is presented for IoT edge computing in Section 5.
An illustrative IoT edge application based on mobile



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 3

agents as a MAS is evaluated in real-world settings in
Section 6 and the evaluation results discussed in Sec-
tion 7. Lastly, Section 8 concludes the contributions of
the paper.

2. Edge computing

When IoT systems scale up, challenges in the cloud-
based application model include dynamicity in the
system environment, latencies in application execu-
tion and increased core network load. Edge computing
aims to reduce application execution load and laten-
cies in end devices in two ways. First, by bringing ap-
plication resources, e.g. data and computational power,
into the network infrastructure close to the end devices.
Second, by enabling the end devices to offload heavy
computations to the edge layer for execution.

The architectural design in edge computing is ver-
tical, as illustrated in the Figure 1a. This vertical ap-
proach including the edge layer is beneficial for sep-
aration of concerns between layers and for abstract-
ing heterogeneous communication technologies and
device capabilities. As defined in [66], any resource-
rich device between the cloud and data sources can be
considered as an edge device. Typically, edge devices
include access points, routers, gateways, cellular base
stations and VM-based data centers. Generally, end de-
vice operation on the lower layer is controlled by edge
devices. The end devices upload data, offload tasks to
the edge or request application-specific resources to
their proximity. These resources are provided as VMs
that are either pushed by the cloud, pulled by an edge
device or invoked by synthesis at the edge. At the edge
layer, VMs may migrate between edge devices based
on user movement.

A number of edge computing solutions have been
proposed. In this Section, these solutions are outlined
and their main challenges identified.

2.1. Cloudlets

Cloudlets are self-managing VM-based “data cen-
ters in a box” in edge devices that have Local Area Net-
work (LAN) connections [62,63]. Cloudlet-based ap-
plications are pre-partitioned as VMs that form a dis-
tributed cloud infrastructure, where each VM shares
its resources to a few end users at a time. The deploy-
ment of cloudlets is open, e.g. bottom-up by business
owners or top-down by service providers. VMs can
be deployed in a number of ways: (1) VM migration,

where existing VM is suspended and transferred to a
cloudlet near the user, (2) VM handoff, i.e. the adap-
tive live migration of the memory state of a VM based
on user movement [21] and (3) VM synthesis, based
on a small VM overlay offloaded from the end device.
A base VM in the edge device takes care of cloudlet
platform setup, launches user VM’s and cleans up re-
sources after use. After VM-based application execu-
tion, only the results are uploaded to the cloud, which
reduces the core network load.

General challenges with cloudlets include resource
optimization in varying user and applications require-
ments, sharing VMs between applications, interactions
between cloudlets and the heterogeneity of cloudlet
platforms and VM technologies. Cloudlets are large in
size [62]: a VM overlay size is 100-200 MB and the
size of a full VM is in the range of gigabytes. This
makes VM migration highly dependent on the network
capability. Therefore, migration can take minutes, but
with VM handoff latencies can be reduced to tens of
seconds [21,62].

2.2. Mobile edge computing

Mobile edge computing (MEC) extends the role of
cellular network base stations, from forwarding net-
work traffic, to running services and storing content in
VM’s hosted in MEC servers [45,53]. A MEC server
aims to reduce end-to-end delays and the power con-
sumption of mobile applications by enabling offload-
ing, tailored local service execution and by content
downloading and caching. Locally generated content
can be shared through the MEC server within the con-
nected devices. Software updates can be rolled out to
the mobile devices from a MEC server.

Generally, challenges in MEC include the handling
of user mobility and offloading considerations, re-
silience and connectivity between MEC servers, se-
curity and privacy and service charging policies [53].
MEC framework and architectural specifications are
currently progressing towards standardization [45].

2.3. Fog computing

Fog computing provides a virtualized location-
aware distributed edge computing platform with con-
tent storage and networking services in between end
devices and cloud [6,25,74]. A fog platform consists
of dense deployment of fog nodes, i.e. edge devices
with a LAN connection, in a single-hop distance from
the end devices. Fog nodes are organized in a hierar-



4 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

chy, where first-tier nodes operate with short latencies
to collect and process data and control the end devices.
Second-tier nodes provide virtualization and reporting
with latencies up to minutes.

Challenges in fog computing include dynamic net-
work access and fog node utilization due to end de-
vice mobility. Stationary end devices offload their data
processing to the nearest fog node, but for mobile de-
vices, the VMs are required to migrate between fog
nodes. Other challenges include application-aware re-
source discovery, provisioning and planning VM mi-
gration while also trying to predict user movement and
minimize latencies. Maintaining quality-of-service de-
pends on the reliability of network connections and ca-
pacity with different workloads. Unified communica-
tion interfaces are needed for interoperability. Lastly,
security and privacy are general concerns in the dis-
tributed remote execution of applications.

2.4. Mobile cloud computing

Mobile cloud computing (MCC) allows mobile ap-
plication offloading to the edge, which provides on-
demand resources for application execution [13,15,
75]. With MCC, tasks can be partitioned between end
devices and cloud resources [15]. However, this re-
quires the preinstallation of application components
and predefined interactions between mobile end de-
vices and edge devices. Moreover, VM migration is
centrally controlled and heavy in terms of resource
consumption in mobile devices. VM offloading re-
quires careful consideration as VM transport can con-
sume more energy than local execution in the device
[15]. The benefits are seen in reduced application exe-
cution latences and increased scalability with location-
independent resource access.

Challenges are related to static and dynamic of-
floading, offloading profiling and scheduling, resource
monitoring and tracking, context-awareness and the
availability of remote services. Typically, mobile de-
vices suffer from low bandwidth connections, where
network characteristics often change due to mobil-
ity. Such a dynamic environment may require re-
offloading that is resource consuming.

2.5. Device layer distributed computing

In the device layer, large amounts of data are gen-
erated in real-time and uploaded to the cloud through
the network infrastructure. A cloud platform monitors
and controls the application execution and lower-layer

system component and device operation. This model
introduces challenges in system scalability, manage-
ment and data transportation on the core network [20].
Centralized cloud-based system resource control is
achieved in vertical top-down manner in closed appli-
cation silos, even when in a silo the application execu-
tion may be partitioned. In this model, the end devices
largely rely on vertical publish-subscribe protocols to
receive application-specific data [28]. The other way
around, vertical offloading reduces the application ex-
ecution load of the end devices, but does not address
data transport load from the data producing devices.

With in-network data processing at the device layer
and proximity based direct device-to-device commu-
nications [8,12,31,44,48,68], it becomes possible to
exploit the computational power of the end devices.
This extends the roles of the devices from data pro-
ducers to a dynamic set of data producers, consumers
and interaction mediators. Application-specific code
can be downloaded into the device for in-network pro-
cessing, that reduces the volume of transmitted data.
Now the end devices are invited into and configured at
runtime as an application-specific federated computa-
tional platform.

Distributed computing on the device layer focuses
on collaboration and partitioning of application exe-
cution load across the IoT architecture layers. Mist
computing [43,55] involves sensor and actuator de-
vices in the application-specific data processing. The
goal is to introduce proactivity with self- and context-
awareness for edge application execution. However,
the presented platforms are centrally controlled and
based on the service-oriented architecture paradigm
[43]. Other proposed solutions include mobile edge
clouds [14], MCC [15,20], femtoclouds [22] and mo-
bile fog [25]. Other tailored solutions, e.g. [18,58,69],
rely on centralized control to distribute application ex-
ecution to the edge devices and resource-rich end de-
vices. In [18], interactions are based on Web technolo-
gies. In [57], data is opportunistically preprocessed in
the mobile devices and uploaded to the edge based on
applications requirements. Whenever resources on the
participating mobile devices become limited, the com-
putations are offloaded to the edge. In [69] edge de-
vices independently schedule provisioning application
execution. Distinctively, in [1], mobile agents are pro-
posed for MCC for application partitioning between
cloud and mobile devices. However, the agents migrate
only on the cloud layer.

Mobile devices, as an opportunistic computing plat-
form, rely on infrastructureless spontaneous wire-



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 5

Table 1
Challenges in current IoT edge computing

Interoperability Standardized communication interfaces and protocols are needed to integrate heterogeneous components.
Resource sharing originates from the infrastructure-side and is based on utilization of the same virtualization
technology.

Energy efficiency Data upload energy efficiency with resource-constrained end devices is largely not addressed.

Latencies Data round-trip to the cloud should be avoided. Real-time applications benefit from minimal latencies, where
data upload may become a bottleneck.

Scalability Applications ideally utilize locally dynamically available resources as a shared infrastructure, where avail-
ability is not guaranteed. Application component mobility is considered at the edge layer.

Offloading Centrally controlled offloading introduces increased management load. Static offloading does not consider
runtime environment characteristics. Dynamic offloading requires context awareness.

less connections that are not reliable and suffer from
low bandwidth and high latencies [12]. The set of
participating devices on such a platform can’t be
predetermined in advance, may not be available at
the same time nor know each other. Therefore, ap-
plication execution is not guaranteed and latencies
need to be tolerated. These issues can be controlled
with increased application management load, where
context- and location-awareness provides knowledge
of application-specific resource availability. The in-
tegrating technology for participating devices is for
example peer-to-peer networks (P2P) [15] that oper-
ate without fixed infrastructure in a dynamic topol-
ogy. Challenges in opportunistic computing include
resource availability and the discovery of resources
and services. The benefits are that opportunistic de-
ployments are highly scalable and coverage can be ex-
tended to areas without fixed infrastructure. However,
incentives for opportunistic participation are needed.

Table 1 presents a summary of the main challenges
in IoT edge computing, as discussed in this Section.

3. Edge computing with mobile agents

Generally in IoT, distributing the centralized vertical
control, partitioning application execution, enabling
horizontal interoperability and handling resource dy-
namicity pave way for software agents and MAS in
IoT [8,48]. Software agents operate well on open and
dynamic systems, where a priori information availabil-
ity is not known, a number of participating components
is large and new functionality needs to be introduced
at runtime [16,17,76]. Resource-aware MAS provides
building blocks for smart operation of system compo-
nents regardless of their placement and functionality,
where in large-scale a combination of different tech-
nologies are integrated into an IoT platform, e.g. as
in hybrid intelligence systems [76]. Operation of such

systems is difficult to optimize at design time [46,76].
In IoT, these different technologies can complement
each other in different layers of the system architec-
ture, e.g. for data analysis applications.

Mobile agents, as a code mobility paradigm, are ca-
pable of controlling their own execution and migration
between networked components to execute their en-
capsulated programs. Already two decades ago, mo-
bile agents were anticipated to bring intelligence and
provide benefits in distributed systems [4,26,32]. Mo-
bile agents virtualize the application execution into
distributed and loosely coupled components that mi-
grate to relocate application execution with regard
to selected application-specific metrics. With mobile
agents, it is possible to inject application-specific
tasks, such as data processing at the data source, into
the system at runtime. Mobile agents provide their re-
sults as local services for other system components,
including other agents as a MAS. Mobile agents en-
capsulate device heterogeneity with a common inter-
face for dynamic interoperability. As software agents,
mobile agents’ operations are autonomous and asyn-
chronous and they have the capabilities to observe their
environment and react to changes dynamically and
adapt their behavior to the changes. Once injected into
the system, there is no need for continuous connection
between an owner and the agent, where the owner does
not need to control agent operations anymore. With
these capabilities, This mobility increases robustness
and fault tolerance in distributed application execution.

In this work, the motivation for mobile agent tech-
nology in IoT edge computing is to enable autonomous
distributed application execution with the opportunis-
tic resources at the device layer. With in-network data
processing, mobile agents can address the energy ef-
ficiency of the host devices, and simultaneously op-
timize resource usage in a MAS with regard to lo-
cal network conditions. Here, mobile agents also im-



6 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

plement a mist computing platform [55] by bring-
ing agent-based awareness, interactions, adaptivity and
proactivity into the distributed execution of the edge
application. Moreover, with mobile agents the execu-
tion involves only the devices that directly contribute
their data. Mobile agents are considered a complemen-
tary technology for the existing edge computing plat-
forms that bring the agent capabilities into the end
device operation, based on their capabilities. As dis-
cussed later, the standardized means of heterogeneous
system component interoperability are provided with
Web-integrated mobile agent software framework.

When mobile agents are included in edge applica-
tion design and implementation, the following agent
capabilities are enabled in edge application execution:

Mobile code. Mobile agents relocate, both verti-
cally and horizontally, the application execution load.
Agents share their tasks, data and results for horizon-
tally distributed application execution.

Decentralized operation. Autonomy and asyn-
chrony enable mobile agents to execute their tasks
without centralized control, based on their individual
decision-making capabilities, and without continuous
connectivity to the edge. Agents can interact with other
system components as required in their tasks.

Adaptive operation. Mobile agents are able to ob-
serve and react to local resource availability and dy-
namic network conditions. With migration, the agents’
task can be reactively relocated to continue applica-
tion execution in other devices, e.g. with better net-
work connectivity.

Reducing network load. Communication energy
can be saved when only relevant data, processed by
agents at the data source, is transmitted in the system.
As an example, agent’s tasks may include data filter-
ing, event detection and aggregation.

Lightweight migration. In comparison with VM
migration, mobile agents are significantly smaller soft-
ware components to transfer. Minimally, only the task
state is transferred.

Security and privacy. Mobile agents are executed
in encapsulated execution environments, sandboxes or
VM’s, which has full control of the agents’ operations
and interactions. Mobile agents contribute to privacy
by sharing only the application-specific data.

In IoT, hardware limitations of resource-constrained
devices introduce challenges for their utilization as
mobile agent hosts. This issue can be addressed with
optimized agent execution environments and inter-
action protocols, e.g [34,35,36,37,38] that propose
an IoT software framework for mobile agents based

on standardized Web technologies. The framework is
based on standardized IETF Constrained RESTful En-
vironments (CoRE) framework1 that provides Repre-
sentational State Transfer (REST) architectural prin-
ciples for agent-based application design and Con-
strained Application Protocol2 (CoAP) for communi-
cations. In addition, the work in [34,38] provides agent
platforms for resource-constrained stationary and mo-
bile IoT devices. A key technology in the framework
realization is embedded Web services [65] that in-
tegrate resource-constrained embedded devices, e.g.
with 8-bit microcontrollers (MCU), into the IoT.

Architectures and use cases for IoT systems, that
utilize software agents, have been presented in [2,
3,7,16,17,19,23,24,27,29,33,47,51,61,64,71]. As pre-
sented, an agent-based IoT architecture is multi-
layered, where the agents operate on different roles
on each layer for the management, control, coordina-
tion and organization of system components and to
connect components into the system. See the Figure
1b for illustration. Software agents represent and pro-
vide reasoning and interaction capabilities for things
in [30,50].

Related to the utilized mobile agent software frame-
work [34], recent mobile agent solutions based on the
Web technologies include [49,70]. Agents are created
as HTML documents, but lack autonomous migration
and state transfer capabilities. However, a benefit is
that HTML documents also provide means to control
and visualize the agent. Existing mobile agent frame-
works and platforms are mainly based on Java, such
as the JADE mobile agent framework [5], and rely
on standardized service-oriented Web technologies.
The framework in [34] is currently the only REST-
complying mobile agent software framework.

4. Use cases for mobile agents in edge computing

In this section, use cases for mobile agents in IoT
edge computing are presented, based on the tradi-
tional use cases discussed in the literature, e.g. [32,
26]. Comparison of edge computing platforms with-
out agents with mobile agent based application ex-
ecution is shown in Table 2. As discussed, mobile
agents are considered as a complementary technology
to extend edge application execution into the resource-

1https://datatracker.ietf.org/wg/core/
charter/

2https://tools.ietf.org/html/rfc7252



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 7

Table 2
Edge computing vs. mobile agent based distributed application execution.

Edge computing platforms Mobile agents
Computation and data offloading Local resource optimization for application execution in end devices

Centrally coordinated vertical interactions Decentralized autonomous operation with both horizontal and vertical interac-
tions

VMs do not interact with the environment Agents observe their environment and react to changes autonomously

VM migration centrally controlled in the infrastructure,
significant size reductions needed

Lightweight autonomous migration

High bandwidth and network availability requirements Adapts interactions to local network characteristics

VMs isolated for security with access rights management Agent execution and interactions controlled by agent platform

constrained end devices. A software framework that
follows standardized Web technologies provides meth-
ods for interoperability with existing IoT systems.

4.1. Enabling interoperability

IoT deployments are typically based on a hetero-
geneous set of devices and other application compo-
nents that operate with a set of different communica-
tion technologies. To maximize interoperability, stan-
dardized communication protocols and interfaces are
required. Here, Web technologies introduce the benefit
of standardized integration into existing Internet.

Web-based interoperability requires that IoT devices
are simultaneously both clients and servers for each
other in a flat system architecture. This is resource-
consuming for the constrained devices [65]. Such de-
vices typically also lack capabilities to operate a full-
fledged Web server that complies with full HTTP pro-
tocol specifications. Moreover, the interactions of such
devices are typically short-lived and asynchronous
over lossy networks, where the devices are optimized
for low power consumption [65]. A solution to these
challenges has been proposed with the CoRE frame-
work and CoAP. CoAP is designed with low protocol
overhead and efficient payload encoding. The archi-
tectural model of CoAP is based on REST and it has
largely the same semantics as HTTP.

In comparison with the existing edge computing
solutions, generally the application-specific VMs are
self-contained and lack interaction capabilities. For
MCC, sharing data locally with additional devices ex-
tends the application execution capabilities, but the de-
vices have limited energy availability or network con-
nectivity [15]. In fog computing, nodes are progres-
sively deployed to the infrastructure and try to proac-
tively predict information demand to reduce cloud ac-
cess. However, the nodes do not communicate directly
with each other, but only with nodes at the above tier.

Mobile agents are inherently heterogeneous [32], as
their architecture and operations are communication
technology independent. Mobile agents expose the re-
sources of their hosts, determine how the devices in-
teract and how resources are shared. A traditional use
case for mobile agents has been to provide new func-
tionality dynamically into the host devices, for exam-
ple to introduce a new communication protocol. When
a host device is a gateway, interoperability is facili-
tated beyond the current Internet to resources in dis-
parate non-IP networks. In the Section 5, it is presented
how the CoRE framework is extended to include mo-
bile agents in IoT systems in standardized way to build
Web-integrated distributed applications.

4.2. Scalability

In IoT, the centralized system management solu-
tions reach their bounds in large-scale deployments,
where it is difficult for a centralized mechanism to
adapt to environmental changes in real-time across
the layers. In IoT, no single component has the capa-
bilities to handle the complete real-time information
about the whole system operational state. Fluctuating
resource availability and communication latencies re-
duce the system performance and quality of service.
Fog computing addresses scalability by deploying a
large number of fog nodes into the infrastructure[25].
These fog deployments are expensive to maintain, but
the approach is justified when the aim is increased spa-
tial coverage. MEC supports scalability by performing
management actions at the base stations in the edge.

Mobile agents have the benefit of autonomous
decision-making based on local information, e.g. user
mobility, that enables to efficiently operate on oppor-
tunistic networks, discovering and utilizing resources
through migration and cooperation in a MAS. Loose
coupling supports different ways for resource utiliza-
tion. With the migration capability, mobile agents



8 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

transfer application components asynchronously, which
improves scalability as connections between compo-
nents are not needed until results are available. In addi-
tion, mobile agents can clone themselves to distribute
task execution load and extend application coverage,
for example to provide on-demand services in location.

Furthermore, a mobile agent based MAS, executed
horizontally at the end devices, distributes the appli-
cation execution and communication load. A MAS
provides a platform for cooperation and collabora-
tion based on agent interactions protocols and shar-
ing of results. Through the decision-making capabili-
ties and interactions of individual agents, MAS adapts
its behavior in relation to changes system environment,
resource availability, application requirements or se-
lected global measure, such as energy efficiency [40].
MAS makes it possible to logically structure resources
for applications, despite of the physical structure of the
system or network. Furthermore, mobile agents as a
MAS adaptively execute multiple applications concur-
rently in the same set of devices.

4.3. Reducing communication load and latencies

Generally in IoT edge computing, data processing
is offloaded to the infrastructure side at the edge. This
reduces the computational load in the participating
end devices, but increases the communication energy
consumption. For example, VM migration can con-
sume significant resources [62]. For the core network,
data processing at the edge reduces large-scale data
transmission volume. Fog architectures facilitate hier-
archies between edge nodes and the cloud, where each
tier has increased capabilities for data processing [6].
However, a challenge is how to to accommodate dif-
ferent workloads in the nodes to optimize system be-
havior [74]. The central coordination mechanisms in
edge computing platforms create communication over-
head, which an agent-based operation can improve,
e.g. [1]. However, the coordination itself may not ad-
dress application-specific data transmission overheads
in the device layer. Application execution load is re-
lated to the amount of information transmitted back to
the end device for the application execution.

Both reducing network load and communication
latencies with in-network data processing are well-
known benefits of mobile agents [32,26]. In general,
large volumes of data can be energy efficiently pro-
cessed by agents at the data producing devices and
later aggregated to avoid communication overhead in
the layers. Similarly like VMs, mobile agents are de-

signed for application-specific data processing tasks
with different granularity of operation. Each agent in
its task execution is capable of reacting and adapting
to changes in the system, i.e. network connectivity and
local resource availability with regard to the applica-
tion requirements. As an example, simple decision-
making regarding transmitted data size in comparison
with agent migration and execution overhead already
reduces the device energy consumption [9,40]. With
mobile agents, both top-down and bottom-up applica-
tion distribution models are possible. Examples of the
bottom-up approach include autonomous operation of
user-specific tasks in a dynamic set of IoT system com-
ponents [39]. Users can interact locally with the envi-
ronment through their mobile agents without enforced
data round-trip to the cloud, which increases real-time
responsiveness.

4.4. Network connectivity

Due to the opportunistic nature of IoT networks, the
availability of resources and services can’t be guaran-
teed. End devices join and part systems any time due to
connection issues and network bandwidth may become
insufficient due to high utilization. Edge device de-
ployments are commonly location dependent. Fog ad-
dresses networking issues with the dense deployment
of edge nodes that provide high resource availability,
bandwidth and LAN connections. Fog nodes may op-
erate without LAN connectivity, which is required for
VM migration.

Mobile agents have the benefit of autonomous lo-
cal operation, even in an isolated network segments
without edge connectivity, where the connected system
components still can continue to utilize the results of
agents’ operations. In unfavorable network conditions,
mobile agents adapt their data processing to handle dif-
ferent network characteristics, e.g. less data is trans-
mitted with low bandwidth or an agent can migrate to
devices with better connectivity. Asynchronous opera-
tion and migration increases robustness and fault tol-
erance in application execution.

4.5. Data privacy

Generally, data storage in the cloud requires man-
agement and may compromise privacy as data own-
ership is inherently changed. A particular concern is
maintaining data privacy for applications that collect
personal data about the users. Fog computing relies on



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 9

public-key based authentication on the infrastructure,
but data ownership is an issue [74].

Mobile agents indirectly address privacy as data is
processed at the source. Moreover, agents can negoti-
ate with the application at hand considering the privacy
constraints set by the user, e.g. in mobile crowdsensing
[40]. At best, mobile agents expose only a set of data
features based on a consent, where the data ownership
never changes.

5. Enabling mobile agents for edge computing

In this section, the mobile agent software frame-
work in [34,35,37,40] is presented for IoT edge com-
puting. The framework is based on embedded Web ser-
vices in the CoRE framework, where CoAP is utilized
as a communication protocol. The framework follows
the principles of resource-oriented architectures [60].
Generally, REST is found more feasible for ad hoc
integration scenarios with lightweight message for-
mats and message semantics than service-oriented ar-
chitecture based solutions [52]. Stateless CoAP based
on UDP is found more energy efficient than TCP
based HTTP for resource-constrained embedded de-
vices [10,65,73].

Generally, everything that has value for the appli-
cations in the system is exposed as resources and ac-
cessed with a RESTful uniform interface [34]. This
consideration enables to create Web applications or
services seamlessly within the CoRE framework ser-
vices. The following resources of interest are identi-
fied for the mobile agent framework: (1) IoT end de-
vices as agent platforms and their components, such as
sensors, and generated data, (2) infrastructure compo-
nents, such as edge devices and external Web services,
and (3) mobile agents and their task results.

HTTP methods realize CRUD (create, read, update
and delete) functionality in the mobile agent frame-
work. With REST, the semantics of HTTP and CoAP
methods and their response codes are universally
known. URIs identify the target resources. These com-
ponents are then combined to form an HTTP or CoAP
request, of which semantics are universally known by
a system component or an agent. The method GET
retrieves a resource representations, e.g. sensor data
or the agent state. The method POST enables mul-
tiple functionality: (1) to create a new resource, e.g.
through agent migration, and (2) to control and actu-
ate resources, e.g. a physical sensor in a device. The
method DELETE removes resources from the frame-

Fig. 2. IoT mobile agent software framework.

work. CoAP provides the same methods with slightly
different semantics [65]. Now, with this RESTful uni-
fied interface, the system component interactions are
enabled with standardized Web interfaces. Addition-
ally, seamless access to agent resources is provided as
with any other Web resource and agent-based interac-
tions with any system resource are enabled through the
same interface.

See Figure 2 for the illustration of the framework
architecture and required software components. At the
device layer, mobile and stationary devices that com-
municate with either HTTP or CoAP, can be integrated
into the framework through the distributed resource di-
rectory (DRD) [41] that provides resource discovery
and runs in a P2P network. Devices register their re-
sources into the DRD to join the system, update their
resource descriptions when changes occur and finally
unregister resources when leaving the system. When a
mobile agent is hosted in a device, it is registered to
the DRD as a resource for the device and unregistered
after migration away from the device. The DRD in-
terface is described in detail in [41]. A proxy compo-
nent at the edge layer integrates non-IP devices, such
as WSN deployments, into the framework, enabling bi-
directional interactions with the exposed resources in
the non-IP based network[34]. In the framework, mo-
bile agents are transmitted as CoAP messages or as
JavaScript Object Notation (JSON) payloads in HTTP
requests, as described in detail in [34]. Lastly, at the
cloud layer, applications can perform runtime resource
lookups through the DRD, as in [40] and interconnect
disparate resources through the proxy.



10 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

Table 3
Generic mobile agent architecture that complies with the REST principles

Agent Agent resource name (URI)

Code Agent task code and language identifier
URL of the remote code resource

Resource Local: Resources in the host devices and targets for migration
Remote: Remote resources that are retrieved in each iteration of the task
Static: Remote resources that retrieved once during the agent lifetime

State Task results that are exposed as the agent state
Local variables used in the task execution

Metadata Agent execution metrics and other metadata

5.1. Mobile agent architecture

The mobile agent architecture [34] utilized within
the framework is shown Table 3. The underlying idea
is that agents utilize its listed resources as the represen-
tation of its operational environment. For example, an
agent reads the sensor values in a device and actuates
its components or decides to migrate to another device.
This enables simple reactive behavior for the mobile
agent, which can be executed in an agent platform in a
constrained IoT device by taking into account its hard-
ware capabilities. Main features of the architecture are
described below. Details can be found in [34,37].

An agent name is the given resource name, e.g. an
URI in REST. The URI is also registered into the DRD
to provide a unique identifier to address and locate the
agent in the system. The architecture enables to imple-
ment the agent program, i.e. its task code, in several
programming languages that target specific platforms.
The program, or its reference can be included in the
agent with a specific language identifier, e.g. “python”.
Additional benefit of this approach is that through the
agent URI and identifier, the agent task code can be
retrieved remotely. This way, the architecture supports
agents in heterogeneous platforms. Moreover, this al-
lows to minimizing the agent size as a CoAP message.

The agent utilizes three types of system resources.
“Local” resources are the resources that the hosting
devices expose. These resources also define the mi-
gration targets for the agents. “Remote” resources are
external to the current host, i.e. hosted in other de-
vices or external Web services. These resources are re-
trieved in each iteration of the agent task execution.
“Static” resources are remote resources, which value
does not change, e.g. historical data from a Web ser-
vice. These resources need to be retrieved only once
during the agent lifetime. The different resource types
can be modified by the agent in runtime that enables
adaptive autonomous operation. For example, when a

host device disconnects its URI can be removed. By
describing the resources through URIs, loose coupling
and dynamic binding are facilitated in a dynamic IoT
system environment. For runtime lookup, the resource
URIs can be resolved through the DRD.

The state segment exposes the agent task results, i.e.
agent program outputs, to the system as a resource that
represents the agent. Now, other system components
request the agent results through its URI, where the
contents of the state segment are returned. The optional
metadata segment includes information related to the
agent execution, such as execution metrics or historical
traces of the agent migration.

Mobile agent platforms for resource-constrained
IoT devices, such as 8-bit MCUs (namely ATmega mi-
crocontrollers) and Android smartphones, have been
developed in [34,40]. The platforms include an HTTP
or CoAP server to provide the uniform interface for
interactions and to access host device resources. The
embedded device platforms handle mobile agents as
CoAP messages, where the complete mapping of the
agent architecture into a CoAP message is presented
in [34]. Generally, each element in the agent archi-
tecture has its corresponding CoAP message option.
The agent state is included in the message as a pay-
load. In the embedded platform, the agent programs
are precompiled into the native machine language of
the device due to limited capabilities to handle pro-
grams written in general programming languages such
as the C programming languages. The Android plat-
form for mobile devices runs agent programs written
in either JavaScript or Python that are executed with
a 3rd party scripting engine. Agents migrate as JSON
data structures in the payload of HTTP requests.



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 11

6. Evaluation

A well-known use case for mobile agents is in-
network data processing that contributes towards less
communication energy consumption by reducing the
amount of transmitted data. For example with WSN,
less data means less time the transceiver needs to
spend transmitting, which gives more time to keep
the transceiver in sleep mode [56]. Moreover, in [67],
agents can be used to control the sleep cycle of a WSN
node. The energy consumption of data producing end
devices is also a concern in IoT applications in gen-
eral, therefore these two methods are adopted in this
work to evaluate a mobile agent-based edge applica-
tion. The application is designed as a MAS based on
mobile agents, where a set of mobile agents operate
on stationary WSN nodes and an other set of mobile
agents operate on smartphones that additionally oper-
ate as Internet gateways. The application is illustrated
in Figure 3 that additionally shows the required system
and agent framework components, i.e. the DRD and a
Web application that injects the mobile agents into the
system and receives the results of agents’ tasks.

The evaluation was conducted by first collecting
data of energy consumption in the WSN node and
smartphone without and with mobile agents. WSN
node energy consumption data was collected in real-
world experiments with a Monsoon PowerMonitor de-
vice 3. Smartphone energy consumption data is based
on results in [40,59]. Second, based on the collected
data, large-scale simulations are conducted to demon-
strate the effects of mobile agent-based edge applica-
tion execution in comparison with straighforward data
upload to the edge layer from the same system setup.

As the WSN nodes, Arduino Mega2560 boards
are used as mobile agent platforms that communicate
with CoAP using XBee Series 2 radios in API mode.
This setup was selected to demonstrate the integra-
tion of resource-constrained devices communicating
with non-IP protocols into an IoT system. Although
this setup can be considered unoptimal for the nodes,
as discussed later, it corresponds to a real-world IoT
scenario with a set of different devices having differ-
ent hardware components. Communication power con-
sumption parameters were collected with the node up-
loading data items of different sizes into the edge layer
and executing a single mobile agent. Each test run for
two minutes, where the results show the average values

3https://www.msoon.com/

Fig. 3. Evaluated edge application based on mobile agents (MA).

of each test run. For uploading, two upload intervals
where tested: 1s and 10s. Latencies of data transmis-
sion varied from 100ms to 1s with different payloads.
For larger playloads the XBee radios require multiple
frame transmission to send all the data.

The energy consumption results are shown in Fig-
ures 4a and 4b. A significant factor in energy con-
sumption was the high idle power of the Arduino
board, about 250mW and including XBee transceiver
310mW. The maximum measured power consump-
tion was 384mW. Between the selected message sizes,
from 25 to 1015 bytes, the power consumption is re-
duced about 15% when the device idle energy con-
sumption is reduced from the measured values. With
50% duty cycling the transceiver, the communication
energy is correspondingly reduced about 50%. This re-
sult suggests that duty cycling can be significantly ben-
eficial for energy consumption as suggested in [67].
However, the setup with XBee transceivers does not
allow smaller duty cycle than 50%, as reconnecting
Xbee transceivers to the network takes about 5s after a
sleep period. As shown in Figure 4c, mobile agent mi-
gration, agent program execution and one remote re-
quest for its state introduced overhead (1-2%) to the
total device power consumption. With regard to com-
munication energy consumption solely, this overhead
was about 7% and with a remote request about 10% of
the total communication energy consumption.

The smartphone (Samsung Galaxy S3, Android 4.1)
power consumption parameters are based on exper-
iments conducted in [40] and as described in [59].
The results are shown in Figure 5. The mobile devices
run the Android agent platform and communicate with
HTTP atop Wi-Fi [34]. For the simulation, the mo-
bile devices are equipped with additional XBee radios,
enabling operation as Internet gateway for the WSN.



12 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

(a) Data upload energy consumption (b) Amount of uploaded data

(c) Mobile agent execution overhead

Fig. 4. WSN node energy consumption parameters.

(a) Energy consumption parameters (b) Amount of uploaded data

Fig. 5. Mobile device energy consumption parameters.



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 13

Table 4
Simulation parameters

Global
Time 600 rounds, one round is one second

Mobile devices
Number of nodes 20
Communication interface Wi-Fi, unlimited bandwidth, uniform coverage, single-hop distance
Power consumption Wi-Fi : 164mW, XBee: 55mW

Agent EE and sensor: 22mW
Data transmission power 5mW per KB

WSN
Number of nodes 100
Communication interface XBee Series 2, unlimited bandwidth, uniform coverage, single-hop distance
Power consumption Device, sensor and radio: 310mW

Agent EE and sensor: 1mW
Data transmission power 2-6mW per message, CoAP message size 25-1015B

Table 5
Simulated edge computing scenarios

No. Description
E1.1 All devices upload all raw data to the edge
E1.2 Same as above, WSN node transceivers 50% duty cycling

E2 Mobile agent based data processing in all devices, data size reduced to 10%

E3.1 Mobile agent based data processing in all devices, data size reduced to 10%, WSN node transceivers 50% duty cycling
E3.2 Same as above, but data size not reduced

E4 Mobile agent based data processing in all devices, processed data in WSN nodes are retrieved by agents in mobile devices

The combined data contains power consumption over-
head of the agent platform execution and HTTP and
CoAP communications for the hosted mobile agents.
The XBee radio increases the device power consump-
tion about 25%, with the power consumption data used
from the WSN experiment. For data upload with data
item sizes up to 1kB, there are no significant increase
in Wi-Fi communication power consumption.

6.1. Simulation results

With the simulation parameters collected in the pre-
vious Section, a set of simulations were conducted.
NetLogo [72] MAS modeling environment was used
to run the simulations. The utilized simulation param-
eters are shown in Table 4.

Table 5 lists the simulated scenarios that were de-
signed each with 100 WSN nodes and 20 mobile de-
vices. The first scenarios E1.1 and E1.2 are baseline
scenarios, where WSN nodes and mobile devices up-
load all raw to the edge, first without duty cycling
and then with 50% duty cycling. This sleep cycle is
based on the XBee transceiver sleeping 5s and then

reconnecting 5s, where the data upload interval be-
comes 10s. Scenario E2 demonstrates the effect of mo-
bile agent based in-network data processing in both
types of devices. Scenarios E3.1 and E3.2 demonstrate
the mobile agent based in-network data processing and
controlling the transceiver duty cycling in a MAS oper-
ating on a set of heterogeneous devices. The scenarios
are particularly designed for the two extremes of the
in-network data processing, as in scenario E3.1 90%
of the data is removed and in scenario E3.2 no data
is removed. The scenario E3.2 enables to observe the
mobile agent execution overhead in the devices. Sce-
nario E4 demonstrates the edge application MAS oper-
ation (Figure 3), where the agents in different devices
interact with each other. The smartphone mobile agent
first retrieves the task results of mobile agents from
five WSN nodes. The node agents reduce the transmit-
ted data size from 1015B to 25B. Then the smartphone
mobile agent reduces the retrieved data size further
90% and uploads one final data item to the edge. The
smartphone mobile agent that is utilized in the simula-
tions is shown in Table 6. The mobile agent task code
is written in Python.



14 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

Table 6
The smartphone mobile agent used in evaluation.

Agent URI light

Code result = light[0:len(light)/10];

Resource Local: light = coap://node/light;
Remote: light = coap://remote_node/light;

State result

(a) Energy consumption (b) Transmitted data

Fig. 6. Simulated application scenarios with the observed energy consumption and transmitted data reduction.

The simulation results, as shown in Figure 6, show
that with duty cycling (scenario E1.2), the total ap-
plication energy consumption can be reduced 55% in
comparison with the baseline scenario E1.1. In sce-
nario E2, in-network data processing results in 15% re-
duction in the energy consumption, even when the to-
tal transmitted data size is reduced 97%. The results of
scenarios E3.1 and E3.2 indicate that mobile agent op-
erations, i.e. combined data processing and transceiver
control, yield the best results with up to 66% reduc-
tion in the energy consumption. When comparing sce-
narios E1.2. and E3.2, it can be observed that the total
mobile agent execution overhead was about 1%, where
the same amount of data is transmitted. The results of
scenario E4 show the overhead of mobile agent inter-
actions when using the external XBee transceiver in
the smartphone. With this design, the energy consump-
tion is reduced 51% in comparison with the baseline
scenario E1.1. It can also be observed that duty cycling
alone (scenario E1.2) is slightly more effective in re-
ducing the total energy consumption while transmit-
ting all data.

7. Discussion

The presented evaluation studied an edge comput-
ing application, where mobile agents operated in a
MAS on a set heterogeneous resource-constrained
IoT devices. This application scenario was selected to
demonstrate the energy efficiency of decentralized and
autonomous agent-based control of end device oper-
ation at the device layer in IoT edge computing. The
results indicate that significant reduction in the de-
vice energy consumption can be achieved with the pre-
sented application design. Although the presented re-
sults are application-specific, and many other MAS
configurations and IoT device hardware configurations
can be found, the evaluated scenario was designed to
be unoptimal for the resource-constrained devices and
still benefits are shown. An open question in large-
scale is the optimal level of agent-based functionality
needed in such an application, where the host devices
have different hardware capabilities and agents can
be introduced in all layers of the system architecture.
However, the focus of this paper is to present a method
of optimizing the agent operations at the device layer.



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 15

For the WSN nodes, the amount of data size reduc-
tion achieved with in-network data processing was ar-
bitrarily chosen to demonstrate two extremes: almost
all data removed and no reduction at all. The effect of
data size reduction by mobile agents to the energy con-
sumption is well-known, e.g for WSN nodes [9,32,56]
and recently for mobile devices [40]. The results show
that mobile agent-based in-network data processing is
a feasible option even for the resource-constrained de-
vices, when significant amounts of data is to be trans-
ferred. Both communication energy consumption and
the following data transfer time can be reduced. How-
ever, mobile agent execution and migration overheads
needs to be taken into account, also as shown for mo-
bile devices in [40]. The available network bandwidth
affects this result, e.g. with limited bandwidth the ben-
efit of data processing amplifies as the amount of trans-
mitted data can be optimized. Related to the duty cy-
cling, less data means that the transceiver spends less
time in sending the data [56]. Mobile agent execu-
tion overhead for the resource-constrained WSN nodes
was insignificant for a simple data processing task, but
the number of agent-based interactions should be opti-
mized in a MAS.

Duty cycling alone can be an efficient method of
reducing energy consumption as shown in the results.
The time to keep the transceiver on should be mini-
mized, which is a method commonly used with real-
world WSN deployments. The operation of such nodes
is controlled centrally by a sink node, an application
component at the edge or a software agent, e.g. [67].
The method proposed in this paper is that application-
specific mobile agents are in control of the participat-
ing device operation and not only have access to the
device data. This approach has drawbacks, as the inter-
action possibilities of the nodes are limited while the
transceiver is sleeping, but in reality this limitation is
widely accepted in WSN when it is expected that the
nodes only upload their data to the sink node. This sce-
nario becomes a MAS interaction issue when a num-
ber of agents negotiate resource control for their appli-
cations.

The non-IP based communications added another
source of difficulty into the evaluation application re-
alization and increased energy consumption was ob-
served due to the second radio in mobile devices. Nev-
ertheless, this setup corresponds to a real-world IoT
application scenario that requires gateways for Inter-
net connectivity. The XBee protocol imposes severe
limitations to the node communications, such as low
throughput and small message frame size [54]. The

available bandwidth was much less than as presented
in the related work on IoT edge computing. As dis-
cussed in [54], the maximum measured bandwidth of
XBee is 5.4kB/s, thus XBee is suitable technology
only for low datarate applications with no strict real-
time requirements.

The evaluation results of existing edge computing
platforms largely concern application execution laten-
cies, as it is the identified key benefit in IoT edge
computing. Partitioning applications into cloudlets is
shown to reduce execution latencies and energy con-
sumption in mobile devices [21]. With regard to ap-
plication design, positioning a large number of small
cloudlets at the edge are is better than larger cloudlets
in the network devices towards the cloud. However,
this increases the system management costs [63]. The
communication latencies and VM migration times are
reported in the range of tens of seconds up to min-
utes with different placements of the VM and different
available network bandwidths [62,6,21]. With mobile
edge clouds, device clusters with distributed datasets
and minimal interactions outperform task offloading to
cloud with regard to latency [14]. In comparison, re-
sults in this paper show that small-sized mobile agents
can migrate as a single optimized message. Similar re-
sults were obtained in [58], where container based ap-
plication code was executed on Raspberry PI single-
board computers but with execution latencies up to 7
seconds. The DRD was evaluated in [42], where it was
shown that resource lookup latencies are below one
second.

Overall, mobile agents extend the edge comput-
ing platform towards decentralized autonomous and
asynchronous application execution, with the addi-
tional benefit of energy efficiency that is particularly
shown in the operations on IoT device layer. Mobile
agents have significantly smaller communication, mi-
gration and application execution requirements than
VM-based code mobility can achieve. The evalua-
tion considered applications with significant amount of
data to be transmitted and the results are supported by
previous research [9,56]. Security-wise both VM and
mobile agents are remote code that is executed on host
computers at risk.

To generalize the presented results, it would be dif-
ficult to take into account all the different communi-
cation technologies, device hardware configurations,
network characteristics and varying application con-
figurations in the context of IoT. Even when an opti-
mization algorithm can be provided, it is often tailored
for the particular application and generalization can be



16 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

difficult due to conflicting sets of parameters. In [46], a
theoretical framework is proposed that enable to assess
distributed system deployments and find the most ap-
propriate deployment architecture, based on monitor-
ing of multiple operational factors in runtime, e.g. net-
work parameters, quality of service and usage of the
provided functionality. In this paper, simplified analy-
sis was conducted based on the energy consumption of
the transmitted data, but considering other network pa-
rameters, environment characteristics and application
requirements remain a future work.

With regard to software agents, a MAS can be de-
signed in a number of ways that each targets the
same or different aspects in application execution. In
[34,37,38], straightforward metrics is presented that
can be used to evaluate both the MAS design and agent
architecture from the resource usage point of view. The
type of a resource, i.e. local or remote, and its size can
be used to approximate the energy consumption of ac-
cessing the resource. With this information, it is pos-
sible to address different MAS designs, e.g. where the
agents should be placed and how the resources are de-
fined in the agent. Moreover, in the presented agent ar-
chitecture, it is possible to redefine the resource types
by the agent, which enables to dynamically optimize
the resource usage. Lastly, from the agent-based IoT
application design and implementation perspective, its
is needed that mobile agent platforms are readily avail-
able for a number of common IoT device platforms.
The presented mobile agent framework, that utilizes
well-known REST principles for the application de-
sign, and the mobile agent platforms for well-known
resource-constrained device platforms are steps to-
wards this goal.

8. Conclusion

The current edge computing solutions focus on ver-
tical offloading of data or computational tasks from
resource-constrained end devices to the resource-rich
edge devices. The dynamic nature of IoT calls for the
reactive and adaptive behavior of system components,
which is facilitated with mobile agents in this work.
Adaptivity and self- and context-awareness are also
desired features in mist computing platforms. Mobile
agents are capable of autonomous operation to dis-
tribute data processing tasks into the heterogeneous set
of resource-constrained IoT devices. The agent-based
sharing of information in a MAS promotes local hor-
izontal execution for applications within the end de-

vices without the need for edge connectivity. In gen-
eral, agent mobility increases energy efficiency, ro-
bustness and fault tolerance in distributed edge appli-
cation execution.

In this work, the mobile agent based in-network data
processing and operational control of data producing
devices are shown in real-world to reduce edge appli-
cation energy consumption significantly for both sta-
tionary and mobile resource-constrained IoT devices.
Mobile agents in the devices operate as a MAS in the
presented unfavourable system setup with additional
hardware components. Nevertheless, the amount of
transmitted data can be significantly decreased, which
contributes towards energy efficiency due to reduced
data transmission latencies and increased data utility
with local sharing. However, the benefits of in-network
data processing are largely application-specific due
to different requirements and various MAS setups,
but agent-based device resource control has signifi-
cant benefits. For the IoT system infrastructure layers,
the benefits of this approach include less bandwidth
needed to transmit the data to the cloud and reduced
data processing needs in the backend.

With regard to the edge computing challenges pre-
sented in Table 1, mobile agents provide autonomous
application execution that adaptively considers local
resource availability and network characteristics at the
device layer. Local sharing of the data and results fa-
cilitates horizontal interoperability, where embedded
Web services provide a standardized way for the dif-
ferent system components to interact, including the ex-
isting Internet-based services. The presented mobile
agent framework is a valuable extension to the IoT
edge and mist computing platforms, where the pre-
sented results demonstrate benefits for data-intensive
IoT applications.

Acknowledgments

The authors would like to thank Mr. Joonas Kataja
for the work with the Arduino mobile agent platform.

References

[1] P. Angin, and B. K. Bhargava, An agent-based optimization
framework for mobile-cloud computing, JoWUA, 4(2) (2013),
1–17.

[2] R. Aversa, B. Di Martino, M. Rak, and S. Venticinque, Cloud
agency: A mobile agent based cloud system, in: International
Conference on Complex, Intelligent and Software Intensive Sys-
tems, IEEE, 2010, pp. 132–137.



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 17

[3] I. Ayala, M. Amor, and L. Fuentes, The sol agent platform:
Enabling group communication and interoperability of self-
configuring agents in the internet of things, Journal of Ambient
Intelligence and Smart Environments, 7(2) (2015), 243–269.

[4] P. Bellavista, A. Corradi, and C. Stefanelli, Mobile agent mid-
dleware for mobile computing, Computer, 34(3) (2001), 73–81.

[5] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing
Multi-agent Systems with JADE, Wiley, 2007.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing
and its role in the internet of things, in: 1st Edition of the work-
shop on Mobile cloud computing, ACM, 2012, pp. 13–16.

[7] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog comput-
ing: A platform for internet of things and analytics, in: Big Data
and Internet of Things: A Roadmap for Smart Environments, N.
Bessis, C. Dobre, eds, Springer, 2014, pp. 169–186.

[8] E. Borgia, The internet of things vision: Key features, applica-
tions and open issues, Computer Communications 54 (2014), 1–
31.

[9] M. Chen, T. Kwon, Y. Yuan, and V. Leung, Mobile agent based
wireless sensor networks, Journal of Computers, 1(1) (2006),
14–21.

[10] W. Colitti, K. Steenhaut, N. D. Caro, B. Buta, and V. Dobrota,
Evaluation of constrained application protocol for wireless sen-
sor networks, in: 18th IEEE Workshop on Local Metropolitan
Area Networks, IEEE, 2011, pp. 1–6.

[11] Conti, S. Giordano, M. May, and A. Passarella, From oppor-
tunistic networks to opportunistic computing, IEEE Communi-
cations Magazine, 48(9) (2010), 126–139.

[12] M. Conti, C. Boldrini, S. S. Kanhere, E. Mingozzi, E. Pagani,
P. M. Ruiz, et al., From manet to people-centric networking:
Milestones and open research challenges, Computer Communi-
cations, 71 (2015), 1–21.

[13] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, A survey of mobile
cloud computing: architecture, applications, and approaches,
Wireless communications and mobile computing, 13(18) (2013),
1587–1611.

[14] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R.
Gandhi, et al., The case for mobile edge-clouds, in: 10th Inter-
national Conference on Ubiquitous Intelligence and Computing
and Autonomic and Trusted Computing, IEEE, 2013, pp. 209–
215.

[15] N. Fernando, S. W. Loke, and W. Rahayu, Mobile cloud com-
puting: A survey, Future generation computer systems, 29(1)
(2013), 84–106.

[16] G. Fortino, A. Guerrieri, and W. Russo, Agent-oriented smart
objects development, in: 16th International Conference on Com-
puter Supported Cooperative Work in Design, IEEE, 2012, pp.
907–912.

[17] G. Fortino and W. Russo, Towards a cloud-assisted and agent-
oriented architecture for the internet of things, in: 13th Interna-
tional Conference of the Italian Association for ArtiïňĄcial In-
telligence, 2013, pp. 60–65.

[18] G. C. Fox, S. Kamburugamuve, and R. D. Hartman, Architec-
ture and measured characteristics of a cloud based internet of
things, in: International Conference on Collaboration Technolo-
gies and Systems, IEEE, 2012, pp. 6–12.

[19] W. W. Godfrey, S. S. Jha, and S. B. Nair, On a mobile agent
framework for an internet of things, in: International Confer-
ence on Communication Systems and Network Technologies,
IEEE, 2013, pp. 345–350.

[20] B. Guo, D. Zhang, Z. Wang, Z. Yu, and X. Zhou, Opportunistic
IoT: Exploring the harmonious interaction between human and
the internet of things, Journal of Network and Computer Appli-
cations, 36(6) (2013), 1531–1539.

[21] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, et al., Adap-
tive VM handoff across cloudlets, Technical Report CMU-CS-
15-113, CMU School of Computer Science, 2015.

[22] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, Femto
clouds: Leveraging mobile devices to provide cloud service at
the edge, in: 8th International Conference on Cloud Computing,
IEEE, 2015, pp. 9–16.

[23] M. G. Hafez and M. S. Elgamel, Agent-based cloud comput-
ing: A survey, in: 4th International Conference on Future Inter-
net of Things and Cloud, IEEE, 2016, pp. 285–292.

[24] M. E. P. Hernandez and S. Reiff-Marganiec, Towards a soft-
ware framework for the autonomous internet of things, in:
4th International Conference on Future Internet of Things and
Cloud, IEEE, 2016, pp. 220–227.

[25] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwalder, and
B. Koldehofe, Mobile fog: A programming model for large-
scale applications on the internet of things, in: 2nd ACM SIG-
COMM workshop on Mobile cloud computing, 2013, pp. 15–20.

[26] A. R. Hurson, E. Jean, M. Ongtang, X. Gao, Y. Jiao, and T. E.
Potok, Recent advances in mobile agent-oriented applications,
in: Mobile Intelligence, L. T. Yang, A. B. Waluyo, J. Ma, L. Tan,
and B. Srinivasan, eds, Wiley, 2010, pp. 106–139.

[27] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-
Ayyoub, and E. Benkhelifa, Sdmec: Software deïňĄned system
for mobile edge computing, in: IEEE International Conference
on Cloud Engineering Workshop, IEEE, 2016, pp. 88–93.

[28] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J.
Alonso-Zarate, A survey on application layer protocols for the
internet of things, Transaction on IoT and Cloud Computing,
3(1) (2015), 11–17.

[29] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Y.
Terziyan, Smart semantic middleware for the internet of things,
in: ICINCO-ICSO, 2008, pp. 169–178.

[30] E. Kazanavicius, V. Kazanavicius, and L. Ostaseviciute,
Agent-based framework for embedded systems development in
smart environments, in: International Conference on Informa-
tion Technologies, FISITA, 2009, pp. 194–200.

[31] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, A survey of com-
putation offloading for mobile systems, Mobile Networks and
Applications, 18(1) (2013), 129–140.

[32] D. B. Lange and M. Oshima, Seven good reasons for mobile
agents, Communications of the ACM, 42(3) (1999), 88–89.

[33] P. Leong and L. Lu, Multiagent web for the internet of things,
in: International Conference on Information Science and Appli-
cations, IEEE, 2014, pp. 1–4.

[34] T. Leppänen, M. Liu, E. Harjula, A. Ramalingam, J. Ylioja, P.
Närhi, et al., Mobile agents for integration of internet of things
and wireless sensor networks, in: IEEE International Confer-
ence on Systems, Man, and Cybernetics, 2013, pp. 14–21.

[35] T. Leppänen, J. Alvarez Lacasia, A. Ramalingam, M. Liu, E.
Harjula, P. Närhi, et al., Interoperable mobile agents in hetero-
geneous wireless sensor networks, in: 11th ACM Conference on
Embedded Networked Sensor Systems, 2013, pp. 6–7.

[36] T. Leppänen, and J. Riekki, A lightweight agent-based archi-
tecture for the internet of things, in: IEICE workshop on Smart
Sensing, Wireless Communications, and Human Probes, IEICE,
2013, pp. 2–4.



18 T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things

[37] T. Leppänen, J. Riekki, M. Liu, E. Harjula, and T. Ojala, Mo-
bile Agents-Based Smart Objects for the Internet of Things, in:
Internet of Things Based on Smart Objects. Internet of Things
(Technology, Communications and Computing), G. Fortino, and
P. Trunfio, eds, Springer, 2014, pp. 29–48.

[38] T. Leppänen, and J. Riekki, Moving computation to the edges
of iot, Internet of Things Magazine Finland, 1 (2015), 28–31.

[39] T. Leppänen, I. Sanchez Milara, J. Yang, J. Kataja, and J.
Riekki, Enabling user-centered interactions in the internet of
things, in: IEEE International Conference on Systems, Man, and
Cybernetics, IEEE, 2016, pp. 1537–1543.

[40] T. Leppänen, J. Alvarez Lacasia, Y. Tobe, K. Sezaki, and J.
Riekki, Mobile crowdsensing with mobile agents, Autonomous
Agents and Multi-Agent Systems, 31(1) (2017), 1–35.

[41] M. Liu, T. Leppänen, E. Harjula, Z. Ou, A. Ramalingam, M.
Ylianttila, et al., Distributed resource directory architecture in
machine-to-machine communications, in: International Confer-
ence on Wireless and Mobile Computing, Networking and Com-
munications, IEEE, 2013, pp. 319–324.

[42] M. Liu, T. Leppänen, E. Harjula, Z. Ou, M. Ylianttila, and
T. Ojala, Distributed resource discovery in the machine-to-
machine applications, in: 10th IEEE International Conference
on Mobile Ad-hoc and Sensor Systems, IEEE, 2013, pp. 3–4.

[43] M. Liyanage, C. Chang, and S. Srirama, mepaas: Mobile-
embedded platform as a service for distributing fog computing
to edge nodes. in: 17th International Conference on Parallel and
Distributed Computing, Applications and Technologies, IEEE,
2016, pp. 73-80.

[44] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Hi-
gashino, A. Iamnitchi, et al., Edge-centric computing: Vision
and challenges, ACM SIGCOMM Computer Communication
Review, 45(5) (2015), 37–42.

[45] P. Mach and Z. Becvar, Mobile edge computing: A survey on
architecture and computation offloading, IEEE Communications
Surveys & Tutorials, 19(3) (2017).

[46] S. Malek, N. Medvidovic, and M. Mikic-Rakic. An extensi-
ble framework for improving a distributed software system’s
deployment architecture. IEEE Transactions on Software Engi-
neering, 38(1) (2012), 73–100.

[47] B. Manate, T.-F. Fortis, and V. Negru, Optimizing cloud re-
sources allocation for an internet of things architecture, Scalable
Computing: Practice and Experience, 15(4) (2015), 345–355.

[48] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, Inter-
net of Things: Vision, applications and research challenges, Ad
Hoc Networks, 10 (2012), 1497–1516.

[49] D. Mitrovic, M. Ivanovic, Z. Budimac, and M. Vidakovic,
Radigost: Interoperable Web-based multi-agent platform, Jour-
nal of Systems and Software, 90(1) (2014), 167–178.

[50] A. M. Mzahm, M. S. Ahmad, and A. Y. Tang, Agents of things
(aot): An intelligent operational concept of the internet of things
(iot), in: 13th International Conference on Intelligent Systems
Design and Applications, IEEE, 2013, pp. 159–164.

[51] N. M. do Nascimento and C. J. P. de Lucena, Fiot: An agent-
based framework for self-adaptive and self-organizing applica-
tions based on the internet of things, Information Sciences, 378
(2017), 161–176.

[52] C. Pautasso, O. Zimmermann, and F. Leymann, Restful web
services vs. big web services: making the right architectural de-
cision, in: 17th International Conference on World Wide Web,
ACM, 2008, pp. 805–814.

[53] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal
et al., Mobile-edge computing introductory technical white pa-
per, Mobile-edge Computing industry initiative, 2014.

[54] R. Piyare and S.-R. Lee, Performance analysis of xbee zb mod-
ule based wireless sensor networks, International Journal of Sci-
entific & Engineering Research, 4(4) (2013), 1615–1621.

[55] J. Preden, K. Tammemae, A. Jantsch, M. Leier, A. Riid, and
E. Calis, The benefits of self-awareness and attention in fog and
mist computing. Computer, 48(7) (2015), 37–45.

[56] H. Qi, S. Iyengar, and K. Chakrabarty, Multiresolution data
integration using mobile agents in distributed sensor networks,
IEEE Transactions on Systems, Man, and Cybernetics, Part C
Applications and Reviews, 31(3) (2001), 383–391.

[57] M. H. ur Rehman, C. Sun, T. Y. Wah, A. Iqbal, and P. P. Ja-
yaraman, Opportunistic computation offloading in mobile edge
cloud computing environments, in: International Conference on
Mobile Data Management, IEEE, 2016, pp. 208–213.

[58] T. Renner, M. Meldau, and A. Kliem, Towards container-based
resource management for the internet of things, in: International
Conference on Software Networking, IEEE, 2016, pp. 1–5.

[59] A. Rice and S. Hay, Measuring mobile phone energy con-
sumption for 802.11 wireless networking, Pervasive and Mobile
Computing, 6(6) (2010), 593–606.

[60] L. Richardson and S. Ruby, RESTful Web Services, O’Reilly,
2007.

[61] T. Sanchez Lopez, A. Brintrup, M.-A. Isenberg, and J. Mans-
feld, Resource management in the internet of things: Clustering,
synchronisation and software agents, in: Architecting the inter-
net of things, D. Uckelmann, M. Harrison and F. Michahelles,
eds, Springer, 2011, pp. 159–193.

[62] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, The
case for VM-based cloudlets in mobile computing, IEEE perva-
sive Computing, 8(4) (2009).

[63] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K.
Ha, et al., Edge analytics in the internet of things, IEEE Perva-
sive Computing, 14(2) (2015), 24–31.

[64] M. Schatten, J. Seva, and I. Tomicic, A roadmap for scalable
agent organizations in the internet of everything, Journal of Sys-
tems and Software, 115 (2016), 31–41.

[65] Z. Shelby, Embedded Web services, IEEE Wireless Communi-
cations, 17(6) (2010), 52–57.

[66] W. Shi and S. Dustdar, The promise of edge computing, Com-
puter, 49(5) (2016), 78–81.

[67] R. Tynan, D. Marsh, D. O’Kane, and G.M.P. O’Hare, Intelli-
gent agents for wireless sensor networks, in: 4th International
joint conference on autonomous agents and multiagent systems,
ACM, 2005, pp. 1179–1180.

[68] D. Uckelmann, M. Harrison, and F. Michahelles, An architec-
tural approach towards the future Internet of Things, in: Archi-
tecting the internet of things, D. Uckelmann, M. Harrison and F.
Michahelles, eds, Springer, 2011, pp. 1–24.

[69] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar,
A scalable framework for provisioning large-scale iot deploy-
ments, ACM Transactions on Internet Technology, 16(2) (2016),
article 11.

[70] J.-P. Voutilainen, A.-L. Mattila, K. Systä, and T. Mikko-
nen, Html5-based mobile agents for web-of-things, Informatica,
40(1) (2016), 43–51.

[71] J. Wang, Q. Zhu, and Y. Ma, An agent-based hybrid service
delivery for coordinating internet of things and 3rd party ser-
vice providers, Journal of Network and Computer Applications,



T. Leppänen and J. Riekki / Energy Efficient Opportunistic Edge Computing for the Internet of Things 19

36(6) (2013), 1684–1695.
[72] U. Wilensky, Netlogo, Techincal Report, Center for Connected

Learning and Computer-Based Modeling, Northwestern Univer-
sity, 1999.

[73] D. Yazar and A. Dunkels, EfïňĄcient application integration
in ip-based sensor networks, in: 1st ACM Workshop on Embed-
ded Sensing Systems for Energy-Efficiency in Buildings, ACM,
2009, pp. 43–48.

[74] S. Yi, C. Li, and Q. Li, A survey of fog computing: Con-
cepts, applications and issues, in: Workshop on Mobile Big Data,

ACM, 2015, pp. 37–42.
[75] W. Zhang, S. Tan, F. Xia, X. Chen, Z. Li, Q. Lu, et al., A sur-

vey on decision making for task migration in mobile cloud en-
vironments, Personal and Ubiquitous Computing, 20(3) (2016),
295–309.

[76] Z. Zhang, and C. Zhang, Building agent-based hybrid intelli-
gent systems: A case study. Web Intelligence and Agent Systems,
5(3) (2007), 255–271.


