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Abstract: Subspace identification is revisited in the scope of nuclear norm minimization
methods. It is shown that essential structural knowledge about the unknown data matrices
in the data equation that relates Hankel matrices constructed from input and output data can
be used in the first step of the numerical solution presented. The structural knowledge comprises
the low rank property of a matrix that is the product of the extended observability matrix and
the state sequence and the Toeplitz structure of the matrix of Markov parameters (of the system
in innovation form). The new subspace identification method is referred to as the N2SID (twice
the N of Nuclear Norm and SID for Subspace IDentification) method. In addition to include key
structural knowledge in the solution it integrates the subspace calculation with minimization
of a classical prediction error cost function. The nuclear norm relaxation enables us to perform
such integration while preserving convexity. The advantages of N2SID are demonstrated in a
numerical open- and closed-loop simulation study. Here a comparison is made with another
widely used SID method, i.e. N4SID. The comparison focusses on the identification with short
data batches, i.e. where the number of measurements is a small multiple of the system order.

Keywords: Subspace system identification, Nuclear norm optimization, Rank constraint, Short
data batches

1. INTRODUCTION

System identification is a key problem in a large number
of scientific areas. Generally there are two families of sys-
tem identification methods: (1) prediction error methods
and (2) subspace methods, Ljung (1999); Verhaegen and
Verdult (2007). Either of these approaches can be treated
in the time or frequency domain, and for the sake of
simplicity we restrict ourselves to the time domain in this
paper.

The central theme in prediction error methods is to
parametrize the predictor (observer) to generate an es-
timate of the output and then formulate an optimization
problem to minimize a (weighted) cost function defined
on the difference between the measured output and the
observer predicted output. This cost function generally is a
sample average (for the finite data length case) of the trace
of the covariance matrix of the prediction error. Though
the prediction error framework provides a vast amount of
insights in studying and analyzing the estimated predictor,
its main drawback is the non-convexity for general multi-
variable state space models in innovation form, as consid-
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ered in this paper. The lack of convexity can result in that
the optimization method get stuck in a local minimum,
and thereby complicating the analysis of the numerical
results, such as e.g. the difficulty to distinguish between a
bad model estimate due to a local minimum or due to a bad
model parametrization. This parametrization needs to be
given before starting the parameter optimization problem,
and thus the use of the approach can be quite complex
and labor intensive for the non-expert user. However, the
latter fact has been greatly relieved by computer added
software packages such as in Ljung (2007).

Motivated by the drawbacks of prediction error methods,
the goal with subspace identification methods is to derive
approximate models rather than models that are “optimal”
with respect to a chosen cost function. The approximation
is based on linear algebra transformations and factoriza-
tions with structured Hankel matrices constructed form
the input-output data. All existing subspace identification
methods aim to derive a low rank matrix from which key
subspaces, hence the name subspace identification, are
derived. The low rank approximation is in general done
using a singular value decomposition (SVD). Recently a
new family of subspace identification methods was pre-
sented that use the nuclear norm instead of a SVD in
order to improve the low rank approximation, Liu and
Vandenberghe (2009a,b); Mohan and Fazel (2010); Fazel
et al. (2012); Hansson et al. (2012); Liu et al. (2013).
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The drawback of Subspace Identification (SID) is two-
fold. First general subspace identification methods lack an
optimization criterion in the calculation of the predictor.
This drawback is relaxed in a number of recent nuclear
norm based SID methods that regularize the low rank
approximation problem with a sample average of the trace
of the covariance matrix of the prediction error. The
second drawback is that the low rank approximation is
not performed in the first step of the algorithm. As a
consequence, this low rank decomposition does not operate
with the original input-output data but with approximate
processed data. The latter approximation destroys the low
rank property and especially for short data batches, since
most of the SID schemes only provide consistent estimates.

As it is known that exploiting structure (that is present
in the model) is beneficial, especially when working with
short data batches, we review the derivation of subspace
identification in order to be able to deal with two key
structure properties in the data equation used by SID
methods. The data equation is a relationship between the
Hankel matrices constructed from the input and output
data, respectively. The key structural properties are the
low rank property and the Toeplitz structure of unknown
model dependent matrices in the data equation. The key
in the derivation of the new scheme is that both these
structural properties are invoked in the first step of the
algorithm. The algorithm is abbreviated by N2SID, stand-
ing form Nuclear Norm (two times N, i.e. N2) Subspace
Identification.

The paper is organized as follows. In Section 2 the identi-
fication problem for identifying a multivariable state space
model in a subspace context while taking a prediction error
cost function into consideration is presented. The problem
formulation does however not require a parametrization
of the system matrices of the state space model as is
classically done in prediction error methods for parametric
input-output models, Ljung (1999). The key data equation
in the analysis and description of subspace identification
methods is presented in Section 3. Here we also highlight
the important structural properties in the submatrices of
this equation, the low rank property of the matrix that is
the product of the extended observability matrix and the
state sequence of the underlying state space model (given
in innovation form) and the (lower triangular) Toeplitz
structure of the model Markov parameters. A convex re-
laxation is presented in Section 4 to take these structural
constraints into consideration. Some preliminary results of
the performances are illustrated in Section 5 in a compari-
son study of N2SID with N4SID for both open and closed-
loop identification problems with short data batches. Here
we consider the identification of second order systems with
just 50 data points. Finally, we end this paper with some
concluding remarks.

2. THE SUBSPACE IDENTIFICATION PROBLEM

In system identification a challenging problem is to identify
Linear Time Invariant (LTI) systems with multiple inputs
and multiple outputs using short length data sequences.
Taking process and measurement noise into consideration,
the model of the LTI system can be written in the following
innovation form:

{
x(k + 1) = Ax(k) +Bu(k) +Ke(k)

y(k) = Cx(k) +Du(k) + e(k)
(1)

with x(k) ∈ Rn, y(k) ∈ Rp, u(k) ∈ Rm and e(k) a zero-
mean white noise sequences with covariance matrix Re.

We will consider a possible open or closed loop scenario in
which the input and output data sequences are generated.
Also the case of output only identification is considered,
making the approach outlined in this paper a general and
new framework to identify linear dynamical systems.

The problem considered can be formulated as follows:

Given the input-ouput (i/o) data batches
{u(k), y(k)}Nk=1 that are generated with a sys-
tem belonging to the class of LTI systems as
represented by (1), the problem is using short
length i/o data (with N larger but of the order
of n) to estimate the system order, denoted
by n̂, and to determine approximate system
matrices (ÂT , B̂T , ĈT , D̂, K̂T ) that define the
observer:

x̂T (k + 1) = ÂT x̂T (k) + B̂Tuv(k)+

K̂T

(
yv(k)− ĈT x̂T

)
ŷv(k) = ĈT x̂T (k) + D̂uv(k)

(2)

with x̂T (k) ∈ Rn̂, such that the approximated
output ŷv(k) is close to the measured output
yv(k) of the validation pair {uv(k), yv(k)}Nv

k=1
as expressed by a small value of the cost func-
tion,

1

Nv

Nv∑
k=1

‖yv(k)− ŷv(k)‖22 (3)

The quantitative notions like “small” and “approximate”
will be made more precise in the new N2SID solution
toward this problem. It should be remarked that contrary
to many earlier Subspace Identification (SID) methods, the
present problem formulation explicitly takes a prediction
error cost function like (3) into consideration.

A key starting point in the formulation of subspace meth-
ods is the relation between (structured) Hankel matrices
constructed from the i/o data. This relationship will as de-
fined in Verhaegen and Verdult (2007) be the Data Equa-
tion. It will be presented in the next section. Here we will
also highlight briefly how existing subspace methods have
missed to take important structural information about
the matrices in this equation into account from the first
steps of the solution. N2SID will overcome these shortcom-
ings. Taking these structural properties into consideration
makes N2SID attractive especially for identifying MIMO
LTI models when only having short data batches.

3. THE DATA EQUATION AND ITS STRUCTURE

Let the LTI model (1) be represented in its so-called
observer form:{
x(k + 1) = (A−KC)x(k) + (B −KD)u(k) +Ky(k)

y(k) = Cx(k) +Du(k) + e(k)

(4)
We will denote this model compactly as:



{
x(k + 1) = Ax(k) + Bu(k) +Ky(k)

y(k) = Cx(k) +Du(k) + e(k)
(5)

with A the observer system matrix (A−KC) and B equal
to (B−KD). Though this property will not be used in the
sequel, the matrix A can be assumed to be asymptotically
stable.

For the construction of the data equation, we store the
measured i/o data in (block-) Hankel matrices. For fixed
N assumed to be larger then the order n of the underlying
system, the definition of the number of block-rows fully
defines the size of these Hankel matrices. Let this dimen-
sioning parameter be denoted by s, and let s > n, then
the Hankel matrix of the input (similarly for the output)
is defined as:

Us =


u(1) u(2) · · · u(N − s+ 1)

u(2) u(3)
...

...
. . .

u(s) u(s+ 1) · · · u(N)

 (6)

The Hankel matrix defined from the output y(k) and the
innovation e(k) are denoted by Ys and Es, respectively.
The relationship between these Hankel matrices, that
readily follows from the linear model equations in (5),
require the definition of the following structured matrices.
First we define the (extended) observability matrix Os.

OT
s =

[
CT ATCT · · · AT s−1

CT
]

(7)

Second, we define a Toeplitz matrix from the quadruple of
systems matrices {A,B, C,D} as:

Tu,s =


D 0 · · · 0
CB D 0
...

. . .
CAs−2B · · · D

 (8)

and in the same we define a Toeplitz matrix Ty,s from the
quadruple {A,K,C, 0}. Finally, let the state sequence be
stored as:

X = [x(1) x(2) · · · x(N − s+ 1)] (9)
Then the data equation compactly reads:

Ys = OsX + Tu,sUs + Ty,sYs + Es (10)
This equation is a simple linear matrix equation that
highlights the challenges in subspace identification, which
is to approximate from the given Hankel matrices Ys and
Us the column space of the observability matrix and/or
that of the state sequence.

The equation is highly structured. For the sake of brevity
in this paper we focus on the following two key structural
properties:

(1) The matrix product OsX is low rank since s > n.
(2) The matrices Tu,s and Ty,s are (block-) Toeplitz.

In all existing subspace identification methods, these two
key structural matrix properties are not used in the
first step of the algorithmic solution. Some pre-processing
step of the data (Hankel) matrices is usually performed,
followed by a low rank factorization. To further illustrate
this point, consider the approach in Chiuso (2007) as
an example method. Then the first step consists in the
estimation of a high order ARX model that is defined by
the last (block-) row of the data equation (10) neglecting

the term CAs−1X. This is based on the fact that A is
asymptotically stable and the assumption that s is chosen
large enough. Then in a later step the estimated ARX
parameters are used to define a matrix that asymptotically
(both in terms of s and N) is of low rank n. Other
recent methods that make use of the application of the
nuclear norm, try to enforce the low rank property to an
already pre-processed matrix. For example in Liu et al.
(2013) the case of measurement noise was considered only,
and in a pre-processing step the input Hankel matrix Us

is annihilated from the data equation by an orthogonal
projection.

Though statistical consistency generally holds for the ex-
isting subspace identification schemes, they refrain from
exploiting key structural matrix properties in the data
equation in the first step of the algorithm. Such struc-
tural information may be key when dealing with short
data batches. Therefor in the next section we will revise
subspace identification and formulate the new N2SID ap-
proach.

4. N2SID

4.1 Pareto optimal Subspace Identification

From the data equation (10) it follows that the minimum
variance prediction of the output equals ŷ(k) = y(k)−e(k).
Let the Hankel matrix Ŷs be defined from this sequence
ŷ(k) as we defined Ys from y(k). Then the data equation
becomes:

Ŷs = OsX + Tu,sUs + Ty,sYs (11)
Let Tp,m denote the class of lower triangular (block-)
Toeplitz matrices with block entries p×m matrices and let
Hp denote the class of (block-) Hankel matrices with block
entries of p column vectors. Then the two key structural
properties listed in Section 3 are taken into account in the
following problem formulation:

min
Ŷs∈Hp,Tu,s∈Tp,m,Ty,s∈Tp,p

rank
(
Ŷ − Tu,sUs − Ty,sYs

)
(12)

and minE[
(
y(k)− ŷ(k)

)(
y(k)− ŷ(k)

)T
], where E denotes

the expectation operator. This optimization problem seeks
for the Pareto optimal solution with respect to the two
cost functions rank

(
Ŷ − Tu,sUs − Ty,sYs

)
and E[

(
y(k) −

ŷ(k)
)(
y(k) − ŷ(k)

)T
]. This optimization is however not

tractable. For that purpose we will develop in the next
subsection a convex relaxation. This will make it possible
to obtain all Pareto optimal solutions using scalarization.

4.2 A convex relaxation

A convex relaxation of the NP hard problem formulation
in (12) will now be developed. The original problem is
reformulated in two ways. First the rank(·) operator is
substituted by the nuclear norm. The nuclear norm of
a matrix X denoted by ‖X‖? is defined as the sum of
the singular values of the matrix X. It is also known
as the trace norm, the Ky Fan norm or the Schatten
norm Liu and Vandenberghe (2010). This is known to be
a good approximation, Fazel et al. (2001); Fazel (2002).



Second the minimum variance criterion is substituted by
the following sample average of the trace of the covariance

matrix E[
(
y(k)− ŷ(k)

)(
y(k)− ŷ(k)

)T
]:

1

N

N∑
k=1

‖y(k)− ŷ(k)‖22

By introducing a scalarization, or regularization, parame-
ter λ ∈ [0,∞) all Pareto optimal solutions of the convex
reformulation of the N2SID problem can be formulated in
one line.

min
Ŷs∈Hp,Tu,s∈Tp,m,Ty,s∈Tp,p

‖Ŷ − Tu,sUs − Ty,sYs‖?+

λ

N

N∑
k=1

‖y(k)− ŷ(k)‖22
(13)

It is well-known that this problem can be recast as a semi-
definite programming problem, Fazel et al. (2001); Fazel
(2002), and hence it can be efficiently solved with standard
solvers. We have used the modeling language YALMIP,
Löfberg (2001), to perform experiments, results of which
we will present next.

The method encompasses in a straightforward manner the
identification problems with output data only. In that case
the convex relaxed problem formulation reads:

min
Ŷs∈Hp,Ty,s∈Tp,p

‖Ŷ − Ty,sYs‖?+

λ

N

N∑
k=1

‖y(k)− ŷ(k)‖22
(14)

5. ILLUSTRATIVE EXAMPLES

5.1 Open-loop experiment

In this section we report results on numerical experiments
in Matlab. In the first example we consider 100 second
order single-input single-output systems as in (1) ran-
domly generated with the command drss. The matrix
K has been generated with the command randn which
gives a matrix of elements drawn from a standardized
normal density function. Any model for which the absolute
value of the largest eigenvalue of the system matrix A
is larger than 0.99 has been discarded. Data for system
identification has been generated for each model and with
time horizon N = 50. The noise e(k) is white and drawn
from a normal density function with standard deviation
equal to 0.2. The input signal u(k) is a sequence of ±1
obtained by taking the sign of a vector of values obtained
from a standardized normal density function. The initial
value is obtained from a normal density function with
standard deviation 5, where the components are uncor-
related. The parameter s has been equal to 15. We do
not consider the nuclear norm of the matrix as defined in
(13), but instead we first multiply it with a random matrix
from the right. This random matrix was obtained from a
standardized normal density function and the number of
columns was 22. It is known that this type of randomiza-
tion is a powerful tool in low rank matrix approximation,
Halko et al. (2011). The reason we do this modification is
that it will reduce the computational complexity without
significantly affecting the quality of the results obtained.
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Fig. 1. Scatter plot showing the fit N2SID versus N4SID
for 100 randomly generated examples.

We choose model order by looking at the singular values
of the matrix that minimizes the nuclear norm. The model
order is equal to the index of the singular values that is
closest to the logarithmic mean of the largest and smallest
singular value. However, in case that index is greater than
10 we choose as model order 10.

Since our approach gives as solution a whole family of
models parameterized with regularization parameter λ we
perform a second optimization over this parameter with
respect to a fit criterion as implemented in the command
FIT of the System Identification Toolbox in Matlab. We
consider 20 logarithmically spaced values of λ/N in the
interval [10−0.5, 104].

We then compare our method with a standard subspace
method as implemented in the command n4sid of the
System Identification Toolbox of Matlab. This algorithm
will pick model order equal to the one in the interval 0
to 10 which give the best fit on the identification data.
We also make sure that n4sid uses the same value of s as
we do. We also insist that the direct term in the model is
estimated. The comparison between our model and the one
of n4sid is done by computing the fit of the two models on
a second validation data set. In Figure 1 the fit of N2SID
versus N4SID is plotted for the 100 random examples.
In this plot one negative fit value has been removed. In
more than 80% of the cases N2SID has a higher fit value
than N4SID. The average fit values are 76.0 for N2SID
and 71.1 for N4SID. The average model orders are 6.67 for
N2SID and 5.01 for N4SID. This clearly demonstrates the
advantage of using N2SID on short data sets. We have also
performed experiments on longer data sets. Preliminary
results show that there is no significant difference between
the two methods. This is an indication that for large data
length batches both methods deliver consistent results.

5.2 Closed-loop experiment

In the second example we consider closed loop identifica-
tion. For this purpose we consider a model on the form
(1), where
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Fig. 2. Scatter plot showing the fit N2SID versus N4SID
for 100 different realizations of the reference value and
the noise.
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Fig. 3. Scatter plot showing the eigenvalues of the A-
matrix for N2SID and N4SID for 100 different real-
izations of the reference value and the noise.

A =

[
0 1
0 0.7

]
; B =

[
0
1

]
; K =

[
−0.3
0.04

]
C = [1 0] ; D = 0

We control the model with an observer-based state feed-
back where K is the observer gain and where the state
feedback matrix is L = [0.25 −0.3]. This design will place
the closed loop eigenvalues all at 0.5. The controller also
has a feed-forward from a reference value r(k), which is a
sequence of ±1 obtained by taking the sign of a vector
of values obtained from a standardized normal density
function. This signal is multiplied with a gain before it is
added to the input signal such that the closed loop steady
gain from reference value to y(k) is equal to one. The noise
e(k) is white and drawn from a normal density function
with standard deviation equal to 0.1. In this experiment we
will not look for the best model order, but instead we just
compute models of order n = 2. All the other parameters
are the same as in the previous experiment. We show in
Figure 2 the fit of N2SID versus N4SID for 100 different
realizations of the reference value and the noise. The fit is
better for N2SID in 59 % of the cases. Moreover, as is seen
in Figure 3, the spread of the eigenvalues of the A-matrix
is smaller for N2SID as compared to N4SID.

6. CONCLUDING REMARKS

Subspace identification is revisited in this paper in the
scope of nuclear norm optimization methods. A new way to
impose structural matrix properties in the data equation
in subspace identification on the measured data has been
presented. The new subspace identification method is
referred to as N2SID. It is shown that especially for small
data length batches when the number of samples is only a
small multiple of the order of the underlying system, the
incorporation of structural information about the low rank
property of the matrix revealing the required subspace and
the (block) Toeplitz structure of the matrix containing
the unknown Markov parameters enables to improve the
results of widely used SID methods. In addition to the
structural constraints the N2SID method also enables
to make a trade-off in the first step of the calculations
between the subspace approximation and the prediction
error cost function. As such it also overcomes the persistent
drawback that SID did not consider a (classical prediction
error) cost function.

The single integrative step that aims at imposing key
structural matrix properties makes a trade-off between the
prediction error cost function and the problem to retrieve
the subspace of interest. This integrative approach may
help to simplify the analysis of the optimality of SID
methods and to further clarify their link with prediction
error methods. This new way of looking upon SID will open
up the possibility for new developments in the future.
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