
Proceedings of the Estonian Academy of Sciences,
2009, 58, 4, 213–223

doi: 10.3176/proc.2009.4.03
Available online at www.eap.ee/proceedings

On weak symmetries of trans-Sasakian manifolds

Absos Ali Shaikh∗ and Shyamal Kumar Hui

Department of Mathematics, University of Burdwan, Burdwan – 713104, West Bengal, India

Received 28 January 2009, revised 6 May 2009, accepted 13 May 2009
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1. INTRODUCTION

As a proper generalization of pseudosymmetric manifolds by Chaki [3], in 1989 Tamássy and Binh [14]
introduced the notion of weakly symmetric manifolds. A non-flat Riemannian manifold (Mn,g) (n > 2) is
called weakly symmetric if its curvature tensor R̄ of type (0,4) satisfies the condition

(∇X R̄)(Y,Z,U,V ) = A(X)R̄(Y,Z,U,V )+B(Y )R̄(X ,Z,U,V )
+C(Z)R̄(Y,X ,U,V )+D(U)R̄(Y,Z,X ,V )
+E(V )R̄(Y,Z,U,X) (1.1)

for all vector fields X ,Y,Z,U,V ∈ χ(Mn), where A,B,C,D and E are 1-forms (not simultaneously zero) and
∇ denotes the operator of covariant differentiation with respect to the Riemannian metric g. The 1-forms
are called the associated 1-forms of the manifold and an n-dimensional manifold of this kind is denoted
by (WS)n. If in (1.1) the 1-form A is replaced by 2A and E is replaced by A, then a (WS)n reduces to the
notion of generalized pseudosymmetric manifold by Chaki [4]. In 1999 De and Bandyopadhyay [6] studied
a (WS)n and proved that in such a manifold the associated 1-forms B = C and D = E. Hence (1.1) reduces
to the following:

(∇X R̄)(Y,Z,U,V ) = A(X)R̄(Y,Z,U,V )+B(Y )R̄(X ,Z,U,V )
+B(Z)R̄(Y,X ,U,V )+D(U)R̄(Y,Z,X ,V )
+D(V )R̄(Y,Z,U,X). (1.2)

In 1993 Tamássy and Binh [15] introduced the notion of weakly Ricci symmetric manifolds. A
Riemannian manifold (Mn,g) (n > 2) is called weakly Ricci symmetric if its Ricci tensor S of type (0,2) is
not identically zero and satisfies the condition

(∇X S)(Y,Z) = A(X)S(Y,Z)+B(Y )S(X ,Z)+C(Z)S(Y,X), (1.3)
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where A, B, C are three non-zero 1-forms, called the associated 1-forms of the manifold, and ∇ denotes the
operator of covariant differentiation with respect to the metric tensor g. Such an n-dimensional manifold
is denoted by (WRS)n. As an equivalent notion of (WRS)n, Chaki and Koley [5] introduced the notion of
generalized pseudo Ricci symmetric manifold. If in (1.3) the 1-form A is replaced by 2A then the definition
of (WRS)n reduces to that of generalized pseudo Ricci symmetric manifold by Chaki and Koley.

Especially, if A = B = C = 0, then a (WRS)n reduces to Ricci-symmetric and if B = C = 0, then it
reduces to Ricci recurrent.

In 1985, Oubina [11] introduced the notion of trans-Sasakian manifolds, which contains both the class
of Sasakian and cosympletic structures, closely related to the locally conformal Kähler manifolds. Trans-
Sasakian manifolds of type (0, 0), (α,0), and (0,β ) are the cosympletic, α-Sasakian, and β -Kenmotsu
manifold, respectively. In particular, if α = 1,β = 0; and α = 0,β = 1, then a trans-Sasakian manifold
reduces to a Sasakian and Kenmotsu manifold, respectively. Thus trans-Sasakian structures provide a large
class of generalized quasi-Sasakian structures. In 2002, Kim et al. [10] studied generalized Ricci recurrent
trans-Sasakian manifolds. In [9] De and Tripathi studied Ricci semi-symmetric trans-Sasakian manifolds.
Trans-Sasakian manifolds were also studied by Shaikh et al. [13].

The object of the present paper is to study weakly symmetric and weakly Ricci symmetric trans-Sasakian
manifolds. Section 2 deals with preliminaries of trans-Sasakian manifolds. Tamássy and Binh [15] studied
weakly symmetric and weakly Ricci symmetric Sasakian manifolds and proved that in such a manifold
the sum of the associated 1-forms vanishes everywhere. Subsequently in [7] De et al. considered weakly
symmetric and weakly Ricci symmetric K-contact manifolds. Also De et al. [8] studied weakly symmetric
and weakly Ricci symmetric contact metric manifolds with a nullity condition. Again Özgür [12] studied
weakly symmetric and weakly Ricci symmetric Kenmotsu manifolds and proved that in such a manifold the
sum of the associated 1-forms is zero everywhere and hence such a manifold does not exist unless the sum of
the associated 1-forms is everywhere zero. However, in Section 3 of the paper it is proved that the sum of the
associated 1-forms of a weakly symmetric trans-Sasakian manifold of non-vanishing ξ -sectional curvature
is non-zero everywhere and hence such a structure exists. In Section 4 we study weakly Ricci symmetric
trans-Sasakian manifolds and prove that in such a structure, with non-vanishing ξ -sectional curvature, the
sum of the associated 1-forms is non-vanishing everywhere and consequently such a structure exists. Finally,
Section 5 deals with a concrete example of weakly Ricci symmetric trans-Sasakian manifold that is neither
Ricci symmetric nor Ricci-recurrent.

2. TRANS-SASAKIAN MANIFOLDS

A (2n+1)-dimensional smooth manifold M is said to be an almost contact metric manifold [1] if it admits
a (1, 1) tensor field φ , a vector field ξ , a 1-form η , and a Riemannian metric g, which satisfy

φξ = 0, η(φX) = 0, φ 2X =−X +η(X)ξ , (2.1)

g(φX ,Y ) =−g(X ,φY ), η(X) = g(X ,ξ ), η(ξ ) = 1, (2.2)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ) (2.3)

for all vector fields X ,Y on M.
An almost contact metric manifold M2n+1(φ ,ξ ,η ,g) is said to be trans-Sasakian manifold [11] if

(M×R,J,G) belongs to the class W4 of the Hermitian manifolds, where J is the almost complex structure
on M×R defined by

J
(

Z, f
d
dt

)
=

(
φZ− f ξ ,η(Z)

d
dt

)

for any vector field Z on M and smooth function f on M×R and G is the product metric on M×R. This
may be stated by the condition [2]

(∇X φ)(Y ) = α{g(X ,Y )ξ −η(Y )X}+β{g(φX ,Y )ξ −η(Y )φX}, (2.4)
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where α,β are smooth functions on M and such a structure is said to be the trans-Sasakian structure of type
(α,β ). From (2.4) it follows that

∇X ξ =−αφX +β{X−η(X)ξ}, (2.5)

(∇X η)(Y ) =−αg(φX ,Y )+βg(φX ,φY ). (2.6)

In a trans-Sasakian manifold M2n+1(φ ,ξ ,η ,g) the following relations hold [9]:

R(X ,Y )ξ =(α2−β 2)[η(Y )X−η(X)Y ]− (Xα)φY − (Xβ )φ 2(Y )

+2αβ [η(Y )φX−η(X)φY ]+ (Y α)φX +(Y β )φ 2(X), (2.7)

η(R(X ,Y )Z) =(α2−β 2)[g(Y,Z)η(X)−g(X ,Z)η(Y )]

−2αβ [g(φX ,Z)η(Y )−g(φY,Z)η(X)]

− (Y α)g(φX ,Z)− (Xβ ){g(Y,Z)−η(Y )η(Z)}
+(Xα)g(φY,Z)+(Y β ){g(X ,Z)−η(Z)η(X)}, (2.8)

S(X ,ξ ) = [2n(α2−β 2)− (ξ β )]η(X)− ((φX)α)− (2n−1)(Xβ ), (2.9)

R(ξ ,X)ξ = (α2−β 2−ξ β )[η(X)ξ −X ], (2.10)

S(ξ ,ξ ) = 2n(α2−β 2−ξ β ), (2.11)

(ξ α)+2αβ = 0, (2.12)

Qξ = [2n(α2−β 2)− (ξ β )]ξ +φ(gradα)− (2n−1)(gradβ ), (2.13)

where R is the curvature tensor of type (1, 3) of the manifold and Q is the symmetric endomorphism of the
tangent space at each point of the manifold corresponding to the Ricci tensor S, that is, g(QX ,Y ) = S(X ,Y )
for any vector fields X , Y on M. The ξ -sectional curvature K(ξ ,X) = g(R(ξ ,X)ξ ,X) for a unit vector field
X orthogonal to ξ plays an important role in the study of an almost contact metric manifold. Throughout
the paper we consider a trans-Sasakian manifold of non-vanishing ξ -sectional curvature.

3. WEAKLY SYMMETRIC TRANS-SASAKIAN MANIFOLDS

Definition 3.1. A trans-Sasakian manifold (M2n+1,g) (n > 1) is said to be weakly symmetric if its
Riemannian curvature tensor R̄ of type (0, 4) satisfies (1.2).

Let {ei : i = 1,2, ...,2n + 1} be an orthonormal basis of the tangent space Tp(M) at any point p of the
manifold. Then setting Y = V = ei in (1.2) and taking summation over i, 1≤ i≤ 2n+1, we get

(∇X S)(Z,U) = A(X)S(Z,U)+B(Z)S(X ,U)+D(U)S(X ,Z)
+B(R(X ,Z)U)+D(R(X ,U)Z). (3.1)

Putting X = Z = U = ξ in (3.1) and then using (2.7) and (2.11) we obtain

A(ξ )+B(ξ )+D(ξ ) =
2α(ξ α)−2β (ξ β )− (ξ (ξ β ))

α2− (ξ β )−β 2 (3.2)

provided that α2− (ξ β )−β 2 6= 0.
The ξ -sectional curvature K(ξ ,X) of a trans-Sasakian manifold for a unit vector field X orthogonal to

ξ is given by K(ξ ,X) = g(R(ξ ,X)ξ ,X). Hence (2.10) yields

K(ξ ,X) =−{α2− (ξ β )−β 2}.
If α2− (ξ β )− β 2 = 0, then the manifold is of vanishing ξ -sectional curvature. Hence we can state the
following:
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Theorem 3.1. In a weakly symmetric trans-Sasakian manifold (M2n+1,g) (n > 1) of non-vanishing
ξ -sectional curvature, relation (3.2) holds.

Next, substituting X and Z by ξ in (3.1) and then using (2.9) and (2.12) we obtain

(∇ξ S)(ξ ,U) = [A(ξ )+B(ξ )]S(U,ξ )+ [α2− (ξ β )−β 2][(2n−1)D(U)+η(U)D(ξ )]. (3.3)

Again we have

(∇ξ S)(ξ ,U) = ∇ξ S(ξ ,U)−S(∇ξ ξ ,U)−S(ξ ,∇ξU)

= ∇ξ S(ξ ,U)−S(ξ ,∇ξU)

= [2n{2α(ξ α)−2β (ξ β )}− (ξ (ξ β ))]η(U)

−(2n−1)(U(ξ β ))− (φU(ξ α)), (3.4)

where (2.9) has been used. In view of (3.3) and (3.4) we obtain from (3.2) that

D(U) =
[2n{2α(ξ α)−2β (ξ β )}− (ξ (ξ β ))]η(U)

(2n−1)[α2− (ξ β )−β 2]

−(2n−1)(U(ξ β ))+(φU(ξ α))
(2n−1)[α2− (ξ β )−β 2]

+D(ξ )
[
(2n−1){(α2−β 2)η(U)− (Uβ )}− ((φU)α)

(2n−1){α2− (ξ β )−β 2}
]

−2α(ξ α)−2β (ξ β )− (ξ (ξ β ))
(2n−1){α2− (ξ β )−β 2}2 [{2n(α2−β 2)

−(ξ β )}η(U)− (2n−1)(Uβ )− ((φU)α)] (3.5)

for any vector field U , provided that α2− (ξ β )−β 2 6= 0.
Next, setting X = U = ξ in (3.1) and proceeding in a similar manner as above we get

B(Z) =
[2n{2α(ξ α)−2β (ξ β )}− (ξ (ξ β ))]η(Z)

(2n−1)[α2− (ξ β )−β 2]

−(2n−1)(Z(ξ β ))+(φZ(ξ α))
(2n−1)[α2− (ξ β )−β 2]

+B(ξ )
[
(2n−1){(α2−β 2)η(Z)− (Zβ )}− ((φZ)α)

(2n−1){α2− (ξ β )−β 2}
]

−2α(ξ α)−2β (ξ β )− (ξ (ξ β ))
(2n−1){α2− (ξ β )−β 2}2 [{2n(α2−β 2)

−(ξ β )}η(Z)− (2n−1)(Zβ )− ((φZ)α)] (3.6)

for any vector field Z, provided that α2− (ξ β )−β 2 6= 0. This leads to the following:

Theorem 3.2. In a weakly symmetric trans-Sasakian manifold (M2n+1,g) (n > 1) of non-vanishing
ξ -sectional curvature, the associated 1-forms D and B are given by (3.5) and (3.6), respectively.
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Again, setting Z = U = ξ in (3.1) we get

(∇X S)(ξ ,ξ ) = A(X)S(ξ ,ξ )+ [B(ξ )+D(ξ )]S(X ,ξ )+B(R(X ,ξ )ξ )+D(R(X ,ξ )ξ )

= 2n[α2− (ξ β )−β 2]A(X)+ [B(ξ )+D(ξ )]S(X ,ξ )

−[α2− (ξ β )−β 2][η(X){B(ξ )+D(ξ )}−B(X)−D(X)]. (3.7)

Now we have
(∇X S)(ξ ,ξ ) = ∇X S(ξ ,ξ )−2S(∇X ξ ,ξ ),

which yields by using (2.5) and (2.9) that

(∇X S)(ξ ,ξ ) = 2n[2α(Xα)−2β (Xβ )− (X(ξ β ))]

+2α[(Xα)−η(X)(ξ α)− (2n−1)((φX)β )]

+2β [((φX)α)+(2n−1){(Xβ )− (ξ β )η(X)}]. (3.8)

In view of (3.5), (3.6), and (3.8), (3.7) yields

A(X)+B(X)+D(X) =
2α(Xα)−2β (Xβ )− (X(ξ β ))

α2− (ξ β )−β 2

+
α
n

[
(Xα)−η(X)(ξ α)− (2n−1)((φX)β )

α2− (ξ β )−β 2

]

+
β
n

[
((φX)α)+(2n−1){(Xβ )− (ξ β )η(X)}

α2− (ξ β )−β 2

]

−((φX)(ξ α))+(2n−1)(X(ξ β ))
n{α2− (ξ β )−β 2}

+
[2n{2α(ξ α)−2β (ξ β )}− (ξ (ξ β ))]η(X)

n{α2− (ξ β )−β 2}

−2α(ξ α)−2β (ξ β )− (ξ (ξ β ))
n{α2− (ξ β )−β 2}2 [{2n(α2−β 2)

−(ξ β )}η(X)− ((φX)α)− (2n−1)(Xβ )] (3.9)

for any vector field X , provided that α2− (ξ β )−β 2 6= 0. This leads to the following:

Theorem 3.3. In a weakly symmetric trans-Sasakian manifold (M2n+1,g) (n > 1) of non-vanishing
ξ -sectional curvature, the sum of the associated 1-forms is given by (3.9).

In particular, if φ(gradα) = gradβ , then (ξ β ) = 0 and hence relation (3.9) reduces to the following form

A(X)+B(X)+D(X) =
2α(Xα)−2β (Xβ )

α2−β 2 +
α{(Xα)−η(X)(ξ α)− (2n−1)((φX)β )}

n(α2−β 2)

+
β{((φX)α)+(2n−1)(Xβ )}+4nα(ξ α)η(X)− (φX(ξ α))

n(α2−β 2)

−2α(ξ α)[2n(α2−β 2)η(X)− ((φX)α)− (2n−1)(Xβ )]
n{(α2−β 2)}2 (3.10)

for any vector field X , provided that α2−β 2 6= 0.
If α2−β 2 = 0, then in view of (2.12) it can be easily shown from (3.10) that α = 0 = β and hence the

manifold is cosympletic. This leads to the following:



218 Proceedings of the Estonian Academy of Sciences, 2009, 58, 4, 213–223

Corollary 3.1. If a weakly symmetric non-cosympletic trans-Sasakian manifold (M2n+1,g) (n > 1) satisfies
the condition φ(gradα) = gradβ , then the sum of the associated 1-forms is given by (3.10).

If β = 0 and α = 1, then (3.9) yields A(X)+B(X)+D(X) = 0 for all X and hence we can state the following:

Corollary 3.2 [15]. There is no weakly symmetric Sasakian manifold M2n+1(n > 1), unless the sum of the
1-forms is everywhere zero.

Corollary 3.3. If an α-Sasakian manifold is weakly symmetric, then the sum of the 1-forms, i.e. A+B+D,
is given by

A(X)+B(X)+D(X) =
(2n+1)(Xα)−η(X)(ξ α)

nα

+
2(ξ α)((φX)α)−α(φX(ξ α))

nα3 .

Again, if α = 0 and β = 1, then (3.9) yields A(X)+B(X)+D(X) = 0 for all X . This leads to the following:

Corollary 3.4 [12]. There is no weakly symmetric Kenmotsu manifold M2n+1(n > 1), unless the sum of the
1-forms is everywhere zero.

Corollary 3.5. If a β -Kenmotsu manifold is weakly symmetric, then the sum of the 1-forms, i.e. A+B+D,
is given by

A(X)+B(X)+D(X) =
2β (Xβ )+(X(ξ β ))− (2n−1)β{(Xβ )− (ξ β )η(X)}

(ξ β )+β 2

+
{4nβ (ξ β )+(ξ (ξ β ))}η(X)+(2n−1)(X(ξ β ))

n{(ξ β )+β 2}

−{2β (ξ β )+(ξ (ξ β ))}[{2nβ 2 +(ξ β )}η(X)+(2n−1)(Xβ )]
n{(ξ β )+β 2}2 .

4. WEAKLY RICCI SYMMETRIC TRANS-SASAKIAN MANIFOLDS

Definition 4.1. A trans-Sasakian manifold M2n+1(φ ,ξ ,η ,g) is said to be weakly Ricci symmetric if its Ricci
tensor of type (0, 2) is not identically zero and satisfies relation (1.3).

Theorem 4.1. In a weakly Ricci symmetric trans-Sasakian manifold (M2n+1,g) of non-vanishing ξ -
sectional curvature the following relations hold:

A(ξ )+B(ξ )+C(ξ ) =
2α(ξ α)−2β (ξ β )− (ξ (ξ β ))

α2− (ξ β )−β 2 , (4.1)

[r−2n(α2−β 2)+(ξ β )][A(ξ )+B(ξ )]

=
r[2α(ξ α)−3β (ξ β )− (ξ (ξ β ))+β (α2−β 2)]

α2− (ξ β )−β 2

+8nβ{α2 +(ξ β )}+(ξ (ξ β ))−2n(2n+1)β (α2−β 2)+div(φgradα)

+(2n−1){div(gradβ )− (ρ1β )− (ρ2β )}−{((φρ1)α)+((φρ2)α)}−αψ, (4.2)

where r is the scalar curvature of the manifold, div denotes the divergence, ρ1, ρ2 being the associated
vector fields corresponding to the 1-forms A and B, respectively, and ψ = tr(Qφ).
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Proof. From (1.3) it follows that

(∇X S)(Y,ξ ) = A(X)S(Y,ξ )+B(Y )S(X ,ξ )+C(ξ )S(Y,X). (4.3)

In view of (2.9) we obtain from (4.3)

A(X)[{2n(α2−β 2)− (ξ β )}η(Y )− (2n−1)(Y β )− ((φY )α)]

+B(Y )[{2n(α2−β 2)− (ξ β )}η(X)− (2n−1)(Xβ )− ((φX)α)]+C(ξ )S(X ,Y )

= 4n[α(Xα)−β (Xβ )]η(Y )− (X(ξ β ))η(Y )

− (2n−1)(X(Y β ))− (X((φY )α))−α[2n(α2−β 2)− (ξ β )]g(Y,φX)

+β [2n(α2−β 2)− (ξ β )]g(Y,X)+αS(φX ,Y )−βS(X ,Y )

+(2n−1)[(∇XY β )−β (Y β )η(X)]−β ((φY )α)η(X), (4.4)

where (2.11) has been used.
Setting X = Y = ξ in (4.4) and then using (2.11) we obtain relation (4.1). Let {ei : i = 1,2, · · · ,2n+1}

be an orthonormal basis of the tangent space TpM at any point of the manifold. Then setting X = Y = ei
in (4.4) and taking summation over i,1≤ i≤ 2n+1 and then using (2.9) and (2.12) we obtain

[A(ξ )+B(ξ )][2n(α2−β 2)− (ξ β )]− (2n−1)[(ρ1β )+(ρ2β )]− [((φρ1)α)+((φρ2)α)]+ rC(ξ )

=−8nα2β −8nβ (ξ β )− (ξ (ξ β ))+2n(2n+1)β (α2−β 2)− (2n−1)div(grad β )

−div(φ grad α)+αψ−β r, (4.5)

where ψ = ∑2n+1
i=1 S(φei,ei). Eliminating C(ξ ) from (4.1) and (4.5) we obtain (4.2). This proves the theorem.

Theorem 4.2. In a weakly Ricci symmetric trans-Sasakian manifold the Ricci tensor is given by the
following:

[α2 +{β +C(ξ )}2]S(X ,Y )

=[A(X){β +C(ξ )}+αA(φX)−α2η(X)][{2n(α2−β 2)− (ξ β )}η(Y )

− (2n−1)(Y β )− ((φY )α)]+B(Y ){β +C(ξ )}[{2n(α2−β 2)− (ξ β )}η(X)

− (2n−1)(Xβ )− ((φX)α)]+{β +C(ξ )}[(X(ξ β ))η(Y )+(2n−1)(X(Y β ))

−4n{α(Xα)−β (Xβ )}η(Y )+(X((φY )α))−φ(X(Y α))

− (2n−1)(X(Y β ))+(2n−1)β (Y β )η(X)+β ((φY )α)η(X)]

+αC(ξ )[2n(α2−β 2)− (ξ β )]g(Y,φX)− [β{β +C(ξ )}+α2][2n(α2−β 2)− (ξ β )]g(X ,Y )

+α2[2n(α2−β 2)− (ξ β )]η(X)η(Y )+α[(φX(ξ β ))η(Y )−B(Y ){(2n−1)((φX)β )

− (Xα)+η(X)(ξ α)}+(2n−1)(φX(Y β ))+(φX((φY )α))

−4n{α((φX)α)−β ((φX)β )}η(Y )−φ(φX(Y α))− (2n−1)(φX(Y β ))]. (4.6)
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Proof. In (4.4) replacing X by φX and then using (2.1) and (2.9) we obtain

[β +C(ξ )]S(Y,φX) =−αS(X ,Y )+{αη(X)−A(φX)}S(Y,ξ )

+B(Y ){(2n−1)((φX)β )+((φ 2X)α)}
+4n[α((φX)α)−β ((φX)β )]η(Y )

− [(φX(ξ β ))η(Y )+(2n−1)(φX(Y β ))]

− (φX((φY )α))

−α[2n(α2−β 2)− (ξ β )]g(Y,φ 2X)

+β [2n(α2−β 2)− (ξ β )]g(φX ,Y )

+((φ∇φXY )α)+(2n−1)(∇φXY β ). (4.7)

Eliminating S(Y,φX) from (4.4) and (4.7) and using (2.1) and (2.9) we get (4.6). Hence the theorem.

5. EXAMPLE OF WEAKLY RICCI SYMMETRIC TRANS-SASAKIAN MANIFOLDS

Example 5.1. We consider the 3-dimensional manifold M = {(x,y,z) ∈ R3 : z 6= 0}, where (x,y,z) are the
standard coordinates in R3. Let {E1,E2,E3} be a linearly independent global frame on M given by

E1 = ez
(

∂
∂x

+ y
∂
∂ z

)
, E2 = ez ∂

∂y
, E3 =

∂
∂ z

.

Let g be the Riemannian metric defined by g(E1,E3) = g(E2,E3) = g(E1,E2) = 0, g(E1,E1) = g(E2,E2) =
g(E3,E3) = 1. Let η be the 1-form defined by η(U) = g(U,E3) for any U ∈ χ(M). Let φ be the (1, 1)
tensor field defined by φE1 = E2, φE2 = −E1, φE3 = 0. Then using the linearity of φ and g we have
η(E3) = 1, φ 2U =−U +η(U)E3 and g(φU,φW ) = g(U,W )−η(U)η(W ) for any U,W ∈ χ(M). Thus for
E3 = ξ , (φ ,ξ ,η ,g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g and R be the curvature
tensor of g of type (1, 3). Then we have

[E1,E2] = yezE2− e2zE3, [E1,E3] =−E1, [E2,E3] =−E2.

Taking E3 = ξ and using Koszul formula for the Riemannian metric g, we can easily calculate

∇E1E3 =−E1 +
1
2

e2zE2, ∇E3E3 = 0, ∇E2E3 =−E2− 1
2

e2zE1,

∇E2E2 = E3 + yezE1, ∇E1E2 =−1
2

e2zE3, ∇E2E1 =
1
2

e2zE3− yezE2,

∇E1E1 = E3, ∇E3E2 =−1
2

e2zE1, ∇E3E1 =
1
2

e2zE2.

From the above it can be easily seen that (φ ,ξ ,η ,g) is a trans-Sasakian structure on M. Consequently
M3(φ ,ξ ,η ,g) is a trans-Sasakian manifold with α =−1

2 e2z 6= 0 and β =−1.
Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor

as follows:

R(E1,E2)E2 =−
(

3
4

e4z +1
)

E1, R(E1,E2)E1 =
(

3
4

e4z +1
)

E2 + ye3zE3,
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R(E2,E3)E3 =
(

1
4

e4z−1
)

E2, R(E1,E3)E3 =
(

1
4

e4z−1
)

E1,

R(E1,E3)E2 =−ye3zE1, R(E1,E3)E1 = ye3zE2 +
(

1− 1
4

e4z
)

E3,

R(E2,E3)E2 =
(

1− 1
4

e4z
)

E3, R(E1,E2)E3 =−ye3zE1,

and the components which can be obtained from these by the symmetry properties.
Using the components of the curvature tensor, we can easily calculate the non-vanishing components of

the Ricci tensor S and its covariant derivatives as follows:

S(E1,E1) =−2
(

1
4

e4z +1
)

, S(E2,E2) =−e4z,

S(E3,E3) = 2
(

1
4

e4z−1
)

, S(E2,E3) =−ye3z,

(∇E1S)(E1,E1) =−2ye5z, (∇E1S)(E2,E2) =−5ye5z, (∇E1S)(E3,E3) = 3ye5z,

(∇E1S)(E1,E3) =−e4z, (∇E1S)(E1,E2) = ye3z, (∇E1S)(E2,E3) =−3y2e4z +
3
4

e6z− e2z,

(∇E2S)(E2,E2) = 2ye3z, (∇E2S)(E3,E3) =−2ye3z, (∇E2S)(E1,E3) =−y2e4z− 1
2

e6z,

(∇E2S)(E1,E2) = 2yez, (∇E2S)(E2,E3) = 2
(

1− 5
4

e4z
)

, (∇E3S)(E1,E1) =−2e4z,

(∇E3S)(E2,E2) =−4e4z, (∇E3S)(E3,E3) = 2e4z,

(∇E3S)(E1,E3) =
1
2

ye5z, (∇E3S)(E2,E3) =−3ye3z.

Since {E1, E2, E3} is an orthonormal basis of (M3, g), any vector X and Y can be written as

X = a1E1 +a2E2 +a3E3, Y = b1E1 +b2E2 +b3E3,

where ai, bi (i = 1,2,3) are positive real numbers. Now

S(X ,Y ) = a1b1S(E1,E1)+a2b2S(E2,E2)+a3b3S(E3,E3)

+(a1b2 +a2b1)S(E1,E2)+(a1b3 +a3b1)S(E1,E3)

+(a2b3 +a3b2)S(E2,E3)

=
1
2
(a3b3−a1b1−2a2b2)e4z−2(a1b1 +a3b3)

−(a2b3 +a3b2)ye3z

= u1, say. (5.1)

We choose ai and bi (i = 1,2,3) in such a way that S(X ,Y ) = u1 6= 0. The covariant derivatives of the Ricci
tensor S(X ,Y ) are given by

(∇E1S)(X ,Y ) = (3a3b3−2a1b1−5a2b2)ye5z

+(a1b2 +a2b1)ye3z− (a1b3 +a3b1)e4z

+(a2b3 +a3b2)
(

3
4

e6z−3y2e4z− e2z
)

= u2, say. (5.2)
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(∇E2S)(X ,Y ) = 2(a2b2−a3b3)ye3z− (a1b3 +a3b1)
(

y2e4z +
1
2

e6z
)

−(2a2b3 +3a3b2)e4z +2(a1b2 +a2b1)yez +2(a2b3 +a3b2)
= u3, say, (5.3)

and

(∇E3S)(X ,Y ) = 2(a3b3−a1b1−2a2b2)e4z−3(a2b3 +a3b2)ye3z

+(a1b2 +a2b1)
(

1
4

e6z− e2z
)

+
1
2
(a1b3 +a3b1)ye5z

= u4, say. (5.4)

Now let us consider the 1-forms as follows:

A(E1) =
u2

u1
,

B(E1) = (a2b3−a3b2)e4z,

C(E1) = (a3b2−a2b3)e4z,

A(E2) =
u3

u1
,

B(E2) = 0,

C(E2) = 0,

A(E3) =
u4

u1
,

B(E3) = 0,

C(E3) = 0.

With these 1-forms the manifold under consideration is a weakly Ricci symmetric trans-Sasakian manifold.
This leads to the following:

Theorem 5.1. There exists a trans-Sasakian manifold (M3,g) which is weakly Ricci symmetric but neither
Ricci symmetric nor Ricci-recurrent.

Remark. Özgür [12] proved that in a weakly Ricci symmetric Kenmotsu manifold the sum of its associated
1-forms is zero everywhere, but in a weakly Ricci symmetric trans-Sasakian manifold the sum of its
associated 1-forms is non-zero everywhere unless the manifold is of non-vanishing ξ -sectional curvature.

ACKNOWLEDGEMENTS

The authors are grateful to the referee for the valuable suggestions towards the improvement of the paper.
The first author (A. A. Shaikh) gratefully acknowledges the financial support of CSIR, New Delhi, India
[Project F. No. 25(0171)/09/EMR-II] for preparing the revised version of the manuscript.

REFERENCES

1. Blair, D. E. Contact manifolds in Riemannian geometry. Lect. Notes Math., 1976, 509.
2. Blair, D. E. and Oubina, J. A. Conformal and related changes of metric on the product of two almost contact metric manifolds.

Publ. Math. Debrecen, 1990, 34, 199–207.



A. A. Shaikh and S. K. Hui: On weak symmetries of trans-Sasakian manifolds 223

3. Chaki, M. C. On pseudosymmetric manifolds. An. Stiint. Univ., “Al. I. Cuza” Iasi, 1987, 33, 53–58.
4. Chaki, M. C. On generalized pseudosymmetric manifolds. Publ. Math. Debrecen, 1994, 45, 305–312.
5. Chaki, M. C. and Koley, S. On generalized pseudo Ricci symmetric manifolds. Periodica Math. Hung., 1994, 28, 123–129.
6. De, U. C. and Bandyopadhyay, S. On weakly symmetric Riemannian spaces. Publ. Math. Debrecen, 1999, 54(3–4), 377–381.
7. De, U. C., Binh, T. Q., and Shaikh, A. A. On weakly symmetric and weakly Ricci symmetric K-contact manifolds. Acta Math.

Acad. Paedag. Nyı́regyház., 2000, 16, 65–71.
8. De, U. C., Shaikh, A. A., and Biswas, S. On weakly Ricci symmetric contact metric manifolds. Tensor N. S., 1994, 28,

123–129.
9. De, U. C. and Tripathi, M. M. Ricci tensor in 3-dimensional trans-Sasakian manifolds. Kyungpook Math. J., 2003, 43(2),

247–255.
10. Kim, J. S., Prasad, R., and Tripathi, M. M. On generalized Ricci-recurrent trans-Sasakian manifolds. J. Korean Math. Soc.,

2002, 39(6), 953–961.
11. Oubina, J. A. New class of almost contact metric manifolds. Publ. Math. Debrecen, 1985, 32, 187–193.
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Trans-Sasaki muutkondade nõrkadest sümmeetriatest

Absos Ali Shaikh ja Shyamal Kumar Hui

On vaadeldud nõrgalt sümmeetrilisi ja nõrgalt Ricci sümmeetrilisi trans-Sasaki muutkondi. On tõestatud,
et juhul kui muutkond on nõrgalt sümmeetriline trans-Sasaki muutkond või nõrgalt Ricci sümmeetriline
trans-Sasaki muutkond, siis assotsieeritud 1-vormide summa A + B + C (vt valem 1.1) on nullist erinev
muutkonna igas punktis, millest järeldub, et selline struktuur eksisteerib. Alajaotuses 5 on konstrueeritud
nõrgalt Ricci sümmeetrilise trans-Sasaki muutkonna konkreetne näide ja näidatud, et konstrueeritud
muutkond ei kuulu Ricci sümmeetriliste või Ricci-rekurrentsete muutkondade klassi.


