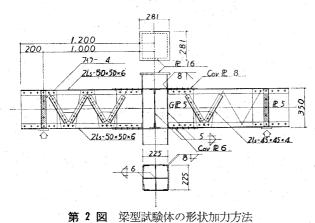
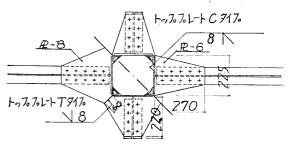

U.D.C. 624.072.2.078: 624.071.3.014.2

鉄骨箱型柱と I 型梁の接合部の研究


正会員 末永保美* 同 佐々木良一** 同 〇上 田幸助***

§1. 緒言 鉄骨構造の柱、はりの接合部に於いて、 柱を箱形とし通しの接合用ガセットをなくし、トッププレートを併用したものにリベット、溶接の接合をして、 はりフランデの引張及び圧縮応力が柱に伝達される際の、接合部のプロポーションがその耐力に与える影響に ついて行ったものである。

§ 2. 実験計画 第1表に示す如く、はり型、X型の種とした。X型では水平荷重時を考慮したものである。これらの場合、接合寸法は一定とし特にトッププレートに変化を与えた。試験体の概要及び加力方法は第 $1\sim3$ 図に示す。トッププレートはTタイプとCタイプに分け(第 3 図)Tタイプはトッププレートを切らずに柱外周を廻し、Cタイプは切断したものである。はり主材 $2L_s$ $-50×50×6、柱主材は <math>2L_s$ 0 の箱型。


第1図 X型試験体の形状、加力寸法

77 - H /LLF (100/71 - 71/1/77)

** 大阪工業大学助手

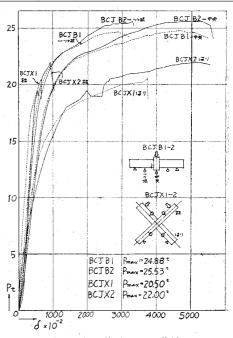
*** KK小河建築設計事務所

第3図 トッププレートの形状

§ 3. 実験結果とその考察第4図に示すものは、はり型では荷重と中央及びl/4点でのたわみと荷重の関係を示す曲線で、X型では、荷重と柱はり中心軸に対するたわみとの関係を示す曲線である。

いずれの場合に於いても、 1型 と 2型 とのいわゆるトッププレートの切断にはあまり影響されていない。又最大荷重時の材の降伏個所は、W.S.G. によれば、はり型、X型、共 I 型のはり材の主材とガセットプレートとの接合点であった。従って W.S.G によれば、いずれの場合も接合用ガセットプレート、トッププレートの歪は大きくならなかった。本試験体が特に実施案の模型であり、相当安全のためにプレートの厚さを大にした。したがって本試験体のプロポーションによる接合は安全と考

える。又、は りのガセット プレートが接 合されている


柱材のプレー ト面の挫屈及 び歪も測定の 結果大きく出 なかったが、 次回では特に この部分の応 力伝達及び降 伏の状態を考 えるために実 験経続中であ る。又、X型 に於いて、柱 材の変形及び 歪もはり材に 比して小さく

全体的にみて

この場合につ

第1表 実験計画

試験体	型式	上側トップ プレート	下側トップ プレート
BCJB 1 BCJB 2	はり型 はり型	Tタイプ 止 -8 Tタイプ 止 -8	Tタイプ 重-6 Cタイプ 重-6
BCJX 1 BCJX 2	X X 型	Tタイプ 瓲 -8 Tタイプ 瓲 -8	Tタイプ 色 -6 Cタイプ 連 -6

第4図 荷重たわみ曲線

いては安全であることが確められた。

^{*} 横浜国立大学助教授 工博